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SUMMARY 
 
This article introduces design rules to estimate the required strength and stiffness of dissipative bracing 
used for the seismic design or redesign of framed structures. These rules are calibrated by a parametric 
study on the inelastic response of SDOF systems under the action of scaled accelerograms recorded on 
soft soil. The proposed rules are sensitive to both the period and the seismic coefficient of the frame where 
the dissipative bracing is installed, and can be used for the preliminary design of dissipative bracing to 
impose a passive control on the ductility demand of framed structures.  
 

INTRODUCTION 
 
A framed structure with a bracing system that incorporates hysteretic devices (dissipative bracing) is now 
generally accepted as an efficient earthquake resistant system. The dissipative bracing protects the 
structure from damage by dissipating energy by hysteresis in yielding or friction in special devices referred 
to as hysteretic devices. Using this approach the energy dissipation characteristics of the structure can be 
more easily detailed and optimized.  
 
The technology for hysteretic devices has evolved successfully during the last two or three decades [1], 
and has resulted in several options the designer can choose from to create a dissipative bracing with 
optimum hysteretic behavior. However, the fundamental problem of how to choose the global properties 
of the dissipative bracing in terms of its strength and stiffness remains in need of practical solutions. In 
general, a formal evaluation of the effectiveness of a dissipative bracing installed into a framed structure 
requires of elaborate and time-consuming nonlinear seismic analyses. This process includes the 
consideration of several analytical models with different combinations of strength and stiffness for the 
dissipative bracing under the action of several earthquake records. Normally, several iterations are needed 
to arrive at the final strength and stiffness of the dissipative bracing. Accordingly, the development of 
design formulae to estimate the required properties of dissipative bracing is an active research area of 
practical interest. 
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Along the years, several studies to define the required properties of dissipative bracing have been 
conducted [e.g. 2,3]. This research has given significant insight into the main parameters controlling the 
efficiency of dissipative bracing in relation to the properties of the framed system where the bracing is 
installed. However, most of previous studies are limited because they have considered just one structure, 
one natural accelerogram, or several artificial accelerograms.  
 
More recently, Cabrera-Garcia and Martinez-Rueda [4] conducted a study on the effect that the strength 
and the stiffness of dissipative bracing have on the reduction of ductility demands of framed structures 
subjected to the action of twenty natural accelerograms recorded on stiff soil. This study revealed the 
adequacy of a parametric study to propose and calibrate design rules for the required strength and stiffness 
of dissipative bracing. Although design rules sensitive to the strength and stiffness of the framed structure 
were identified, the rules were not very versatile. In fact, the rules were constrained to many subregions of 
the full range of periods and strengths considered in the study. 
 
Objectives and scope 
This paper introduces a new methodology to calibrate the strength and stiffness of a dissipative bracing to 
achieve a target ductility demand under seismic loading. The type of structure under study is a dual system 
formed by a frame component and a bracing component. The seismic input consists of a family of natural 
accelerograms recorded on soft soil scaled to different seismicity levels. 
 
The frame component consists of a framed structure with earthquake response dominated by bending in 
its members. The bracing component consists of a dissipative bracing system that can be introduced 
according to two possible design scenarios under the anticipated seismic actions. The first scenario 
considers the redesign of an existing framed structure (also called original or virgin structure) where 
dissipative bracing is introduced to improve seismic performance. The designer has control over the 
properties of the dissipative bracing including its ductility capacity. The main design objective is to ensure 
that the ductility capacity of the existing frame is not exceeded. Another possibility within this scenario is 
the conversion of conventional bracing into dissipative bracing. The second scenario includes the design 
of a new framed structure with dissipative bracing where the designer has control over the ductility 
capacity of both the framed structure and the dissipative bracing. 
 

PARAMETRIC STUDY 
 
Modeling assumptions and method of analysis 
The structures under study were idealized as nonlinear SDOF systems like that shown in Figure 1. The 
system is subjected to seismic excitation in terms of the ground acceleration )(tug&& , and is formed by the 

assembly of two nonlinear springs and a dashpot, all connected in parallel to the mass of the system M. 
The total system stiffness is made of two components. The spring with stiffness ok accounts for the 
stiffness of the frame component (original structure when dealing with seismic redesign). The spring with 
stiffness dk  represents the contribution of the dissipative bracing. Structures with and without dissipative 
bracing were assumed to have a viscous damping ratio of 5%. 
 
Figure 2 shows the envelopes of lateral strength for the two global components of the structures under 
study. The initial stiffness of the framed structure and the bracing system are denoted by yk

 
and ydk , 

respectively. As a result of the interaction between the framed structure and the dissipative bracing the 
initial stiffness and effective yield strength of the upgraded structure are ydy kk +  and ydy HH + , 

respectively. The modeling assumptions summarized by Figures 1 and 2 are similar to those adopted by 
Ciampi et al. [3] for the study of dissipative bracing using artificial accelerograms; however these authors 



neglected the capacity of the frame component to exhibit hardening and considered the response of this 
component as elastic-perfectly plastic. 
 

 
 

Figure 1. Idealization of a framed system with dissipative bracing as a nonlinear  
SDOF system with two stiffness components. 

 

 
 

Figure 2. Strength envelope in terms of the lateral strength H vs. lateral displacement ∆ for a framed 
structure with dissipative bracing idealized as an inelastic SDOF system. 

 
The computer code INPARSYS [5] was expressly implemented to do the time-history analyses of the 
inelastic SDOF system of Figure 1. This code solves the equation of motion given as: 
 

)()()()( tuMtkutuCtuM g&&&&& −=++       (1) 



where the lateral stiffness k takes into account the contribution of the two springs depicted in Figure 1: 
  
  do kkk +=          (2) 
 
The stiffness k changes with time as a function of the history of displacements imposed by the ground 
motion and the hysteretic models adopted for the springs. A bilinear model with kinematic hardening was 
used for both springs. An elastic perfectly plastic envelope was assumed for the modeling of the 
dissipative bracing as illustrated in Figure 2. This assumption is consistent with the expected performance 
of a bracing system relying on properly designed hysteretic devices [1]. For the framed structure the 
postyield stiffness hk was given the typical value of 5% of the initial stiffness yk .  

 
The Runge-Kutta method is adopted in INPARSYS to solve numerically the equation of motion. This 
method offers a true fourth-order accuracy in the evaluation of both displacements and velocities [6], and 
it has been shown to have better performance than the usually adopted Newmark’s method in terms of 
accuracy, stability and convergence [7]. 
 
Variables considered in the parametric study 
To have a good mixture of relevant ingredients of seismic response, the following parameters were 
selected for the study: 
 

• the initial stiffness of the framed component yk  

• the yield strength of the framed component yH  

• the initial stiffness of the dissipative bracing ydk  

• the yield strength of the dissipative bracing ydH  

• the variability of the seismic input  
• the intensity of the seismic input 
 

As explained in more detail below, the properties of the structures with dissipative bracing were referred 
to those of the structures without devices.  
 
Characterization of strength and stiffness 
The strength of the structures without dissipative bracing was characterized by the seismic coefficient yC  

of the frame component defined as: 
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C

y
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where yH is the yield strength of the framed structure and g is the acceleration of gravity. 

The period of the structures was expressed in terms of the yield period of the frame without dissipative 
bracing yT ; this is given by: 
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The gain in strength and stiffness resulting from the installation of dissipative bracing was defined by the 
factors kα and hα , respectively: 
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It is important to note that structures without dissipative bracing can be alternatively visualized as having 

0=kα or 0=hα . 
 
Seismic input 
To account for the variability of the seismic input, the family of 10 strong ground motion records shown in 
Table 1 was used for the time-history analyses. The selection of the records was guided not only by their 
strong motion characteristics but also by their predominant period dT . For each accelerogram, dT  was 
defined as that period associated with the frequency of highest amplitude of the Fourier spectrum. Table 1 
shows that there is a good spread of the dT  values over the range of structural periods yT covered in the 

study.  
 

Table 1. Catalogue of strong motion accelerograms recorded on soft soil. 
 

Country Date 
[m/d/y] 

Ms De 
[km] 

Station Component PGA 
[g] 

Td 

[sec] 
URSS 12/07/88 6.8 20 Gukasyan Lateral 0.182 0.40 
Italy 04/15/78 5.8 11 Patti Lateral 0.073 0.52 
Japan 01/16/95 7.0 135 Hikone Transversal 0.140 0.59 
Mexico 06/15/99 6.5 58 Chilpancingo UAG Transversal 0.104 0.70 
USA 10/18/89 7.1 14 Sn Fco. Intl. Airport Transversal 0.235 0.93 
Chile 03/03/95 7.8 25 Llaylla Lateral 0.076 1.00 
Mexico 09/14/95 7.2 121 Chilpancingo UAG Transversal 0.088 1.29 
Greece 02/24/81 6.7 4 Xylocastro Lateral 0.292 1.58 
Mexico 06/15/99 6.5 200 Alameda Lateral 0.030 1.76 
Mexico 09/19/85 8.1 400 SCT Transversal 0.172 2.05 

 
To account for the different levels of intensity expected in the seismic input, the above accelerograms 
were scaled to three seismicity levels denoted as Z1, Z2 and Z4; these correspond to the intensity of the 
design spectrum for soft soil anchored at peak ground acceleration (PGA) levels equal to 0.1g,  0.2g and 
0.4g, respectively. The shape of the design spectrum adopted in the study was that of Eurocode 8 (EC8) 
[8] for soft soil. 
 
The adopted scaling procedure is based on the original proposal of Martinez-Rueda [9] subsequently 
refined to account for type of soil and type of hysteretic response [10]. This procedure imposes equality 
between the pseudovelocity (PSV) spectrum of the accelerogram and the PSV spectrum derived from the 
adopted design spectrum. Figure 3 shows an example of the variability of the seismic input in terms of a 
comparison between the PSV design spectrum (PSV spectrum derived from the PSA design spectrum) 



and the PSV response spectra of the scaled accelerograms. It is observed that the PSV design spectrum is 
effectively enclosed by the family of response spectra, despite the marked differences between the smooth 
shape of the PSV design spectrum and the irregular shape of the response spectra. 
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Figure 3. Comparison between the PSV spectrum associated to the EC8 design spectrum for soft soil and 

the PSV response spectra of the scaled accelerograms for a structure with yC = 0.1 and yT  = 0.5 sec. 

 
It is important to visualize that the family of structures were not specifically designed for the above 
spectra. Instead, different combinations of strength and period of vibration were considered and the 
seismic demands were assessed using the scaled accelerograms. This with the aim of producing a good 
scatter of results in terms of seismic demands for structures with and without dissipative bracing for 
realistic levels of ductility demands. 
 

ANALYSIS OF RESULTS 
 
Total number of analyses and interpretation  
The combinations between the discrete values for yC , yT , kα , hα  and the scaled accelerograms for the 

seismicity levels resulted in 151,500 analyses (150,000 analyses for structures with dissipative bracing 
plus 1500 analyses of structures without dissipative bracing). These results provided the raw data for the 
calibration of design rules for the properties of the dissipative bracing as described in the following 
sections. In all cases ductility demand was reported as that inflicted on the framed structure. This allowed 
the assessment of ductility demand reduction in the most vulnerable component of the system. 
Accordingly, for each of the above analyses the ductility demand imposed on the frame component of 
structures with ( r∆µ ) and without ( o∆µ ) dissipative bracing was evaluated as: 
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where omax∆ is the maximum displacement of the structure without dissipative bracing; rmax∆  is the 

maximum displacement of the structure with dissipative bracing; y∆ is the yield displacement of the 

frame component.  
 
The ductility demands reported below correspond to mean values for a given combination of yC , yT , kα  

and hα  under the action of the accelerograms of Table 1 scaled to a given seismicity level. 
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Figure 4. Example of a surface of ductility demands for a framed structure with dissipative bracing. This 

surface corresponds to a structure with Cy = 0.1, Ty = 0.2 sec for seismicity Z2. 
 

 
Figure 4 shows a typical surface of ductility demands for a given structure in its original and redesign 
condition. This surface summarizes the results of 1010 analyses that correspond to the structure with 
dissipative bracing for all the combinations of kα  and hα (10x10) and the structure without dissipative 
bracing (10), all under the action of the 10 natural accelerograms (10x10x10+10=1010) of Table 1, scaled 
to be consistent with the seismicity Z2. It is observed that the structure without dissipative bracing 
experiences the maximum ductility demand. This structure corresponds to points of the surface with 

0=kα  or 0=hα , i.e. the horizontal lines intersecting planes rk ∆µα  and rh ∆µα . Different 

combinations of 0≠kα  and 0≠hα  result in a reduction of the above maximum ductility demand. In 
fact, the largest reduction of ductility demand corresponds to the point where the dissipative bracing has 
the maximum values for strength and stiffness considered in the study. It is also evident that the reduction 



of ductility demand occurs in a nonlinear fashion for increasing values of kα  and hα . There was not a 
single case detected where an increase of ductility demand resulted from the installation of the dissipative 
bracing. In other words, the additional stiffness and supplemental hysteretic damping provided by the 
dissipative bracing proved to be always beneficial. 
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Figure 5. Contours of constant ductility demand for Cy = 0.1, Ty = 0.2 sec and seismicity Z2. 

 
The surface of ductility demands also reveals that, in theory, there is an infinite number of combinations 
of strength and stiffness of the dissipative bracing to achieve a target ductility demand in the framed 
structure. The contours of constant ductility demands (or target ductility demands) of the above surface 
are shown in Figure 5. This figure is representative of the trends observed for other combinations of yC , 

yT  and Z. The contours appear to follow hyperbolic relations with asymptotic lines parallel to the axes 

0=kα  and 0=hα . In general, for the contours shown, values of kα  in excess of 3 correspond to 

regions of the contours where hα tends to a local minimum.  
 
Criterion to estimate an optimum combination of strength and stiffness of the dissipative bracing 
The strength and stiffness of dissipative bracing are properties that are dependent of each other; hence, for 
a given contour of target ductility demand it is difficult to assess the optimum combination between kα  

and hα  without taking into account the cost of the dissipative bracing. For simplicity, it was considered 

that a good estimate of the optimum combination between kα  and hα  corresponds to the point of the 
contour closest to the origin. In mathematical terms, this assumed optimum combination corresponds to 
the minimum value of r defined by: 
 

22
hkr αα +=          (9) 

 
For a given target ductility demand, the optimum combination of kα  and hα  values that lead to a 

minimum value of r in eq.(9) are denoted as *
kα  and *

hα .  



Another alternative to estimate an optimum combination of kα  and hα  values consists of locating the 

point demarking the beginning of a sensibly flat region of the contour where hα tends to a minimum. In 

other words, this point corresponds to the minimum value of kα  for which hα tends to a minimum. This 
criterion is denoted here as the criterion of low sensitivity to the stiffness of the dissipative bracing, and is 
based on the assumption that the most expensive property of the dissipative bracing is its strength. Garcia-
Cabrera and Martinez-Rueda [4] have followed this criterion while assessing the efficiency of dissipative 
bracing for structures on stiff soil; however in a number of cases there was no clear indication of a 
sensibly flat contour region, and therefore uncertain extrapolation is needed beyond the maximum value 
considered practical for redesign purposes ( kα = 5). Nevertheless, there is a small difference between the 

optimum hα  values predicted by eq. (9) and those identified by the criterion of low sensitivity to the 

stiffness of the dissipative bracing. Also, the kα  values predicted by eq. (9) are consistently smaller than 
those associated with the criterion of low sensitivity to the stiffness of the dissipative bracing.  
 
Identification of analytic models to predict optimum properties of dissipative bracing 
For each optimum combination of kα  and hα  values, the effectiveness of the dissipative bracing in the 
reduction of ductility demands of the framed structure was evaluated in terms of the ductility demand ratio 

nµ  defined by: 
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Accordingly, a theoretical value of nµ  equal to one indicates a null reduction ( ro ∆∆ = µµ ) of ductility 
demand. This is equivalent to the case of having the frame without devices; condition that can be 

alternatively expressed as 0* =kα  or 0* =hα . 
 
Only contours of ductility demands equal to 1, 2, 3, 4, 5 and 6 were considered in the analysis of the 
effectiveness of the dissipative bracing at optimum kα  and hα  values. Figure 6 gives examples of 

observed relations *
kα  vs. nµ  and *

hα  vs. nµ  which reveal nonlinear trends. The scattered data of this 

figure corresponds to *
kα  and *

hα  values obtained by the analysis of the points of the contours with 

coordinates defined by the discrete values of  kα  and hα  considered in the study. No smoothing of the 
contours by curve fitting was applied. It is estimated that a curve fitting of the contours to define more 

precise values of  *
kα  and *

hα  would improve the degree of association between the variables involved in 
the analytical models proposed below.   
 
For simplicity, a curve-fitting procedure was applied to the scattered data in terms of the following 
analytical models: 
 

( )2* 1−= nkk A µα         (11) 
 

( )2* 1−= nhh A µα         (12) 
 

where kA and hA are calibrated curve-fitting constants that minimize the error between the observed data 

and the proposed analytical models, for results corresponding to a given combination of yC and yT . 
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Figure 6. Examples of *. kn vs αµ  and *. hn vs αµ  relationships for Cy = 0.1. 

 

It is important to observe that the above proposed nonlinear models for *
kα  and *

hα  are consistent with 

the expected trend for the variables involved, i.e. both *
kα  and *

hα  are equal to zero when nµ  is equal to 
one. Different degrees of dispersion, ranging from good to acceptable, between the predictive eqs. (11)-
(12) and the scattered data were observed. Considering that the aim of these equations is the estimation of 
the required strength and stiffness of the dissipative bracing for preliminary analysis, the degree of 

association between the observed values of *
kα  and *

hα  and the proposed analytical models was 
considered adequate. Furthermore, it is argued that the uncertainties involved in inelastic seismic response 
cannot be reduced or removed by using a more elaborate analytical model for the curve-fitting.    



  
Figure 7 exemplifies observed relations yT vs. kA  and yT vs. hA  for a given seismic coefficient yC . The 

same trends, linear for yT vs. kA and nonlinear for yT vs. hA , were observed for all the yC values. 
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Figure 7. Observed relations Ty vs. Ak and Ty vs. Ah  and adopted curve fitting models for yC = 0.1 

 
A framed structure with yT = 0 can be analytically considered as a structure with infinite strength and 

infinite stiffness and hence it requires no reduction of ductility demands. Accordingly, for yT = 0 kA  

and hA  must be zero so that, in turn, *
kα  and *

hα  in eqs. (11)-(12) are predicted as zero. To be consistent 

with the above constrains the following models for the estimation of kA  and hA  were proposed based on 
a curve-fitting process: 

 

ykk TmA =          (13)  

     
2

1
H
yh THA =          (14) 

   
Table 2. Summary of coefficients in eqs. (13)-(14) 

 

yC  km  1H  2H  

0.1 11.78 6.12 0.48 
0.2 10.38 4.60 0.41 
0.3 9.59 3.86 0.54 
0.4 9.27 3.70 0.53 
0.5 8.41 3.79 0.72 

 
Table 2 includes the coefficients km , 1H  and 2H  of eqs. (13)-(14) that were evaluated for each seismic 

coefficient yC . In general, good agreement was observed between the observations and the proposed 

models for kA and hA for all the values of yC . An attempt was made to propose models for km , 1H  and 

2H  as a function of yC ; however, it was concluded that these models would be unreliable in terms of 



both the observed reduced degree of association between the variables involved and the reduced number 
of points to be fitted. 
 
Application sequence of the proposed design rules 
To visualize the application of the proposed design rules for dissipative bracing, it is suggested that the 
following sequence is adopted. 
 
1. Identify the frame component and the bracing component of the structure under analysis 
2. Estimate the properties of the frame component: yC , yT  

3. Estimate the ductility demand of the structure consisting of the frame component only. 
4. Select a target ductility demand for the frame component consistent with its ductility capacity 
5. Calculate the required ductility ratio nµ using eq. (10) 

6. Calculate the coefficients kA and hA using eqs. (13) and (14) and Table 2 
7. Calculate the required non-dimensional strength and non-dimensional stiffness of the dissipative 

bracing in terms of the optimum values of kα  and hα  given by eqs. (11) and (12) 

8. Calculate the required strength ydH
 
and the required stiffness ydk  of the dissipative bracing using 

eqs.(5) and (6) for *
kk αα =  and *

hh αα = . 
 
Once the components (bracing members and hysteretic devices) of the dissipative bracing have been 
designed to meet the requirements defined by step 8 above, it is recommended to verify the adequacy of 
the design by conducting a nonlinear analysis of the complete structure. This can be done using a three-
dimensional model of the structure. The use of at least four natural accelerogramas properly scaled to be 
consitent with the design spectrum is also recommended.  A short iterative procedure (starting with the 
preliminary values obtained in step 8 above) to refine the properties of the dissipative bracing could 
follow if considered necessary. 
 

CONCLUDING REMARKS  
This paper demonstrated the feasibility of the calibration of practical design rules for dissipative bracing 
based on a parametric study. The methodology developed for the calibration of the design rules was 
successful in accounting for the main parameters of the seismic response of framed structures with 
dissipative bracing. Accordingly, the proposed design rules are sensitive to the strength and stiffness of 
the framed structure where the dissipative bracing is installed. It is believed that the involvement in the 
above methodology of both reliability concepts and use of site-specific natural accelerograms can lead to 
the proposal of code design equations for dissipative bracing. 
 
It can also be concluded that the proposed design rules have ingredients of a displacement-based design 
method since the designer must specify the target ductility demand of the framed structure. On the other 
hand, it is recognized that the successful application of the proposed design rules still depends on the 
ability of the designer to idealize a real multidegree of freedom structure as an equivalent SDOF system. 
For regular structures, rules to generate this equivalent model are already available under the umbrella of 
displacement-based design principles. 
  
Finally, it should be kept in mind that the proposed design rules were calibrated for structures located on 
soft soil. Extrapolations to other soil conditions must be conducted with caution. An extension of this 
research work to cover rock and stiff soils is currently underway.   
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