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SUMMARY 
 
This work addresses the field of collapse analysis of steel framed structures under severed loading 
conditions. Applied Element Method (AEM) is recognized as a powerful tool for analyzing the structural 
behavior from the early stage of loading up to total collapse. This method has been used successfully with 
different types of material such as reinforced concrete, soil and masonry. A new extension of this method 
is proposed in this paper in order to simulate large-scale steel structures. The Improved Applied Element 
Method (IAEM) has been presented and employed in the development of novel numerical solutions for 
analysis of failure and collapse of large-scale structures under different hazardous loads. A series of 
numerical examples, including both geometric and material nonlinearity, are used for validation of the 
improved method. The results indicate that the improved method is capable of accurately analyzing the 
ultimate load-carrying capacity of steel structures. The case study, presented in this paper, shows different 
collapse mechanisms of a moment resistance steel frame structure under severe ground motions. 
 

INTRODUCTION 
 
The 1994 U.S Northridge earthquake caused serious damage to modern steel structures. The brittle 
fractures of beam-to-column connections for the moment frame building were widely observed [1;2].   
The damaged buildings were of various heights ranging from one story to 26 stories. One year later, in the 
Kobe earthquake (1995), nearly one thousand steel buildings were damaged, as well as 90 buildings being 
collapsed, 333 buildings being severely damaged, and 300 being slightly  damaged [3;4]. According to the 
FEMA report, modern steel-frame buildings, specially constructed to sway rather than fracture during an 
earthquake, are more vulnerable to collapse than had ever been considered. A design flaw could cause 
these often massive skyscrapers to crack, tilt and even collapse during violent shaking [2]. To reduce such 
damage, it is important to understand its main mechanism. However, it is very difficult or practically 
impossible to perform damage tests for total collapse process of real scale steel structures, especially high 
rise buildings. Therefore, studying those phenomena requires powerful numerical tools that can extend the 
analysis up to complete failure. 
To obtain full knowledge of the behavior of steel structures under severe ground motions, the current 
research is aimed at establishing a comprehensive numerical technique to evaluate and characterize the 
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earthquake response as well as the characteristics and failure mechanisms of large-scale structures. The 
emphasis is placed on the collapse mechanisms and the associated behavior of structures and their 
members under large cyclic loading. During the last decades, considerable research effort dealing with 
collapse analysis has been developed such as Rigid Bodies Spring Model (RBSM) [5], Extended Distinct 
Element Method (EDEM) [6], combined FEM/DEM [7], and Applied Element Method (AEM) [8-12]. 
Nevertheless, none of them have yet been used for collapse analysis of steel structures. In order to 
guarantee decent accuracy of the solution in the case of modeling of steel structure using AEM, a very 
large number of elements will be required to extend the computer power and time needed for numerical 
simulation. Therefore, this paper describes the methodology of Improved Applied Element Method 
(IAEM) [13,14], an efficient and accurate method  for analyzing the failure and collapse of large-scale 
structures under hazardous loads.  
In this paper, the formulations of IAEM are presented, where the effects of geometric and material 
nonlinearities are considered. The main features and analysis capabilities of IAEM are discussed, and 
verification examples are performed to demonstrate the extreme efficiency of the developed code in 
performing inelastic analysis for steel structures. The IAEM requires a very small number of degrees of 
freedom compared to conventional AEM, while decreasing the CPU time needed for analysis and 
increasing the capacity of the solver. A case study shows the different collapse mechanisms of a nine-story 
steel structure model under severe ground motion excitation. The proposed method can be utilized to 
achieve better understanding of the response of structures toward ground motion, impact, fire, and 
hazardous blasting. 
 

INTRODUCTION TO APPLIED ELEMENT METHOD 
 
Applied Element Method (AEM), Ref. [6-10], is a 
recently developed method for structural analysis in both 
small and large displacement ranges. This method can 
follow the structural behavior since the application of 
load, crack initiation and propagation, separation of 
structural elements and until total collapse can be done in 
a reasonable time with reliable accuracy. In AEM, a given 
structure is divided into a proper number of rigid body 
elements. A pair of elements is connected with pairs of 
normal and shear springs uniformly distributed on the 
boundary line. Each pair of springs represents total 
stresses and deformations of a certain area (hatched area 
in Fig.1) of the studied elements. Therefore, the normal 
and shear stiffness can be determined by Eq. (1). 
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where d is the distance between each spring; a is the length of the representative area; E and G are 
Young’s and shear modules of the material, respectively; and T is the thickness of the element, which is 
considered constant for all springs attached to the element [8]. 
Although the conventional AEM used in different engineering fields had shown high accuracy and 
applicability like reinforced concrete [10], soil [11] and masonry [12], some other applications however 
are difficult to handle, such as huge steel structure buildings. Using the current version of AEM, elements 
with a very small size should be used to follow the change in the thickness especially in non-rectangular 
cross sections (i.e. I Shape, Channel, and Boxed sections), since the element should be chosen to fit the 
flange thickness. In this paper, we introduce the Improved Applied Element Method which can easily 
handle the aforementioned cases.   
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Figure 1: Area of influence of each pair  
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Figure 2: Contact Point and D.O.F 

  IMPROVED APPLIED ELEMENT METHOD  
 
Modification of spring stiffness 
Two major extensions of the AEM have been implemented: The first is that of improving the element type 
to be able to follow any change in the non-rectangular cross-section thickness. the second is that allowing 
different thicknesses to be used for calculating normal stiffness and shear stiffness. This sort of 
modification allows using large elements, having the same cross sectional geometric parameters as normal 
and shear and bending stiffness. The value of normal and shear stiffness for each pair of springs can be 
determined by Eq. (2). 

where: i
nT  and i

sT are the thickness represented by the pair of springs “i” for normal and shear cases, 

respectively. This difference in the value of i
nT  and i

sT owes to the change in effective area for both normal 

and shear directions 

A pair of rigid elements, as shown in Fig. 2, are assumed to 
be connected by only one pair of normal spring stiffness 

(
i
nK ) and shear spring stiffness (

i
sK ). The values of dx and dy 

correspond to the relative coordinate of the contact point 
with respect to the center of gravity. To have a global 
stiffness matrix, the location of elements and contact 
springs is assumed in a general position. The stiffness 
matrix components corresponding to each D.O.F. are 
determined by assuming a unit displacement in the studied 
direction and by determining forces at the centroid of each 
element. The element stiffness matrix size is only (6 x 6). 
Eq. 3 shows the components of the upper left quarter of the 
stiffness matrix. All notations used in this equation are 
shown in Fig. 2.  
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(3) 

Although in this method, we can change the 
characteristics of all springs surrounding any element, in 
practice, only changing the corner springs is needed for 
steel flanged sections. As shown in Fig. 3, changing the 
ratios of (K1/K2) and (K3/K4) can control the stiffness of 
any element. That kind of improvement allows using 
many different flanged steel sections like I-beam, Box and 
Channel cross sections. Moreover, any cross section can 
be simulated by adjusting the values of the element 
height, number of springs, ratio of outer to inner 
thickness, and the ratio of normal to shear thickness.  
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Figure 3: Element Shape for IAEM 



 
Modification in dynamic properties  
The general differential equation of motion, governing the response of structure in a small displacement 
range can be expressed as: 

}]{[)(}]{[}]{[}]{[ GUMtfUKUCUM &&&&& ∆−∆=∆+∆+∆  (4) 
where: [M] is mass matrix; [C] is the damping matrix; [K] is the nonlinear stiffness matrix; ∆f(t) is the 

incremental applied load vector; }{},{},{ UUU ∆∆∆ &&& and }{ GU&&∆ are the incremental acceleration, velocity, 
acceleration, and gravity acceleration vectors, respectively.  
In IAEM, the mass matrix and the polar moment of inertia of each element have been idealized as lumped 
at the element centroid. The corresponding lumped mass in each DOF direction can be calculated by 
summing the effect of small segmental masses represented by each spring considering the change of the 
springs’ thickness. Eq. (5) represents the value of lumped mass in each degree of freedom direction 
assuming that elements are square in shape.  
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(5)  

where: D is the element size; tav is the average thickness of the element; ρ the density of the material 
considered.  It should be noticed that the [M1] and [M2] are corresponding to the element mass and [M3] is 
corresponding to the element polar moment of inertia about the center of gravity.  
 
Large displacement analysis with Improved AEM  
The concept of large displacement analysis has been introduced by Tagel-Din [9]. According to their 
concept, the AEM can follow the large deformation under both static and dynamic load by applying a 
slight change in the equation of motion Eq. 6.  

Gm RRtfUKUCUM ++∆=∆+∆+∆ )(}]{[}]{[}]{[ &&&  (6) 

where Rm represents the residual force vector due to cracking and incompatibility between strain and 
stress of each spring; and RG the residual force vector due to geometrical changes in the structure during 
loading. 
By assuming Rm and RG equal to null and solving Eq. 6 to get ∆U, the structural geometry can be 
modified according to the calculated incremental displacements. According to the modification of 
geometry of structure and checking the occurrence of cracks, new values for Rm and RG can be calculated. 
By using  new values of Rm and RG to recalculate the incremental displacement ∆U, considering the 
stiffness changes due to cracking and yielding, analyzing the structure subjected to dynamic loading can 
allow us to follow both geometrical changes of the structure and rigid body motion during failure. 
The validity of the developed code had been demonstrated by several numerical examples. The 
verification examples indicate that IAEM shows excellent agreement with both theoretical and finite 
element results in linear static and dynamic load conditions [13,14].  
 
Material modeling 
Insofar, a simplified uniaxial bilinear stress-strain model with 
kinematic strain hardening is adapted for representing the 
normal stiffness component of structural steel, as shown in Fig. 
4. In this model the plastic range remains constant throughout 
the various loading stages, and the kinematic hardening rule for 
the yield surface is assumed as a linear function of the 

 
Figure 4: Bilinear Material Model  



increment of plastic strain. In this model, the strain hardening parameter (µ) is represented as the ratio 
between the post-yield stiffness (Esp) and the initial elastic stiffness (Ey) of the material. The former is 
defined as Eq. (8). 

Esp=(Fult-Fy)/(εult -εy) (8) 
where Fult and εult  represent the ultimate or maximum stress and strain capacity of the material, 
respectively. Although, this is not an entirely realistic representation of the material behavior, it allows for 
the hardening to be included whilst keeping the formulation simple 

 
INELASTIC ANALYSIS FOR STEEL STRUCTURES 

 

Introduction  
Over the past decades, numerous researchers have developed and validated various methods of 
performing the inelastic analysis on steel frames based on second order inelastic analysis which can be 
categorized into two main types: (1) plastic zone (2) plastic hinge based approach.    
The Elastic–plastic analysis is considered the most direct and simplified approach for representing the 
material nonlinearity. In this model the element is assumed to remain elastic except at the places where 
zero length plastic hinges are allowed to form Giberson [15], Chen[16]. This method accounts for 
inelasticity but it can’t account for the spread of yielding through the section.  Therefore, it is not possible 
to capture member stability with enough accuracy for a wide range of beam-to-column problems [17].  
Plastic zone analysis: in which the spread-of-plasticity of the member is assumed to be modeled by 
subdividing the frame members into several finite elements. Furthermore, each element is subdivided into 
many fibers [18-19]. The plastic zone solution is known as an exact solution. This method has been used 
in IAEM whereas the connecting springs work as fibers. Once the strain of each spring is calculated, the 
stress state can be explicitly determined and the gradual spread of yielding traced.  

Two examples are presented hereafter to demonstrate that the proposed IAEM for carrying out an elasto 
plastic analysis for structures is efficient and accurate.  
Illustrative examples and results  
Example 1: The ultimate long span steel beam  
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Figure 5: Long-span steel beam 
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Figure 6: Formation of plastic zones 

0

100

200

300

400

0 0.01 0.02 0.03 0.04 0.05

Vertical Displacement under the Load (m.)

A
p

p
lie

d
 L

o
ad

 (k
N

)

Salmon,1997

IAEM

 
Figure 7: Ultimate load carrying capacity 

      of a plane steel beam 
 

The first example is a 16x40 wide flange section steel beam of 9.14 m span. The dimensions, supports, 
loading conditions, and cross section are shown in Fig. 5. The beam has a modulus of elasticity of 



205GPa and yield strength of 248MPa. The beam is loaded at one-third points along its span. With the 
IAEM, 24 general shaped elements are used including two boundary elements. However, 22357 square 
elements with a constant thickness are required to model the same beam using original AEM while taking 
in consideration the variation in thickness for flanges and web. Based on IAEM analysis, the sequences 
plastic collapse mechanism of the beam and the formation of the plastic zones are shown in Fig. 6.The 
results obtained by the proposed method (IAEM) are compared with those by Salmon [20]. The results are 
presented in vertical load versus deflection at the loaded point curve as shown in Fig. 7. The comparison 
shows a very good agreement with the theoretical results.  
 
Example 2. The ultimate load-carrying capacity of plane steel frame  
The second example of the ultimate carrying load capacity analysis, which has been taken from Ren [22], 
is that of a rectangular portal frame with rigid connections and a fixed base, as shown in Fig. 8. The frame 
is divided into 61 rigid elements. The cross section and material properties of the members are listed in 
Table 1. The horizontal and vertical loads are applied as shown in Fig. 8. The ultimate load capacity of 
the frame, according the experimental test that was carried out by Hodge [21] was 133.0kN. However, 
based on IAEM, the maximum frame resistance is reached at load (P) of 136kN which is around 2% 
higher than the maximum recorded load during the experiment. The load-vertical displacement curve 
obtained by both IAEM and the Rigid Body-Spring discrete element Method (RBSM) obtained by Ren 
[22] are plotted in Fig. 9 as well as the experimental data by Hodge [21]. Fig. 10 shows the location of the 
developed plastic zones which are represented as dark areas in the figure. The results demonstrate the 
good agreement with experimental and RBSM results.     
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Figure 8: Analysis Model 

 
Figure 10: Location of plastic hinges 
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Figure 9: Ultimate load carrying capacity  

of a plane steel frame 
 

Table 1:   Cross-section and material properties of members 
Area (m2) Inertia (m4) E (kN/mm2) Fy (N/mm2) Poisson’s ratio 

0.6448x10-2 1.08856x106 209 275.8 0.3 
 

CASE STUDY - COLLAPSE OF A NINE-STORY STEEL BUILDING   
 

One of the main advantages of the analytical method is its versatility in parametric study of collapse cases. 
In this section, the IAEM is applied to investigate the validity of the proposed method in simulating 



progressive failure of steel structural buildings under hazardous load conditions, the collapsing process of 
a multi-story steel structure under severe ground motion conditions is presented in this section. The 
structure considered is a plane nine-story steel frame with three bays of 9.00m long, as illustrated in Fig. 
11. The typical height per story is 3.75m. The dimensions of the structural members are given in Table 2. 
in this frame, columns are bent about their major  axes and rigid connections are assumed.  The building 
was designed in accordance with the 1997 NEHRP recommended seismic provisions [23]. Young’s 
modulus is taken as 205GPa and yield stress is 275 MPa and 355 MPa for beams and columns, 
respectively.  Rayleigh damping with 5% damping for the first fundamental mode was assumed. Using 
IAEM, only 477 elements are utilized for modeling 
the whole structure. 
 

Table 2 Cross sections assigned for a 9-story 
steel building 

Columns 
Story Exterior Interior 

Beam 

9 w14x342 w14x398 w21x62 
8 w14x342 w14x398 w27x94 
7 w14x398 w14x455 w33x118 
6 w14x398 w14x455 w33x118 
5 w14x455 w14x550 w36x150 
4 w14x455 w14x550 w36x150 
3 w14x455 w14x550 w36x150 
2 w14x550 w14x550 w40x183 
1 w14x550 w14x605 w40x183 

 
Seismic response 
The inelastic dynamic analysis has been performed, 
which integrates step-by-step the differential 
equations of motion corresponding to a given seismic input. Both material and geometric nonlinearity has 
been considered. Displacement time history analysis has been conducted of combined horizontal and 
vertical components of the first 40 seconds of the Hyogoken-Nanbu Earthquake (1995). The PGA of the 
horizontal component (KOBE/KJM000) was 813gal and had a PGD of 17.68cm while the vertical 
component (KOBE/KJM-UP) had a peak ground acceleration of 336gal and a PGD of 10.29cm.  
 
Collapse analysis  
This paper illustrates a simulation of the building collapse under two different failure modes. The first 
failure is ground floor type failure as illustrated in Fig. 12. A reduction of 40 % of steel strength of the 
columns at ground level and lack of ductility in column-to-beam connections were assumed. The intense 
shaking caused the failure of load bearing columns in the lower floor level and cause progressive failure. 
According to the figure, firstly the ground motion excitation resulted in the formation of plastic hinges at 
several locations. The zones that have plastic deformation are represented by dark color in the figure. 
From the figure, it can be noted that most of the plastic hinges formed in beams, instated of columns, is 
due to the strong column-weak beam design philosophy. With the progress of time and formation of 
enough plastic hinges, the weakness of the strength and the low ductility demand of the ground floor level 
produced a failure in the ground floor columns. The end stage of the failure, illustrated in Fig. 12, shows a 
good agreement with a recorded collapse case of multi-story steel buildings due to Hyogoken-Nanbu, 
Kobe Earthquake (1995) (as shown in Fig. 13).  
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Figure 11: Nine-story steel frame 



Another well observed failure mode is the intermediate soft floor type of failure. This failure mechanism 
had been widely observed for many multi-story steel buildings due to Kobe Earthquake (1995), as 
illustrated in Fig. 14. The sequence of intermediate soft-story failure based on IAEM simulation is 



  

8.50 sec 9.80 sec 10.50 sec 11.50 sec

48.00 sec17.00 sec16.00 sec12.00 sec

8.50 sec 9.80 sec 10.50 sec 11.50 sec

48.00 sec17.00 sec16.00 sec12.00 sec
 

Figure 12: Ground soft-story collapse mechanism 
 

 
Figure 13: Collapsed steel building during January 17,1995 Kobe Earthquake (by K. Meguro) 



illustrated in Fig. 15.The collapse had been initiated due to the same assumption of weakness of columns 
and reduction of ductility at intermediate floor level. The weakness of columns and the intensity of the 
ground motion develop inelastic behavior through the formation of yielding zones at the connections 
between beams and columns.  Developing plastic zone hinges permit free lateral displacement of frame to 
occur and initiate the failure. 
From the results, it can be concluded that the collapse of large scale structures due to earthquakes can be 
performed with sufficient accuracy by using the well-verified and calibrated analysis tool (IAEM). The 
calculation time required for the simulation of complete failure required only approximately one and half 
hours on a personal computer. This was due to the simplification of the IAEM which assumes much fewer  
number of elements compared to traditional methods. Such a minimal requirement of computational time, 
with acceptable accuracy, can be considered as a unique advantage of this model.  
 

CONCLUSIONS 
 
This paper has attempted to briefly trace the development of the IAEM for analyzing the entire behavior of 
large scale steel structures up to total failure.   The main feature of this tool is to use as few elements as 
possible to model each structural component and to obtain a realistic representation of material and 
geometric non-linearity.  The tool was used to analyze available numerical and experimental cases to 
verify the accuracy of the improved method. The results indicate that the improved method is capable of 
accurately analyzing the ultimate load-carrying capacity of steel structures. Numerical examples showing 
the accuracy, efficiency, and the range of application are presented. The program is a 

 
(by K. Meguro)

Figure 14: Collapsed commercial buildings during January 17, 1995 Kobe Earthquake    



useful tool for performing intensive parametric studies to achieve a deeper understanding of structural 
behavior of steel structures under strong ground motions. Our method can help engineers to investigate 
the performance of even high-rise buildings under different hazardous loads. The mechanism of 
progressive failure and the effect on the neighboring buildings can also be simulated.  
The proposed method is limited to two dimensional frames composed of members with compact sections, 
fully braced out-of plane. The section of members can develop full plastic moment capacity without 
occurrence of lateral tortional buckling. More research work is needed to extend the capability of the 
numerical technique to capture the details of inelastic behavior associated with lateral tortional buckling 
and local buckling. 
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