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SUMMARY 
 
The structural sensor data repository provides the information technology framework necessary to assess 
the state of a structure.   Although a multitude of structural data can be collected from sensors, there is no 
standard system for aggregating, storing, and fusing this diverse information for rapid civil engineering 
visualization.  The structural sensor data repository attempts to fill this need by providing a viable 
metadata description for collecting relevant structural state data.  It also integrates the data into a web-
based graphical user interface.  The web interface allows quick state presentation and access to individual 
sensor data.   
 

INTRODUCTION 
 
A civil engineering structure, a building or a bridge, undergoes many changes during its lifetime. 
Knowing the state of a structure is very important because we always strive to save lives in emergency 
situations and improve overall quality of life for people who use the structure. Recent advances in sensing 
and network technologies make it possible to collect a multitude of various data in and around the 
structure and to establish its state in a much more comprehensive manner than ever before by integrating 
this data. The goal of this structural sensor data repository is to conceptualize, develop and implement a 
prototype of a framework for gathering, classifying, and integrating structural state data collected in and 
around a structure, and to enable effective visualization and fusion of such data to define the state of a 
structure.  
 
Framework Components 
The structural sensor repository consists of multiple components working together as an application for 
storing and visualizing structural data.  There are three major components in the structural sensor 
repository: the metadata schema, data access and storage systems, and the web-based user interface.  The 
metadata schema defines the data structure requirements for storing structural sensor data.  The data 
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access and storage systems make it possible to search for and retrieve data from the database.  The web-
based user interface provides the facility to understand and visualize the structural data. 
 

METADATA SCHEMA 
 
The metadata framework provides the data structure for storing state data in a computer database.  The 
framework contains five main classes of metadata.  The first class describes actual collected or post-
processed data such as accelerations, displacements, and inter-story drift.  The second class describes the 
data collecting sensors and post-processing routines.  Other classes describe locations on the structure, 
and events such as an earthquake or windstorm.  The metadata schema contains the definitions for all of 
these classes. 
 
Design Process 
Development of the metadata schema began with defining different types of structural sensor data.  The 
data sets differ by a few key parameters: source, scale, type, location, and time.  The source of the data can 
be either point data from sensors monitoring a small, local region, or field data collected about a larger 
area or interpolated data from multiple sensors.  The scale of the data can be local, focused on material-
level properties, intermediate, focused on overall joints and members, or global, pertaining to the 
structure as a whole.  Each category of data needs to be correctly described by its metadata. 
 

 
Figure 1: Protégé 2000 ontology development 

 
Once general data types were established, more exact data structures were created to describe the precise 
data to be collected.  An inheritance-based, object-orientated data structure was established to generate 
metadata and describe raw structural state data.  The data structure was designed using the Protégé 2000 
software tool (Figure 1).  This program enables the user to construct knowledge domain ontology and 
enter domain knowledge.  It allows for quick changes and modifications to object classes through a 
graphical user interface.   



 
A preliminary version of the metadata schema was created drawing ideas from Futrelle [1] and Noy and 
McGuinness [2] as a basis for constructing the primary structural data model.  Once the first version was 
created, several more refinements were made by investigating the information necessary to store data from 
a demonstration shaking table test at UC Berkeley. Attempting to store information from a simulation 
pointed out deficiencies in the early version and indicated areas for improvement.  A revised data model 
contains a more complete set of classes and relationships for structural sensor monitoring. 
 
Metadata Classes 
The five primary metadata classes contain the definitions for object types and information to be stored in 
the repository (Table 1).  Each object stored in the repository is an instance of one these types.   
 

Table 1 Metadata classes and description 

Class Name Example Objects Description 
Collector • Sensors (e.g., accelerometers) 

• Post-Processing routines 
• Analysis Routines 
• Human Observers 
• Cameras / Imaging 

Objects that collect qualitative or quantitative 
data about the structural state. 

Data • Acceleration 
• Displacement 
• Interstory Drift 
• Photographs 

Information collected about the structural state. 

Event • Earthquake 
• Wind storm 

Durations of time when meaningful data was 
collected. 

Location • Ground Floor 
• Midspan Joist 3-A 

Position inside the structure.  Can refer to a 
specific position, or a general area. 

Alert • Maximum drift 
• Maximum acceleration 

Limit states that indicate changes in structural 
state. 

 
Collector 
A Collector is a general object that collects or generates data about the structure.  Each type of Collector is 
capable of obtaining different types of data.  There are five main types of collectors: sensors, post-
processing routines, analysis routines, human observers, and cameras.  These are each subclasses of the 
main Collector class (Figure 2). 

 
Figure 2: Collector class 

 
Sensor objects describe actual structural sensors placed in and around the building (Figure 3).  The 
schema defines slots for storing calibration data, sensor state data, and links to data the sensor collects.  
Sensors take input from physical changes in the building and output numerical data. 



 
Figure 3: Sensor class 

 
Post-processing routines are used to produce meaningful engineering data that are not directly read from 
sensors.  For example, inter-story drift is not something that comes from a sensor.  It requires calculating 
the difference between two displacement values.  Post-processing routines take in numerical data as input 
and output new numerical data.  For inter-story drift, a routine might take in two sets of accelerometer 
readings, perform a double integration to get displacement, and then find the difference between the two.  
The data sources and output are important to keep track of in the metadata schema. 
 
Analysis routines produce information about the structure based on theoretical modeling of structural 
behavior.  An example of this would be output from a finite element analysis program or a pushover 
curve.  Analysis routines take in model information and output engineering response parameters. 
 
Human observers and image collectors produce data that are qualitative.  Some of the most important 
characteristics about structural state include things that are impossible to quantify explicitly.  Engineering 
inspections for collecting material failure information and physical appearance is vital yet not simply 
numerical.  Damage to non-structural elements, façade cracking, and photographs are other examples. 
 
Data 
Based on the characteristics of the Collector classes, there are three main classes of Data: numerical, 
descriptive, and visual (Figure 4).  These are each subclasses of the main Data class. 

 
Figure 4: Data classes 

 
Numerical data includes information such as accelerations, displacements, and natural frequencies.  
Within numerical data there are two divisions of information.  The first is for time series data such as an 
acceleration response.  This type of data is meaningless without the associated time parameter.  However, 



other information such as natural frequencies and peak displacements are not related to time and are 
meaningful on their own.  This is the second class of single-value data. 
 
Descriptive data includes written information that is generally non-numerical in nature.  Examples include 
construction drawings for the structure, and a description of the non-structural damage inside the building 
after an earthquake.  Visual data includes photographs, and movies of the structure.   
 
Event 
The data collected about the structure need to be categorized by more than just type.  Since this system is 
designed for structural monitoring over a long period of time, there needs to be a facility for organizing the 
data into meaningful groups.  It is not useful to collect data from a structure and record it all the time. 
Doing so would populate the database with millions of “zero” values when there is no activity.  Rather, it 
is more meaningful to collect data only when something occurs, such as an earthquake, windstorm, or 
impact.  The Event object provides for this functionality by defining a specific duration of time and 
coupling it with a description of the event. 
 
Location 
The Location class describes physical or logical positions within the structure.  Although it is easy for a 
computer program to understand XYZ coordinates to describe a precise location, this is usually not 
meaningful to engineers.  It is more useful to describe locations logically.  For example, “midspan at joist 
3-A” or “Node 5” is a lot more meaningful than “(0,100.34,120.0)”.  This class provides those linkages 
between physical coordinates and logical descriptors. 
 
Structural state data differs in that some data are not point-specific, but rather express a quantity 
applicable for a larger location.  There are three main scales of data to be considered.  Point-specific data 
involve measurements such as material-level stress and strain.  Intermediate-level data involves element 
deformations, joint rotations, and deflections.  Global-level data involves overall drift and differential 
settlement effects.  The Location class can encompass these different scales by creating different logical 
Locations that exist in the same physical location. 
 
Alert 
The Alert class exists to store information about threshold limit states and when they are exceeded.  For 
example, maximum allowable interstory drift or an acceleration that will cause damage to non-structural 
components. 
 
Integration 
Fusing the data together involves managing links between the types of information.  For this, a number of 
slots are designed to maintain the connections between the objects in the metadata repository.   The 
Collector class contains slots “locatedAt” which ties it into its Location and a “producesData” slot which 
points to the data observed by the collector.  The Data class contains links to the Collector that produced 
them and to the Event when the data was collected.  The Alert class contains links to the Collector or Data 
set to monitor for limit state exceedance. 
 
 
 
 
 
 
 



Metadata Examples 
 
Collector:Sensor:Accelerometer 
The Accelerometer object contains specific slots for the calibration information and standard 
manufacturer specifications.  A Crossbow CXL04LP accelerometer is used as an example (Figure 5).   
 
Each sensor has a unique identification name and slots for cataloging its serial number, manufacturer, and 
part number. The tolerance values for alignment error, bandwidth, noise, sensitivity, transverse sensitivity, 
and zero g drift are all in standard units.  The detailed documentation for each slot tells the user which 
units to use.  Different types of sensors have a separate set of technical specification slots.  The sensor 
object also contains a slot for inputting calibration information on the sensor.  This can point to an 
external file which contains the calibration details. 
 
The sensor object also contains a slot triggeredBy for Events that triggered the beginning of data 
collection.  It is only desirable to collect data when a meaningful event happens.  In the case of an 
experiment, it would be the start of testing.  Because it would make no sense to start collecting data before 
the test starts.  For structural monitoring applications, data collection would be triggered by an earthquake, 
windstorm, or similar event.  The producesData slot contains a list of the data sets produced by the 
sensor.  The status slot is used for tracking whether the sensor is operating, turned off, or malfunctioning.   
 

 
Figure 5: Accelerometer sensor example 



Collector:Post-Processing:FFT 
Sensors are not the only objects that can collect data.  Individual sensors are equipped only to collect one 
specific type of data.  Accelerometers measure only accelerations, LVDTs only measure displacements, 
and strain gages only measure strain.  But, often the most useful engineering information is gathered from 
combining the readings from multiple sensors or from looking at the time history of sensor readings.  This 
requires post-processing of the sensed data for producing new data sets. 
 
It is important to separate the collected sensor data from the processed data.  For example, it might be 
useful to obtain displacements from acceleration readings by numerical integration.  However, there are 
several methods for performing it (e.g., midpoint, trapezoids, Simpson’s Rule).  It is important to be able 
to go back to the source data and be able to try different computational methods.  This example shows an 
object for FFT post-processing of data (Figure 6). 
 
The post-processing objects each contain a slot name for the unique name identifying the analysis routine, 
a usesData slot for listing input data sets used for processing, and a producesData slot for listing output 
data sets.  This allows the repository user to search for all of the data processed by this analysis routine, 
determine which data sources were used for calculating the post-processed data, and to find which post-
processing routine uses a specified data set.  Because the input data contains links to its Collector, the 
repository can search recursively to determine which sensors were responsible for collecting the input 
data. 
 

 
Figure 6: FFT Post-Processing Example 

 
Data:SeriesData:Acceleration 
Data objects can contain the data values in two different ways.  It can be stored in a data file specified in 
the dataFile slot, or the values can be placed directly in the metadata object.  If the data has not finished 
collecting, then it makes more sense to use a file link so that when the file is updated, the data can be read 
again.  It is also best for extremely large data sets.  For smaller data sets and instances where it is desirable 
to search for data by its values, placing it directly in the metadata object is preferred. 
 
In this example (Figure 7), the data exists in both ways – inside the metadata entry and also linked to an 
external data file which contains the values.  The timeStamp slot indicates the start of the data collection.  
ISO 8601 time stamps are used when possible for the data values.  But, the times can also start at 0 and 
the timeStamp slot value can be used as an offset to calculate the actual time of the data values. 
 
 



 
Figure 7: Acceleration data example 

 
Location:PhysicalLocation 
Physical locations are described by X-Y-Z coordinates relative to a defined origin, or other starting 
location.  In this example (Figure 8), the joist at grid line 3-A is specified by an absolute coordinate based 
relative to the Origin.  Making locations relative is useful because it allows the engineer to describe 
locations more intuitively.  For example, if a sensor is placed next to beam-column connection on the roof, 
it would make more sense to describe its location relative to the beam-column centerline intersection 
rather than to an absolute coordinate system starting on the ground floor.  Logical location objects can also 
be used when absolute position is not required, such as for correlating nodes in a structural model to 
locations in the structure.  Sensors can have more than one location. 
 

 
Figure 8: Physical location example 

 
Implementation 
The structural state data schema was designed in Protégé 2000 and then implemented by writing it in 
NEESML [3].  NEESML is the standard XML format for defining metadata schemas and communicating 
with the NEESgrid repository.  NEESML is designed to be easy to understand and much simpler to write 
than normal XML.  Using NEESML for implementing the data schema allows using the NEESgrid 
services for data access and storage. 
 



DATA ACCESS AND STORAGE 
 
The data access and storage routines provide the functions for reading and writing metadata and sensor 
data.  Data is only useful if it can be efficiently found, stored, and retrieved.  The system used for the 
repository involves three separate layers for accessing the data: the storage layer, access layer, and 
transaction layer (Figure 9).  The storage layer is responsible for maintaining the actual files.  This is 
usually handled by a network file server or a local hard drive.  The access layer controls permissions to 
read and write to the data file in the repository.  The transaction layer provides the interface for 
applications, such as the web interface, to access the data.    
 

CUREE-Kajima Structural State Data Framework — Data Access Diagram
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Figure 9: Data access diagram 

 
 



Metadata Transactions 
Enterprise Java Beans (http://java.sun.com/products/ejb) were chosen as a programming interface to 
access the data and metadata stored in the system.  Using EJBs creates a standard interface for managing 
application-level data access and for implementing the web user interface.  EJBs were chosen for the 
system because they are system portable, not requiring a specific operating system or hardware to run.  It 
separates the database transactions from the user interface application.   
 
The structural data repository also fits all three suggestions from Armstrong [4] for when to use EJBs.  
The repository must be scalable to accommodate a potentially large number of users and data sets.  The 
data inside the repository must also be protected to ensure data integrity and concurrency.  And, the data 
stored in the repository should be available for other applications in the future other than the web-based 
interface.  Enterprise Java Beans provide the technical solution for the project requirements. 
 
Each major object type in the data schema has a corresponding Bean written for it.  Each Bean contains 
the logic for storing and retrieving its data from the repository.  It also has class functions for performing 
search queries and returning data.  For example, the Bean class written for an acceleration Data object can 
return a reference to the sensor that produced it, a plot showing the data, and the maximum acceleration 
felt by the sensor.   
 
The structural state data needs to be navigable by different methods to allow the user to find information 
quickly and intuitively.  There are three main search keys that would be used by an engineer to retrieve 
different information (Table 2).  These requirements helped form the requirements for the web interface. 
  

Table 2 Search queries and expected information 

Search By Examples of Information to Retrieve 
Sensor • List of all sensors in the structure 

• Attributes of the sensor (status, calibration 
information, etc.) 

• Data collected by the sensor 
• Events monitored by the sensor 
• Locations of the sensor 
• Alerts triggered by the sensor 

Events / Time Interval • Sensors active in collecting data during 
that interval 

• Time interval for an event / Events in a 
time interval 

• Data from all sensors during an event 
• Alerts triggered during the event 

Location • Sensors at the location 
• Alerts focused on the location 

 
Data Storage 
Sensor data and post-processed data are stored in plain text files.  These data files reside on the main 
application and web server for the repository.  They are organized by collector and location.  Each data file 
is linked to a metadata repository entry which contains a URL pointing to the location where the data file 
can be accessed.  The metadata entry also includes information about the data file contents such as: data 
source, file format, and measurement units.  Using metadata to define information in the data file makes it 
possible to store new data types in the future and include non-quantitative data such as images or 
documents using the exact same system.   



 
Implementation 
Metadata access and storage is handled by using the NEESgrid metadata service (NMDS).  NEESgrid 
metadata objects provide all of the features that are necessary for implementing the structural state data 
repository.  Its objects are based on an RDF-like model and allow linking references to other metadata 
objects as well as primitive types like strings and integers [5].  Using the NMDS API obviates the need to 
program database calls for storing objects in tables.  The API allows for manipulating the metadata on the 
object level.  Each of the Java Beans uses the API to retrieve and store the metadata. 
 

WEB INTERFACE 
 
A visual access paradigm is the best way for engineers to access the data and for clients to visualize the 
state of their structures.  The clients need a visual tool to understand the state of the structure after an 
earthquake, and to monitor their structure over time.  An engineer user requires a more detailed look into 
the state of the structure, such as access to individual sensor readings and the ability to extract the data 
into numerical tools for structural modeling and assessment.  A web-based interface was a natural choice 
for delivering information given the widespread familiarity with web browsers and ability to present 
different types of information.  A demonstration of the web interface is available on the project website 
(http://www.ce.berkeley.edu/~boza/research/Curee-Kajima/).   
 
Dashboard Analogy 
The primary user interface was inspired by the instrument cluster on a car – instantly readable and 
understandable by any user (Figure 10).  Just as a driver knows to pull over and stop when the check 
engine warning light comes on, the user interface can also alert the building owner whether to call the 
engineer for an inspection after a moderate earthquake with a check building light. 
 

 
Figure 10: Web-based interface 

 



On the right hand side of the website, there is a panel with color-coded icons showing the status of the 
items being monitored for performance.  A green color indicates normal function, yellow indicates a 
warning, and red indicates a critical condition.  The limits are established by the structural engineer and 
are stored in an Alert object in the repository.  Above the indicator “lights” there is a dial which represents 
a weighted average status of all the alerts.   
 
An opening page shows the name of the building, a street map showing the orientation of the building 
plan and a photograph of the building.  Other pages link to detailed sensor information and sensor 
summary information.  The sensor summary page gives a quick listing of the major structural sensors, 
their status and an indicator of their recent readings.  The sensor detail page retrieves the calibration 
information and specifications for the sensor from the repository and displays it along with the sensor’s 
status and a plot of its recent readings.  From here, the user can then download a text file containing the 
sensor data and other information.  A separate building detail page provides links to other static 
information about the structure.  The data repository can also store information such as architectural and 
structural drawings and other documentation.  This makes is an effective single place to find all the 
information an engineer needs to evaluate the structure. 
 
Visualization Methods 
Numerical data is visualized in the web interface with 2D data plots.  Clicking on a sensor detail page will 
display information about the location where the sensor is located, the engineering characteristics of the 
sensor, as well as links to graphs of data collected by the sensor.  Varieties of different graphs are 
supported including time-series graphs, X-Y graphs, bar charts, and scatter plots.  Acceleration and 
displacement are usually best visualized using time-series graphs.  Structure periods changing over time 
are better visualized using scatter plots. 
 
Drill-down graphs are also used to allow users to click on points in a graph to retrieve more detailed 
information about that data point.  The ability to have this kind of interaction with a graph makes it 
possible for advanced navigation and more natural data presentation. 
 
Implementation 
The web-based user interface is written using a combination of Java Server Pages and Servlets.  This is a 
natural choice because the metadata access methods are also written in Java using Enterprise Java Beans.  
The JSPs and Servlets written for the interface contain the necessary calls to the beans to retrieve the 
information from the repository.  Both JSPs and Servlets behave the exact same way from the users’ 
perspective, but each has distinct advantages and disadvantages from a programming perspective.  Saimi 
[6] notes that using a combination of both makes it more efficient to design a web application service. 
 
The plots used in the interface are generated using the JFreeChart library (http://www.jfree.org/).  
JFreeChart was chosen because of its ability to generate all of the different types of plots that the data 
require.  It is also capable of running in a servlet environment allowing it to plug in directly to the rest of 
the data and visualization framework.  It is also easily extendible and customizable to suit structural 
visualization needs.   
 

RESULTS AND DISCUSSION 
 
Metadata Schema 
The metadata schema generated for the structural data repository was evaluated based on its effectiveness 
at representing data from an actual building in service.  Collaborators from the Kajima Corporation 
provided sample monitoring data and discussed the ways the system is envisioned to be used by practicing 
structural engineers.   



 
The data were examined and the information was processed into a set of data files and metadata 
descriptions were written for inclusion in the repository.  Although the metadata framework was robust 
enough to store the data, there were a few problems.  Manually editing an XML file containing the 
metadata for the data set was time consuming and was error prone.  A better tool needs to be built for 
entering in the structural data.  This can be handled by building additional modules for the web interface. 
 
Experimental Testing 
Utility of the structural data repository will be evaluated using a small-scale shaking table test of an 
instrumented model frame.  The instrumented model will serve as a test structure to determine whether the 
system is robust enough to handle storage, access, and visualization of structural sensor data.  
Modifications will be made based on the results of the test. 
 
Jan Goethals at University of California, Berkeley has developed a simplified data acquisition system 
using TinyOS with Crossbow wireless motes.  This system will be linked with the structural data 
repository for testing (Figure 11). 
 

CUREE-Kajima Structural State Data Framework — Data Processing Diagram
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Figure 11: Data processing system 

 



Modular System 
The repository is designed using a modular framework making it easily extendible in the future.  Because 
the data storage and access components are separated from the interface programming, changes to the 
database backend or changing needs for engineering visualization require only modifying one component.  
This makes it possible to tailor the system to the visualization needs of a specific structure while using the 
same structural data framework.   
 
Using the system with a different storage and retrieval mechanism will only require modification to the 
Java Beans.  The storage and access is separated from the interface programming.  The beans serve as the 
connector between what the user sees and interacts with in the interface and the data structures that are 
behind the whole system.  This allows the use of other data storage systems and to provide a mechanism 
for linking the visualization system with existing monitoring systems and existing data in different 
formats.   
 
Further improvements to the visualization system are possible simply by programming additional servlets 
of JSPs.  This allows for developing site-specific visualization in tandem with the existing general 
visualization components.  Examples of this could include the monitoring of a base isolation system or an 
active mass damper. 

 
CONCLUSIONS 

 
This new framework for a structural sensor repository provides a metadata structure capable of storing 
data collected by structural sensors.  It also provides the basic facilities for post-processing collected data 
for structural state determination based on engineering limit states.  A dashboard-style, web-based user 
interface was created for users to interact with and visualize the data stored in the repository.  Access to 
the data is managed through a neutral, application-centered API specification using EJBs that allows for 
future extension to the web interface and for new data acquisition methods.   
 
The particular implementation of the structure state data repository presented in this paper is just one of 
many possible implementations, especially regarding the design of the web interfaces. A variety of 
different interfaces can be designed to suite a particular purpose. Experiments using a small wireless 
sensor network piggybacked on ongoing shaking table tests at UC Berkeley laboratories will be a practical 
challenges the authors will use to improve the existing implementation of the repository. However, the 
underlying design and the relations among the components of the structural sensor data repository 
presented in this paper are more important. They present the first attempt to design a general framework 
for structural sensor data collection. Such frameworks are needed to handle the data generated by a large 
number of sensors expected to be deployed on civil infrastructure in the very near future.  
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