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SUMMARY 
 
The results of a series of non-linear response history analyses are presented. The non-linear model 
includes elasto-plastic behaviour of beam connections up to a critical moment where upon  the connection 
‘breaks ‘ and suffers irrecoverable loss of strength and stiffness.  This corresponds to an extreme, 
idealized form of material degradation and when coupled with P-Delta effects, allows the complete 
collapse of the structures to be investigated.  Three generic frames are subjected to seven earthquake 
excitations.  Results were obtained for both the plastic limit (i.e. where all beams remain within their 
plastic range) and the collapse limit (where all beams exceed their ultimate capacity) and are presented in 
terms of number of storeys and ductility.  The results show that significant reserve capacity is achievable 
even in structures with minimal ductility.  The results are very dependant on the correspondence between 
the frequency content of the earthquake and the natural periods of the building and also the building 
configuration.  Simple pushover analysis is not capable of predicting the collapse load of structure. 
  

INTRODUCTION 
 
Presently, all earthquake codes use response spectra methods as the primary means of designing 
earthquake resistant structures.  The magnitude of the forces generated by the ultimate design earthquake 
is so large that structures are expected to behave inelastically when resisting these forces.  The various 
codes simplify the inelastic considerations by dividing the equivalent earthquake force by a response 
modification factor (also known as a behaviour factor).   

Put simply, the response modification factor is a measure of the ratio of the building’s ultimate capacity to 
its elastic capacity and is an indication of how well a building can be expected to provide energy 
absorption in the inelastic range. In design, this factor is obtained from various tables in the relevant 
earthquake code and is only a function of the structural type.  Virtually all earthquake codes around the 
world will have a table of values of response modification factors (e.g. IBC [1], EC8 [2], SEAOC [3], 
SANZ [4] to name a few) but each code may have different descriptions of the structural types and 
significantly different values assigned to the response modification factors.  It is also relevant to note that 
the range of response modification factors is extremely limited.  The various codes only recognise a few 
structural types and the factors are defined entirely on this basis. 
To produce a better method of determining response modification factors, it is necessary to understand 
their history.  The response modification factors in the codes are derived using semi-empirical means.  
The commentary to the National Earthquake Hazards Reduction Program (NEHRP) describes the factor as 



“an empirical response modification (reduction) factor intended to account for both damping and 
ductility inherent in the structural system at displacements great enough to approach the maximum 
displacement of the system”; FEMA[5].  Whittaker [6] suggests that “There is no technical basis for the 
values assigned to R [response modification factor] in either the Uniform Building Code or the NEHRP 
Recommended Provisions.”  The values of R can be traced back to the empirical horizontal force factors 
adopted in the 1959 SEAOC Blue book; ATC [7].   

Attempts to reduce the uncertainty in the values assigned to behaviour factors has been the subject of 
much research, notably Uang [8], Whittaker [6], Krawinkler [9] and Miranda [10] to name a few.  
Whereas no universal methodology has yet been adopted the pushover analysis has emerged as a useful 
tool to assess the potential performance of a building in the inelastic range.  

Pushover analysis subjects the building to an inelastic static analysis.  In this analysis the load is gradually 
increased until the collapse capacity of the building is reached.  Once the collapse mechanism and loading 
have been determined, the rotations of all the plastic hinges are calculated and the joints detailed to ensure 
that these rotations can be achieved.  Typically designers perform the inelastic analysis indirectly, using an 
equivalent sequence of elastic analyses (placing pinned connections at the positions of the plastic hinges).   

Although effective for a multi-storey building, this procedure is tedious and some doubt has been raised 
about its accuracy.  It is generally thought that if the first mode shape does not dominate the response of 
the building then the load distribution and subsequent results may not be valid.  “It must be emphasised 
that the pushover analysis is approximate in nature and is based on static loading.  As such it cannot 
represent dynamic phenomena with a large degree of accuracy.  It may not detect some important 
deformation modes that may occur in a structure subjected to severe earthquakes, and it may exaggerate 
others.  Inelastic dynamic response may differ significantly from predictions based on invariant or 
adaptive static load patterns, particularly if higher mode effects become important.”  Krawinkler [9]. 

A recent improvement to this technique, known as modal pushover analysis (which accounts in an 
approximate way for the effects of yielding) has been developed and evaluated by Chintanapakdee [11].  
The combination of modal responses remains problematic, and results suggest that significant errors may 
arise in the analysis of tall and/or reduced-strength frames.  Other recent developments of the pushover 
technique include that of Kim [12] where the procedure is enhanced by considering more than just the 
fundamental mode and recalculating mode shapes whenever yielding occurs. 
This paper presents the results of a response history analysis on generic frames subjected to European 
earthquakes in an attempt to identify the effect of higher modes on the collapse behaviour of high-rise 
buildings.  Full details of the model can be found in Wilkinson and Hiley [13], however a summary of the 
modelling methodology is presented here.   
 

MODELLING 
 
The idealized structure is a plane frame, with m floors and n bays, as shown (for m=n=2) in Figure 1.  
Axial degrees of freedom (DOFs) are neglected in both beams and columns.  Thus the model has (n+2) 
DOFs per floor. 
In the sequel:  i = 1,…,m  is the floor/storey index;  j = 0,…,n  is the column (or bay, if j = 1,…,n ) index;  
k = 0,1  is the beam-end index;  and  A(1,2)  refers to element (1,2), for example, of any matrix A. 
 
Members 
The stiffness matrix for a column (superscript C), subject to a known axial compression force P (due in our 
case to gravity i.e. P-Delta effects), is given by Krenk [14]. 
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where: EI is flexural rigidity; L is member length; ααϕ cot≡  and ( )ϕαψ −≡ 12
3
1  are the symmetric 

and anti-symmetric bending stiffness coefficients; ψϕϕ ≡′ ; and EIPL2
1≡α .  The bending stiffness 

coefficients tend to unity as P tends to zero, and are defined as such.  The corresponding vector of 
displacements is [ ]T

,,11 jiijii uu θθ −− , where u is storey ceiling-level displacement (relative to the ground) 

and θ is column upper end-rotation.  
 
The elastic stiffness matrix for a beam (superscript B), neglecting shear in accordance with neglect of 
column axial DOFs, is given by 
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with corresponding vector of displacements [ ]T

1,,0,,
B

ji
B

ji θθ , where B
kji ,,θ  is the rotation at end k of beam 

(i,j). 
 
Material Behavoiur 
Inelastic behaviour is confined to the beam-to-column connections, which remain rigid while the applied 
moment is less than a critical magnitude.  This critical magnitude, that is, the yield moment, MY, is 
considered to be a physical property of the connection.  When the applied moment becomes equal in 
magnitude to MY, the connection yields perfectly plastically.  An elastic beam with two such (identical) 
connections at its ends behaves, under anti-symmetric loading, as an elastic-perfectly-plastic, system (i.e. 
the connections act as plastic hinges). 
 
In order to be able to study the progressive states of failure that lead to the collapse of a frame, this 
material model – the simplest of all inelastic models – is extended by introducing, as simply as possible, 
an ultimate failure state.  This is defined in terms of the plastic deformation, θP, of a connection.  While |θP| 
is less than its critical value, a connection behaves rigidly/plastically, as just described.  This critical 
value, referred to as the ultimate deformation, θX, is, along with MY, considered to be a physical property 
of the connection.  When |θP| becomes equal to θX, the connection fails, that is, it loses any capacity to 
transmit a moment; it becomes ‘pinned’.  The nett behaviour of the beam/connection assembly then 
becomes what may be called elastoplastic-pinned. 
 
The objective here is to reproduce, not so much the observed hysteretic behaviour of real concrete or steel 
structural members, but rather the phenomena of degradation and collapse of framed structures; and the 
philosophy throughout is to keep the entire model as simple as possible.  In contrast to the yield state, a 
connection cannot recover from failure.  Through the failure state the model admits irrecoverable loss of 
strength and stiffness, corresponding to an extreme, idealized form of material degradation.  This 
irreversibile behaviour is considered crucial for a meaningful study of collapse.  (The more severe 
condition, where the beam becomes altogether detached from the column, has not been modelled.) 
 
In the present series of experiments the ultimate deformations of individual connections are prescribed in 
terms of a rotational capacity (factor), µθ, as described below. 



Ductility 
Characterising the ductility of single degree of freedom systems can, by definition, be achieved with one 
parameter (either the ductility demand – a response variable which is a measure of the required ductility 
that a system must be able to achieve to survive; or the ductility factor – a material property which is a 
measure of the ductility of a given structure i.e ∆ult/∆yield).  Multi-degree of freedom system models do not 
lend themselves to simple characterisation by factors that describe the behaviour of the whole system.  
These systems may have different ductility characteristics for different elements or the loading regime may 
result in different elements with the same ductility characteristics having different ductility demands.  
Push-over analysis can determine the ductility demands of individual elements of a structure for a 
monotonic loading, but is incapable of dealing with any variation in ductility demand due to the variant 
nature of the loading. 
 
As this paper is concerned with the analysis of structural frames up to the point of total collapse, it is not 
possible to describe the ductility of the structure in terms of a ductility factor as individual elements may 
have failed before the structure reaches the specified ductility factor. 
 
The inelastic properties of the frame are defined, in the model presented here, in terms of the rotational 
capacities, µc, of individual connections.  The ductility characteristics of individual building elements 
(represented by individual degrees of freedom in the model) then characterise the overall behaviour of the 
structure.  The rotational capacity of the individual connections is defined as  

  
y

ult
c θ

θµ =  (3) 

where θult = the ultimate rotation of the connection and θy = the yield rotation of the connection.  From a 
practical point of view defining ductility in this way has the advantage that designers can assign known 
ductilities to connections based on the structural detail adopted.  
 
A symmetric portal frame, pinned at the base, and with two such identical beam-to-column connections, 
behaves as an elastoplastic system.  One can easily show that the drift, ∆ult at the point of first failure (of 
one of the connections), divided by the drift at yield, ∆y, must satisfy 
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where h/L is the aspect ratio of the frame.  The drift ratio defined in equation 4 is the so-called ductility 
(factor) that is well-known in the study of elastoplastic systems.  Using this equation displacement 
ductilities of µ = 1,2,4,8 will result in rotational ductilities of µθ = 1,3,7,15. 
 
Dynamics 
The lumped-mass idealization is used, together with the constraint (reasonable for several types of floor 
system Chopra [15] that each floor diaphragm is rigid in its own plane but flexible in bending.  The 
resulting mass matrix lumps the mass, mi, of storey i onto the diagonal element corresponding to the 
deflection DOF for that storey: 
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where ii m=)1,1(
1,1M  and all other elements of 1,1

iM  are zero.  The mass matrix for the structure, oM , is 

formed from these sub-matrices. 
 
The system of equations of motion of the structure, omitting damping forces, may now be written: 
  )()()( ooooo ttt PDKDM =+&&  (6) 



where Po(t) is the vector of time-dependent external forces.  As we are concerned here only with the 
dynamics induced by horizontal ground motion, the effective earthquake force Po(t) is given by: 
  )()( oo tt gDMP &&−= . (7) 

Dg(t) is the rigid-body displacement vector corresponding to the ground motion, ug(t): it is given by ιug(t), 
where ι is the influence vector, defined by  ιu = 1  and  ιθ = 0. 
The fact that all but m of the elements of oM  and of oP  are zero, allows the set of equations of motion to 

be conveniently separated into two coupled sets: one dynamic, but smaller and hence more efficiently 
solved than the full set; the other static, expressing rotational equilibrium (i.e. static condensation, such as 
that used by Chopra [15]) can be employed resulting in: 
  uuuuuuuu

ooooooo PDKDKDM =++ θθ&&  (8) 

  0DKDK =+ θθθθ
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uu , (9) 

Equation 9 gives the rotations as a linear combination of the translations, so that the former may be 
eliminated from equation 8 to give 
  uuuuu

ooooo PDKDM =+ ∗&& , (10) 

where the condensed stiffness matrix is 

  ( ) uuuu θθθθ
o

1

oooo KKKKK
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EXAMPLES 

 
The model has been validated in Wilkinson [13] where the results of analyses on simple plane frames 
were accurate to within 1% and the first three natural periods and modes shapes were correctly identified.   
 
In this paper a number of generic frames have been analysed and their results are now presented. The 
examples chosen are generic single bay frames with differing number of storeys as shown in Figure 1.   
 

 
 

Figure 1 Multi-storey Examples 
 



The key structural design parameters for a single bay moment resisting frame are: number of storeys, 
height-wise distribution of stiffness, beam-to-column stiffness ratio, height-wise distribution of mass; 
fundamental period, yield strength distribution, moment rotation relationship of the beam to column 
connections (ductility) and earthquake excitation.  Other factors such as the total mass or the magnitude of 
the yield moment etc. are fixed indirectly by setting the key parameters (e.g. magnitude of yield strength is 
normalised by scaling the earthquake accelerations. 
 
A number of generic structures have been analysed similar to those presented by Chintanapakdee [11].  
Three test series have been analysed, each series consisting of a frame with a different number of storeys – 
namely 3, 9, 18.  The column stiffness of each frame has been proportioned to achieve constant inter-
storey drift when static loads are applied with a height-wise distribution as specified by the IBC.  Beam 
stiffness was proportioned so that the beam to column stiffness ratio was equal to a quarter.  In this paper 
the definition of beam/column stiffness ratio has been taken as ρ = Ibhc/2IcLb.  Where Ib is the second 
moment of area of the beam, Ic is the second moment of area of the column, hc is the height of the column 
and Lb is the length of the beam. 
 
A constant height-wise mass distribution was selected for all examples.  The total mass was proportioned 
so that the fundamental period was equal to that calculated by EC8[16]; namely, T= CH3/4  The value of C 
was 0.085 which represents a moment resisting frame of steel.  Earthquake excitations have been selected 
from the European Strong-Motion Database; Ambraseys [17].  Seven excitations were chosen in an 
attempt to get a wide range of responses.  The European seismic records were chosen using the following 
critera: 
 

1. They were above a surface wave magnitude of 6.5.  Surface wave magnitude was chosen over 
Richter magnitude as the Richter magnitude was not available for all records whereas the surface 
wave magnitude was.  For the records where Richter magnitude was available, all values were 
over 6. 

2. The horizontal component, of the direction with the maximum peak velocity from the station with 
the greatest intensity was chosen.  For earthquakes where intensity information was unavailable, 
the station closest to the epicentre was chosen unless the peak ground velocity at a more distant 
station was significantly greater. 

3. The seven records were chosen which gave the best combination of large spectral accelerations 
over a wide range of periods.  This was done subjectively by looking at the response spectra. 

 
The earthquakes records used in the analysis are given in Table 1 and the associated response spectra are 
given in Figure 2. 
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Figure 2 Response Spectra 

 
Table 1 Earthquake Records 

Name Country Date Ms Station Name 
& Component 

Epicentral 
distance 

Site 
intensity 

Foundation 
category 

Peak 
velocity 
cm/s 

Bucharest Romania 04/03/77 7.05 Bucharest-
Building 
Research Inst, 
N-S 

161 km VIII alluvium 73.13  

Duzce Turkey 12/11/99 7.3 Dulce-
Meteoroloji 
Mudurlugu, 
W-E 

9 km  unknown 63.53 

Erzincan Turkey 13/03/92 6.75 Erzincan-
Meteorologij 
Mudurlugu, N-
S 

13 km  stiff soil 101.8 

Friuli Italy 06/05/76 6.5 Tolmezzo-
Diga 
Ambiesta,E-W 

27 km VIII rock 32.6 

Gazli Uzbekistan 17/05/79 7.04 Gazli, E-W 22 km IX V soft soil 62.7 
Montenegro Yugoslavia 15/04/79 7.04 Bar-Skupstina 

Opstine, E-W 
16 km IX stiff soil 52.0 

Tabas Iran 16/09/78 7.33 Tabas, N74E 52 km IX+ stiff soil 84.5 
 



The yield moment was chosen so that the yielding would occur simultaneously in all storeys when the 
base shear equal to the weight of the structure was applied as static loads using a code-based height-wise 
distribution. 
Load scaling 
Response history analyses were performed for each combination of structural parameters, ductility, and 
ground motion.  The seismic load is scaled systematically, so that the results are presented mostly in terms 
of relative performance. 
 
It has been noted by Riddell [17], in the context of SDF damped oscillators, that when the ground 
acceleration and the resistance function (or restoring force) are both scaled by the same constant, the 
response ductility does not change. 
 
In our experiments we are interested in certain limiting cases which are specified in terms of response 
ductility: they are the plastic limit (where µ<µθ for every connection) and the collapse limit (where µ≥µθ 
for every connection, i.e. where every connection breaks).  There is also the elastic limit, which is simply 
the plastic limit for the case µθ=1. 
 
From a design perspective we may wish to know the (minimum) yield strength that would be required to 
ensure that the response ductility nowhere exceeds the ductility capacity (this would be the plastic limit 
case).  The experiments answer the different, but equivalent question, namely: what is the (maximum) 
intensity of seismic load that would produce a plastic response? 
 
Suppose that a certain frame is known to respond up to its plastic limit for some given earthquake.  The 
scaling argument allows us to infer, for example, that, if we now modify the frame by doubling the yield 
strength, MY, (and, therefore, also the yield rotation) of every connection (without altering the ductility 
capacities, so that the ultimate rotations are also doubled), and then subject it to the same earthquake 
doubled in intensity, it too will respond up to its plastic limit.  The response displacements will of course 
be doubled, but the response ductilities will remain the same. 
 
The results of the various analyses are summarised in Table 2.  The values in Table 2 are amplifications 
that would need to be applied to the earthquake excitation to reach the plastic and collapse limits.  An 
alternative way of looking at these values is to consider them as factors that the yield moment could be 
reduced by before local failure (the plastic limit) or total collapse (the collapse limit) occurs.  Since the 
yield moments of the beams were proportioned using the response spectrum method, the values presented 
in Table 2 are equivalent to the response modification factor (subject to the limitations of the modelling 
assumptions.  Included in the table are the results of a single storey model (labeled ‘S’ in the ‘DOFs’ 
column).  This has been included so that the results of the multi-storey examples (labeled ‘M’ in the 
‘DOFs’ column) can be compared to the results that would be produced using the response spectra 
method - both elastic µθ=1 and inelastic µθ = 3, 7 and 15. 
 

Table 2 R values 
   Number of Storeys 

Earthquake µθ DOFs 3 9 18 
   Plastic Collapse Plastic Collapse Plastic Collapse 

S 1.00 1.05 1.00 1.06 1.00 1.33 1 
M 1.11 1.25 1.15 1.59 1.19 1.98 
S 1.93 1.93 1.99 2.42 3.14 3.56 3 
M 2.32 2.32 2.10 4.06 2.14 6.09 

Bucharest 

7 S 2.34 2.35 3.41 3.55 5.23 5.61 



 M 2.81 2.87 3.81 5.73 5.28 8.77 
S 2.76 2.76 8.33 8.61 8.78 9.15 

 
15 

M 3.27 3.57 6.06 9.17 7.78 12.2 
S 1.00 1.01 1.00 1.13 1.00 1.63 1 
M 1.09 1.22 0.938 1.75 0.617 4.26 
S 1.84 1.84 1.95 1.97 1.99 2.14 3 
M 2.26 2.28 1.58 6.07 1.06 5.84 
S 2.59 2.63 5.19 5.20 3.17 3.17 7 
M 3.37 3.74 4.03 8.42 3.50 4.65 
S 5.04 5.05 6.44 6.44 4.85 4.86 

Duzce 

15 
M 6.13 6.61 6.88 7.12 5.35 6.55 
S 1.00 1.00 1.00 1.06 1.00 1.39 1 
M 1.08 1.18 1.16 1.79 1.09 4.47 
S 1.54 1.54 1.70 1.81 2.05 2.55 3 
M 1.83 1.88 2.10 3.15 2.32 6.87 
S 1.89 1.89 3.11 3.37 6.35 6.83 7 
M 2.23 2.37 3.88 6.75 5.31 9.68 
S 2.27 2.29 7.63 8.05 11.3 11.9 

Erzincan 

15 
M 2.89 4.18 11.1 12.1 8.92 14.6 
S 1.00 1.24 1.00 2.77 1.00 1.33 1 
M 1.09 1.75 0.520 3.33 0.142 1.29 
S 2.58 2.58 3.94 3.94 1.99 2.07 3 
M 3.77 4.75 0.783 5.51 0.245 2.43 
S 4.65 4.92 6.00 6.00 3.04 3.26 7 
M 5.27 7.95 1.45 10.7 0.390 3.39 
S 9.32 10.1 11.8 12.2 4.80 5.06 

Friuli 

15 
M 8.95 28.8 10.2 11.5 3.15 3.82 
S 1.00 1.16 1.00 1.00 1.00 1.24 1 
M 1.03 3.29 0.443 1.25 0.518 6.09 
S 2.61 2.91 1.89 2.36 2.78 3.38 3 
M 3.73 3.81 0.838 2.24 0.884 11.0 
S 4.80 4.81 3.07 3.07 5.04 5.09 7 
M 5.59 7.16 2.82 5.07 1.53 20.1 
S 7.75 7.76 4.33 4.56 8.15 8.16 

Gazli 

15 
M 9.68 10.8 6.84 9.19 7.75 31.4 
S 1.00 1.04 1.00 1.39 1.00 1.31 1 
M 1.13 1.24 1.01 3.15 0.672 1.92 
S 2.46 2.47 2.11 2.32 1.83 3.57 3 
M 3.03 3.09 2.38 5.77 1.34 6.21 
S 4.14 4.14 5.40 5.40 6.35 7.37 7 
M 4.65 4.76 3.40 11.0 2.40 11.7 
S 5.73 5.85 8.55 9.40 12.0 12.6 

Montenegro 

15 
M 6.30 10.80 16.8 21.0 9.21 21.7 
S 1.00 1.18 1.00 1.00 1.00 1.30 1 
M 0.750 1.30 0.586 1.67 0.445 1.96 
S 2.28 2.29 2.07 2.15 2.79 3.07 

Tabas 
 

3 
M 1.82 2.92 1.05 3.37 0.993 4.99 



S 3.36 3.36 2.70 2.91 4.56 4.84 7 
M 3.57 4.23 3.17 7.93 2.05 7.44 
S 4.07 4.07 4.20 4.36 7.82 8.15 

 

15 
M 7.06 7.17 10.4 12.5 12.9 13.4 

 
To compare the results obtained in Table 2 to static based methods, the frames were also subjected to a 
pushover analysis.  Since pushover analysis uses a monotonically increasing load that has an invariant 
height-wise distribution, with respect to the loading, the results are only dependent on the magnitude of 
base shear (which is calculated using the different response spectra) and not from the individual 
characteristics of the earthquake record.  As we are looking at the reserve capacity after the first yield, 
there will be only one value of µ for each building and not one for each earthquake.  Furthermore, since 
the strengths of the beams were sized to produce simultaneous yielding at all levels when analysed using 
the response spectrum method, the building will immediately form a mechanism at the onset of yielding.  
Therefore the response modification factor is independent of the ductility factor and will be equal to unity 
for all cases. 
 

DISCUSSION 
 
Looking at Table 1 a number of observations can be made.  Note that, for the special case of the elastic 
limit, which is simply the plastic limit when µθ=1 (i.e. when the connections are perfectly brittle), the 
value given in the table for all single degree of freedom systems is, by definition, 1.00.  The systems 
studied here, however, have two static, rotational degrees of freedom (although there is only one dynamic 
degree of freedom).  Furthermore, the model does not allow both ends of a single beam to fail 
simultaneously.  Instead, one end is allowed, arbitrarily to ‘break’ first.  This results in a reduction of the 
moment in the other end of the beam, which therefore continues to operate within its elastic range for at 
least a short time afterwards.  A consequence of this local failure is that there is a reduction in stiffness of 
the system and therefore a corresponding lengthening of its period.  As the spectral response generally 
gets smaller with increasing period, failure of one end of the beam will generally result in smaller inertia 
forces.  The exceptions, where the spectral response for the half-broken system is not substantially lower 
than for the elastic system, are: Gazli, for the medium-period SDF system (corresponding to the 9-storey 
frame); and Erzincan, Duzce and Bucharest, for the short-period SDF system (corresponding to the 3-storey 
frame).  In these four cases the collapse load, for the single-storey frames with µθ=1, is only slightly 
greater than the plastic load. 
 
It can be seen that the magnitude of earthquake required to cause collapse generally increases with 
increasing number of storeys, while the magnitude of earthquake required to reach the plastic limit 
generally remains fairly constant (although the relationship is not as consistent).  The reason for this is that 
a building with a greater number of storeys, can form more plastic hinges and therefore has the potential to 
dissipate more energy through hysteretic damping.  On the other hand a building with a greater number of 
storeys can have a greater variation in ductility demand (although this is more greatly influenced by other 
parameters such as the characteristics of the earthquake) and therefore a connection is more likely to 
‘break’ while other members are still only lightly loaded.  An example where the collapse load appears not 
to increase with increasing number of storeys is for the Friuli earthquake.  The reason for this can be 
explained by looking at the response spectrum of Friuli.  In this earthquake the pseudo acceleration is 
large at the period corresponding to the three storey example and ‘tails-off’ quickly so that the pseudo 
acceleration is small at the fundamental period of the eighteen storey frame.  In fact the (elastic) responses 
for the second and third natural frequencies are, respectively, over ten and almost twenty times that for the 
fundamental frequency.  Consequently, the normalizing amplification factor for the 18-storey Friuli case is 
unduly large (with a value of 20.6), so that the values in Table 1 are misleadingly small.   



 
By comparing the results of the SDOF cases to the MDOF cases we can get an indication of the effects of 
the higher modes and of inelastic behaviour on the seismic response of the frames.  The response of each 
natural mode of a frame can be estimated, in theory, from an earthquake’s response spectrum; and these 
responses can be combined (although the process is not straightforward; in the present paper we have 
simply used the fundamental mode for scaling purposes) to give an estimate of the elastic response of a 
multi-storey frame.  This would correspond in our table to the ‘plastic’ limit cases with µθ=1.  Similarly, 
the effects of plasticity/ductility can be observed in both MDOF and SDOF systems, and the similarities 
and differences can be interpreted in terms of the separate and combined effects of higher modes of 
vibration and hysteretic damping. 
 
For example if we take the Bucharest earthquake we see that there are differences between the MDOF and 
SDOF results for µθ = 1 of 11%, 15% and 19% for the 3, 9, and 18 storey buildings respectively; however 
when we look at the case of µθ = 8, we see that the differences are 18.5%, -27% and -11% for the plastic 
case.  Since the response of complex inelastic systems to complex loadings such as earthquakes can 
display such varied behaviour, the averages of the ratios between the MDOF and SDOF cases for the 
different earthquakes are presented in Table 3.  
 
Finally some comments can be made about the reserve capacity of a structure after the onset of yielding.  
In this paper we have not looked at inter-storey drifts.  Inter-storey drift ratio is the usual way of assessing 
potential damage to a structure.  Due to lack of space, for this paper we define ‘damage’ as the onset of 
structural damage (i.e. yielding of a structural members) and we will define the reserve capacity of the 
structure as being the ratio of load to cause collapse, to the load to reach the plastic limit.  It would also be 
possible to look at inter-storey drifts and this will be the subject of another paper.  
 
Since the results obtained for different structures subjected to different earthquakes varies widely, it is 
useful to plot average values of the results from all earthquakes.  Plotting averages allows the trends that 
are due to the structural characteristics of the building to be observed more readily.  The average reserve 
capacity of the structure together with the average plastic limits (normalized by the elastic limit) and the 
average ratio of collapse limit to plastic limit for each building are presented in Table 3.  These results are 
also plotted Figure 3. 
 

Table 3 average reserve capacities 
 Storeys 
 3 9 18 

µθ P/E C/E C/P P/E C/E C/P P/E C/E C/P 
1 1.00 1.57 1.57 1.00 2.86 2.86 1.00 5.82 5.82 
3 2.58 2.94 1.13 1.84 5.69 3.23 1.90 11.38 6.19 
7 3.83 4.62 1.17 4.13 10.89 2.89 4.12 17.23 5.02 

15 6.26 9.88 1.53 5.94 15.85 1.22 14.75 26.31 1.87 
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Figure 3 Average Plastic and Collapse Reserve capacities 

 
From Figure 3 it can be seen that the average ratio of plastic limit to elastic limit varies from 1 when µθ =1 
to 14.75 (for the 18 storey case µθ =15) and that both the plastic limit and the collapse limit increase with 
number of storeys and rotational capacity.  For high-ductility frames, the influence of the number of 
storeys becomes less pronounced, although an increase in ductility always leads to an increase in both the 
plastic and collapse limits.  The reserve capacity over the plastic limit remains fairly constant or reduces 
slightly as rotational capacity increases, but the absolute values increase (except for the highest ductility 
where the values converge).   
 
While it is useful to plot averages, to observe trends, it is also important to plot the results of the 
individual earthquake so that the influence of these on the scatter of results can be observed.  For this 
reason, the Plastic/Elastic reserve capacities for individual earthquakes have been presented in Figure 4.  
As would be expected, there is no scatter in the results when µθ =1 (i.e. no ductility) but the scatter in the 
results gets quite large as the rotational capacity increases (with maximum values of 9.4, 7.5 and 29 for 
the 3, 9 and 18 storey examples respectively).  The 3 and 9 storey examples show that the scatter remains 
fairly constant over the range of rotational capacity, while the 18 storey example has significant scatter for 
µθ = 15  
 

P/E 3 Storey

0

2

4

6

8

10

0 5 10 15µθ

R
es

er
ve

 C
ap

ac
ity

Bucharest

Duzce

Erzincan

Friuli

Gazli

Montenegro

Tabas

 

P/E 9 Storey

0
2
4
6
8

10
12
14
16
18
20
22

0 5 10 15µθ

R
es

er
ve

 C
ap

ac
ity

Bucharest

Duzce

Erzincan

Friuli

Gazli

Montenegro

Tabas

 



P/E 18 Storey

0

5

10

15

20

25

30

0 5 10 15µθ

R
es

er
ve

 C
ap

ac
ity

Bucharest

Duzce

Erzincan

Friuli

Gazli

Montenegro

Tabas

 
Figure 4 Plastic Reserve Capacities for Individual Earthquakes 

 
 

CONCLUSIONS 
Some reserve capacity will exist in redundant systems even if the individual members have no ductility 
with the provisos that, 1) both ends of the member do not fail simultaneously and 2) the beam will not 
become detached from the column at the ultimate rotation. 
 
The plastic capacity of buildings in general remains fairly constant as the number of storeys increases, but 
this is fairly dependant on the earthquake excitation. 
 
The collapse capacity of buildings increases with increasing numbers of storeys, although this may not be 
true if the strength distributions have been specified based on only the first mode response and there are 
significant contributions to the response from higher modes 
 
The plastic limit increases with rotational capacity of the connections; however, the average reserve 
capacity (i.e. ratio of collapse limit to plastic limit) is relatively independent of this (although it is strongly 
affected by the choice of earthquake and the building configuration).   
 
Simple pushover analysis is an extremely useful tool in assessing the potential seismic performance of a 
structure in a qualitative way, but is limited in terms of quantitative analysis.  Furthermore in addition to 
the fundamental mode of vibration, other, higher modes should be assessed 
 
Keeping in mind the limitations of the model and the relatively small number of examples and samples of 
earthquakes used, the following can be said about the reserve capacity of the structures presented in this 
paper.  On average the extra capacity of a structure after first yield and before any connection ‘breaks’ 
varies from 1.00 to 14.75 (depending on the number of storeys and the rotational capacity).  In addition to 
this, for buildings with ductile connections, on average, there is an extra capacity, of up to 87% before the 
building collapses.  For structures with brittle connections the extra capacity over the plastic limit is even 
greater, although the ratio of plastic capacity to elastic capacity is much smaller. 
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