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SUMMARY 

This paper proposes an improved spread plasticity model that correctly identifies the initiation of yielding 
anywhere in the beam, takes into account the gradual spread of plasticity, the shift of the points of contra-
flexure, the variable location and actual length of the yield zones. The model assumes that columns and 
beam column joints remain elastic. Beams are made up of elastic and spread plasticity sub elements 
connected in series. When a beam yields, its stiffness reduces and flexibility increases. Before yielding 
spread plasticity sub element has a null matrix, as the beam yields, the magnitude of its coefficients 
increase. At each time step, the model updates the flexibility matrices of the spread plasticity sub 
elements. Unlike existing spread and concentrated plasticity models, moments within the span are 
monitored and the effect of their yielding or “unyielding” taken into account. 

A number of examples are presented that demonstrate the limitations of the existing spread plasticity 
models. The paper concludes that spread plasticity models that only consider plasticity at the beam 
column connections are only accurate for lower stories and structures where the applied/design gravity 
load < 0.8. The examples also show that compared to existing spread plasticity models, the proposed 
model improves the accuracy in calculation of global displacements, joint rotations and inter story drift 
ratios by up to 25%, 69% and 55% depending on the ratios of applied/design gravity load and bottom/top 
reinforcement. 

 
INTRODUCTION 

A major problem in seismic analysis and design of reinforced concrete structures is the modelling of non-
linear behaviour. All existing methods of seismic analysis and design suffer from limitations caused by 
modelling assumptions and therefore can benefit from improvements. One of the ways in which 
improvements can be effected is through experimental work and field observation of damaged or 
surviving structures during and after an earthquake. The other is to perform parametric studies of multi 
degree of freedom structures using more elaborate numerical models and analysis methods.  
 
The most sophisticated modelling procedure is the finite element method. However the complexity of the 
behaviour and size of the problem limits its application to validation of simpler models applied to analysis 
of simple structures and beams rather than non-linear analysis of multi degree of freedom building 
structures. Riva [1]. On the other hand, the most accurate method of dynamic analysis is the time history 
analysis. This too is computationally expensive and its application is generally limited to models less 
sophisticated than finite element. 



A frequently used approach for representing non-linear behaviour in time history analysis is the 
concentrated or lumped plasticity model. The concentrated plasticity model assumes that non-linearity is 
lumped in springs at member ends. However these models ignore the gradual spread of plasticity in the 
member and therefore over estimate the maximum beam rotation and lateral displacement of the structure. 
Filippou [2]. 
 
To improve on this approximation, spread plasticity models were developed. Soleimani [3], Roufaiel [4], 
Filippou [2] These assume that yielding starts at beam-ends and that yield zones of finite length spread 
inwards from there. However, the start of yielding and location of yield zones varies depending on the 
ratio of earthquake to the gravity load, the distribution of the reinforcement at the top and bottom of the 
member and along the length of the member. It is further influenced by the arching effect in the slab due 
to the contribution of the slab reinforcement to the moment at the top of the beam.  
 
Thus the yield zones may be located: 

(a) At both ends of the beam. 
(b) In the span only 
(c) At one end only 
(d) In the span and at one of the ends. 

 
Moreover there is a new thinking in capacity design to shift the yield zones away from the beam column 
interface, by providing more reinforcement at beam ends and through the joint. Abdel-Fattah [5]. This 
moves the plastic zones away from the beam-ends and minimises the breakdown of the joint core due to 
alternating bond stresses and diagonal cracks. Models that assume hinges form at ends of beams can not 
analyse structures designed in this way. 
 
The spread plasticity model in its present form only caters for beams in the lower stories where the 
earthquake load is greater than gravity load, and therefore the yield zones form at beam-ends. For 
effective analysis and design of medium to high rise buildings in the seismic regions, there is need for a 
new model that caters for hinges (yield zones) that form in the span as well as at the beam-ends. Further 
more these hinges need to be able to spread as the member yields. 
 
The Structural model 
The structural model adopted is one proposed by Filippou [2], however since this work sought to improve 
only the spread plasticity model, it did not consider the effects of shear and interface bond slip. The model 
consists of column and beam elements.  
 
Columns and the beam column joints are assumed adequately reinforced, confined and detailed so that 
they do not yield. The column element consists of the axial force and elastic bending sub elements. The 
stiffness matrices of these sub elements are transformed to global co-ordinates then added to obtain the 
column stiffness matrix. 
 
The beam element consists of the elastic bending, elastic axial and the spread plasticity sub elements 
connected in series. The spread plastic sub element accounts for the gradual spread of plastic deformation 
in the member, the shift of the point of contra-flexure, the variable location and actual length of the yield 
zones. It consists of one or two inelastic regions of finite length where the plastic deformations take place. 
An infinitely rigid bar or bars connect the inelastic regions. Filippou [2]. The locations and length of the 
inelastic and the rigid bars varies depending on whether the combined moment due to gravity and 
earthquake load has exceeded the yield moment of the member. 
 
When a member yields, its stiffness reduces (its flexibility increases). The flexibility matrix of the elastic 
sub elements does not change, while that of the spread plastic element is zero before yielding, and 



increases with yielding. The flexibility of the beam is obtained by adding the flexibility matrices of the 
elastic bending and spread plastic sub elements. Thus the coefficients of beam flexibility matrix increase 
(or coefficients of beam stiffness matrix decreases) as yielding progresses along the beam. The flexibility 
matrix of the beam is inverted, transformed into global co-ordinates, then added to the global stiffness 
matrix of the axial sub element to obtain the global beam stiffness matrix. 
 
The structural model is modified so that when analysed for horizontal loading, the deflections and 
moments include the P-delta effects.  The modification consists of adding a fictitious column having 
negative lateral stiffness properties proportional to the storey gravity loading. Its effect is to reduce the 
horizontal stiffness of each storey so that the resulting increased deflection and increased member 
moments are a function of the gravity loading as well as lateral loading. Gaiotti [6],  
 
The stiffness matrix K, of a free unsupported structure is obtained by assembling the P- delta effect Kg, 
column Kc, and beam elements Kb, stiffness matrices. The digitised ground acceleration record is adjusted 
by adding a zero at the beginning and increasing the duration by t∆  so that for the first time step, the 
earthquake load is zero and only the gravity load is acting. Then the deformations, moments, shears and 
axial forces at joints are found as in normal static analysis using uncondensed stiffness matrix adjusted for 
support conditions. In subsequent time steps, the condensed stiffness matrix is used. 
 
Stiffness of yield zones 
The curvatures of beam sections may be calculated by two different methods. In one case, the curvature 
φ , is given by  

( )EIM=φ , (1) 
Where: 
M  = Applied moment at the section 
E  = Young’s modulus for concrete 
I  = Moment of inertia  
In the other method, the curvature φ , was given by  

( )nc
yεφ =  (2) 

Where: 

cε  = Strain in outermost fibre of concrete in compression 

ny  = depth to the neutral axis from the outer most compressive fibre of concrete. 

It has been shown that before cracking the two moment curvature curves derived from both methods 
coincide. After cracking but before yielding, there is very little difference between the curves. However 
after yielding the curvature given by ( )nyεφ =  increases greatly for a small increase in moment, this is 

because there is a large increase in strain after yielding yet the neutral axis depth does not decrease much. 
On the other hand, for the curvatures given by ( )EIM=φ , the neutral axis depth and thus moment of 
inertia I , does not decrease much with the increasing moment therefore there is very little change in the 
slope of the curve after yield. Kyakula [7] 
 
After yielding, both methods give widely different values. Taking the stiffness of the yield zone as the 
slope of the moment curvature section after yield given by ( )nyεφ = , gives a lower bound stiffness. And 

calculating the stiffness of the yield zone from ( )EIM=φ  gives an upper bound stiffness. The true value 
lies between these two. 
Existing spread plasticity models assume that the curvatures in the moment curvature relationships are 
calculated from ( )nyεφ = . A sketch of such a moment curvature diagram; OABC is shown in figure 1. 



Before cracking the stiffness of the section is given by the slope of the line OD while the slope of the line 
AB gives the stiffness of the cracked section up to just after yielding. They further assume that the 
stiffness of the section at the end of the yield zone that has just reach yield is given by the slope of line 
OD which is the stiffness for an elastic beam. This is taken as equal to infinity. At the other end, the 
stiffness is assumed equal to that of the reloading curve, which is approximately equal to the slope of line 
AC. Then the stiffness of the yield zone is taken as the average of a section with infinite stiffness and that 
of the reloading curve. Filippou [2] 
 
Assuming the section of the yield zone that has just reached yield has infinite stiffness results in 
overestimating the stiffness after yielding. A more accurate calculation would involve calculating the 
effective stiffness as the average of AB and AC. Therefore average stiffness K of the plastic zone is 
assumed to be the average stiffness of the section at yield and that at maximum moment Mo. Kyakula [7]. 
The stiffness K  is given by: 
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The slope yS of BC; the moment curvature curve after yield is given by; θtan=yS  

 
The assumption that the stiffness of the part of the beam that has not yielded is equal to the elastic 
stiffness of the beam is not true because most of it has cracked; Aktan [8]. Never the less this assumption 
has been used in this research because the aim was to address the spreading plasticity due to yielding of 
reinforcement. Accuracy could be improved further by adopting a spread-cracking model to address the 
often neglected cracked but not yielded part of the beam; Kyakula [7] 

 
Figure 1 Stiffness of the Plastic Zone 
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Determination of the flexibility matrix of the spread plastic sub element 
The derivation of the spread plasticity model involves determination of the formulae for the coefficients 
of the flexibility matrix of the spread plastic sub element of the beam. Yielding of any part of the beam or 
change in length of the yield zones changes the stiffness matrix of the structure. If the yield zone 
increases, the stiffness of the structure reduces (its flexibility increases). If the yield zone decreases, the 
stiffness of the member increases (its flexibility reduces). Before yielding the flexibility matrix of the 
spread plastic element is a null matrix. (Its elements are zero). As yielding increases, the magnitudes of 
the coefficients of its flexibility matrix increase. This section derives the formulae for coefficients of the 
flexibility matrix of the spread plasticity sub element for any length of yield zones formed anywhere in 
the beam by applying the principal of virtual work: External work WE  is equal to internal work WI . 
 
The flexibility matrix of the spread plastic sub-element for a beam with ends 1 and 2 may be written in 
the form; 

[ ] 




=
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2111
pl ff

ff
f  (6) 

The derivation of flexibility matrix follows the same procedure as given in Filippou [2] except that the 
general case of the sagging moment yield zone forming within the span near one of the beam ends, with 
the hogging moment yield zone forming at the beam column interface at the other end is considered. In 
the derivation, points A and B are the supports with more positive and less positive moment respectively, 
while C is the point of maximum sagging moment in the span – see Figure 2. 
 
Coefficient aaf  is obtained by applying both the incremental moment and virtual unit moment at point A, 

while bbf  is found by applying the incremental moment and the virtual unit moment at end B. 

Coefficient baf  is found by applying an incremental moment at end B and the virtual unit moment at the 

point A. while abf  is found by applying the moment increment at point A and the virtual unit moment at 

point B. If points A and 1 coincide, then aaff =11 , If the loading reverses such that points B and 1 

coincide, then bbff =11 . And the other points follow accordingly. 

 
An example for determination of one of the coefficients, such as 11f , where A and 1 coincide is 

illustrated in Figure 2. 
The external work done is given by; 

cMfWE ∆= 11  (7) 

Internal work WI  is given by: 

∫ ∫ === um
c

u Madl
K

M
Mdx)x()x(MWI

∆
φ∆  (8) 

Where 
)(xM  is the moment distribution due to the virtual unit moment at end A. It is given in Figure 2 (v). 

)(xφ∆  is the curvature distribution in Figure 2.(iv), due to the applied moment increment AM∆  in 

Figure.2 (iii).  
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Where: 
K  is the stiffness of the yield zone 



uM  is the virtual unit bending moment diagram. 

uM  is the ordinate of the uM  diagram at the section through the centre of the curvature diagram. 

ma  is the area of the curvature diagram. 

cK  is the stiffness of the sagging moment yield zone in the span, bK  is the stiffness at hogging moment 

yielded zone at end B. It is assumed that the current lengths of the plastic zones in the span and at end, B 
are bc Z,Z  respectively. 

Where 

12c XXZ −=  and 3b XLZ −= . 

L  is the clear span of the beam. 

1X  is the length from the beam column interface with the more positive bending moment to the first 
point where the sagging moment is equal to the yield moment. 

cX  is the length from the beam column interface with the more positive bending moment to the point of 

the most positive moment in the beam. 

2X  is the length from the beam column interface with the more positive moment to the second point 
where the moment is equal to the sagging yield moment 

3X  is the length from the beam column interface with the more positive moment, to the point where the 

moment is equal to the hogging yield moment. 
 

(i)Bending moment diagram showing yielded areas (hinges) 
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ii) Spread plastic sub-element 
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(iii) Real action, (bending moment diagram), due to moment applied at end A 
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(iv) Real deformations (curvatures) 
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Figure 2: Derivation of 11f  when hinges form in the span and at one end 

 

The method for determination of yield zone length and location cXXXX ,,, 321  is explained in references; 

Kyakula [7.9]. 
The curvature diagram in Figure 2(iv) is divided into three parts; therefore the internal work done is given 

by; 
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Substituting the above values in the equation for internal work and equating Internal work; WI  and 
external work; 

A
MfWE ∆=

11
, gives; 
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When the yield zones in the span reach the end of the beam; 0.01 == LXµ   Substituting this value in 

equations (11) to (13), the expressions for coefficients of the flexibility matrix 12212211 f,f,f,f  reduce to 
those derived by  Filippou [2], Soleimani [3]. The only difference arises from the value of the stiffness of 
the yielded zones used. These are reproduced below as equations (13), (14), (15). 
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Similarly other cases of yield zone locations can be easily considered. For example 
(a) When yield zones form only in the span, 0.0b =β . 

(b) When the yield zone is located only at beam end under the action of hogging moments, 0.0c =β . 

(c) Where the yield zone is located only at beam end under the action of sagging moments, 0.0b =β  and 

0.0X 1 = .  
 
EXAMPLE 
The aim of the example is to investigate the behaviour and performance of the structure based on the 
existing and proposed spread plasticity model. It seeks to show the variation of the location of the point of 
first yield in the span with the storey number and applied gravity load. It also shows the effect of varying 
the gravity load on the computed deformations given by different models. The stiffness of yield zone is 
determined in the same way for all models. 
 

The structural frame 
The sketch of the single bay five-storey frame used in analysis is shown in Figure 3. The frame is fixed at 
the base and, consists of columns that are 3.5m high and 0.4m square. The beams are 8 m long, 0.6m deep 
with a web width of 0.3m and effective flange width of 2.1m. It carries a floor slab that is 4.0m wide and 
0.2m deep. The effective flange width b given by; wbhb 3+= ; Pantazopoulou [10] The frame was first 

designed according to Eurocode 8 using a gravity loads; m/kN43 . The gravity load was obtained by 
considering the dead, imposed and partition loads.  
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Figure 3: Five storey single bay frame sketch 



The Ground Acceleration 
The ground acceleration was provided by a simple half cycle sine wave in Figure 4. The ground 
acceleration A  at any time is given by: 
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The value of K  can be any reasonable number; in the Figure 3, 0.1=K . The dynamic load of 
( )Tt2sin4 π , was chosen after applying the various dynamic loads varying from ( )Tt2sin2 π  to 

( )Tt2sin6 π , and it gave the inter storey drift ratio within the range recommended in literature: Moehle 
[11], Sattary-Javid [12]. The aim of using a simple dynamic loading was to facilitate study and easy 
comparison of the deformations of the structure resulting from application of both the existing and 
proposed spread plasticity models. 
 

Figure 4:  Simple Half Cycle Sine wave Ground 
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Frame Design 
A design of the frame must be made before any time history analysis can be carried out. And since it was 
assumed that the yielding of reinforcement identifies the onset of plasticity, the amount and distribution of 
reinforcement greatly influences the behaviour of the member. Therefore the discussion of the design of 
the frame is important in understanding their response. The designs for the frame was made according to 
Eurocode 8.[13] The floor beams carried a gravity load of 43kN/m made up of dead load and imposed 
loads. A pseudo spectral acceleration of approximately 0.5g was used in design. The columns and beam 
column joints were assumed not to yield. 
 
The Eurocode 8 [13] divides the specification for structure into those designed and detailed to a high 
degree of ductility, DC “H”, medium ductility, DC “M”, and low ductility, DC “L”. In this example only 
DC “H” structures are considered. Two important aspect of beam design in Eurocode 8 affect the 
distribution of the reinforcement and thus the behaviour of the beam, and these are; 
Clause 2.7.1.3.(b) of Eurocode 8 requires that “In critical regions, at least the50% of the amount of actual 
tension reinforcement is placed in the compression zone”. This clause aims at achieving ductility in the 
critical regions. Penelis[14] 



Clause 2.7.2.3.(3)P requires that; “Within the critical regions, tension reinforcement ratio ρ  shall not 

exceed the value maxρ  for DC “H” derived as follows;” 
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Where: 

cdf  is the characteristic strength of concrete. 

ydf  is the characteristic strength of reinforcement. 

ρ ′  is the compression reinforcement ratio. 
The two clauses imply that the minimum acceptable ratio of compression to tension reinforcement is 0.5. 
Also where this ratio exceeds maxρ , and both the characteristic strength of reinforcement and concrete are 

not changed, the only design option is to keep the amount of tension reinforcement constant while that of 
the compression reinforcement is increased. In this case the characteristic strength of concrete and 

reinforcement were kept constant at 2mm/N40  and 2mm/N460  respectively. 
 
Effect of gravity load on initiation of yield zone location 
The variation of the point of initiation of yielding due to sagging moments with floor level and applied / 
design gravity load was investigated. The gravity load was varied as 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 times 
the design gravity load of m/kN43  while the dynamic load was kept constant at )Tt2sin(4 π . The time 
step used was 0.01 seconds. The fundamental period of the structure varied from 2.2s to 2.7s for the 
applied/ design gravity load ratio varying from 0.7 to 1.2. The length from the left-hand side support to 
the point where the sagging moment in the span first reached or exceeded the yield moment was plotted 
for the various gravity loads and for each floor level of the beam. These are given in Figure 5. From the 
figure it is seen that for values of applied/ design gravity load that are lower than 0.9 and for lower floor 
levels yielding started at the beam column interface. For higher ratios of applied to design gravity load, 
the yielding started in the span; in some cases about 2.0m from the support. 
 
The existing spread plasticity models can not identify the start of yielding in the span and this causes them 
to underestimate the structural deformation. Also these models do not accurately compute the yield zone 
length and thus limit its maximum value to L25.0 , where L  is the clear span length. Soleimani [3], 
Filippou [2]. 
 



Figure 5: Location of yield point at the initiation of sagging 
moment yielding   in the span  

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

Location of yield point from left hand support (m)

Fl
oo

r 
Le

ve
l o

f t
he

 b
ea

m

Applied/Design Gravity Load = 0.7
Applied/Design Gravity Load = 0.8
Applied/Design Gravity Load = 0.9
Applied/ Design Gravity Load = 1.0
Applied/Design Gravity Load = 1.1
Applied/Design Gravity Load = 1.2
Design Gravity Load = 43kN/m
Ground Acc'n = 4sin(wt)

 
 
Effect of gravity load on maximum floor and roof Deflection 
The effect of the gravity load on the maximum floor deflection was investigated. The full results for this 
investigation are given in Kyakula [7], only a few examples are reported here. The percentage 
improvement in determination of these deflections is given as: 
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Where 

pδ  is deflections due to proposed model 

eδ  is deflections due to existing model 

%IM  is a measure of the percentage improvement of the proposed model over the existing spread 
plasticity models. 
 
Figure 6 shows the percentage improvement of the proposed model over the existing model due to 
Filippou [2], in calculation of the maximum floor deflection using for the frame with the design gravity 
load of m/kN43 . It is seen that the percentage improvement increases with increasing applied/design 
gravity load ratio dA , and increasing floor level. This is because for upper storeys, and higher ratios of 

applied/design gravity load, yielding starts in the span. Failure by the existing spread plasticity models 
causes errors. The errors in lower floors are due to failure by the existing models to calculate the length of 
yield zones accurately. 
 



Figure 6: Percentage improvement in floor deflection 
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Joint Rotations 
Figure 6 shows percentage improvement in calculation of maximum rotation for the right hand joints of 
the frame. It is seen to vary with the floor level and applied gravity load. Since at the application of 
dynamic load, the rotations are not equal to zero, but to a rotation 0θ  due to applied gravity load, the 

percentage improvement in determination of the rotations is given as: 
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Where 

pθ  is deflections due to proposed model 

eθ  is deflections due to existing model 

%IM  is a measure of the percentage improvement of the proposed model over the existing spread 
plasticity models. 
It is seen that the improvement in calculation of joint rotations increases with increasing ratio of 
applied/design gravity load. It also increases with increasing floor level, but tends to decrease for the top 
floors. This is because for upper storeys, and higher ratios of applied/design gravity load, yielding starts 
in the span. The reduction is because the moment in the span of upper storey beams has just reached yield 
or has not yielded at the onset of unloading.  
 



Figure 7;  Percentage improvement in joint rotations 
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Maximum inter storey drift ratios 
The maximum inter-storey drift ratios for all floors do not occur at the same time during the dynamic 
loading of the structure. Yet inter storey drift ratios should relate to the state of damage of the structure at 
a given time. Thus the maximum inter-storey drift ratios are defined as a set of inter storey drift ratios for 
all floors at a time when the highest value of inter-storey drift ratio occurs. Figure 7 shows the percentage 
improvement in maximum inter storey drift ratios as it varies with the floor level and applied gravity load 
for the frame with the design gravity load of m/kN43 .  
 



Figure 8: Percentage improvement in interstorey drift ratios 
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Generally cases where the yield zone has reached the end of the beam such as lower stories, the 
differences are small, caused by the failure of the existing models to accurately calculate the yield zone 
length. At upper floors, these differences are larger due to the failure of the existing models to recognise 
yield zones that form in the span. For lower applied/design gravity load, they reduce at roof level mainly 
because the sagging moment in the span has not reached yield  
 
CONCLUSION 
An improved spread plasticity model that correctly identifies the initiation of yielding anywhere in the 
beam, takes into account the gradual spread of plasticity, the shift of the point of contra-flexure, the 
variable location and actual length of the yield zones has been presented. The model accounts for the 
effects of gravity loads. A number of examples are presented that demonstrate limitations of the existing 
spread plasticity models. It is concluded that spread plasticity models that only consider plasticity at the 
beam column connections are only accurate for lower stories and structures where the gravity load is 
small compared to the seismic load. The examples also show that compared to existing spread plasticity 
models, the proposed model improves the accuracy in calculation of global displacements, joint rotations 
and inter story drift ratios by up to 25%, 69% and 55% depending on the ratios of applied/design gravity 
load. 
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