
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 969 

 
 

A DISCUSSION OF THE EFFECT OF TORSIONAL OSCILLATION OF 
FULL-SCALE WOODEN HOUSES ON EARTHQUAKE RESPONSE 

CHARACTERISTICS 
 

  
Takashi OYAMADA1, Sanshiro SUZUKI2, Koichiro ASANO3 

 
 

SUMMARY 
 
When building structures with non-uniform mass or stiffness are subjected to earthquake ground motions, 
torsional oscillation due to the rotation of floors will be caused. Bearing shear walls of most wooden 
houses are not arranged uniformly, hence such wooden structures have eccentricity and the influence of 
torsional oscillation cannot be neglected when discussing earthquake response characteristics. We present 
earthquake response characteristics with torsional oscillation for full-scale wooden-framed house models 
having eccentricity, and also elasto-plastic restoring-force characteristics. The ductility factor and the base 
shear coefficient of the respective frames consisting of the models, are shown, and the differences of 
dynamic response properties between our model and a damped mass system one are made clear. 
 
 

INTRODUCTION 

 

When building structures with non-uniform mass or stiffness are subjected to earthquake ground motions, 
torsional oscillation due to the rotation of floors will be caused1). Bearing shear walls of most wooden 
houses are not arranged uniformly. Therefore, such wooden houses have eccentricity and the influence of 
torsional oscillation cannot be neglected when discussing earthquake response characteristics. 
In this paper, we show the earthquake response characteristics with torsional oscillation of full-scale 
wooden frame house models when subjected to the recorded ground motions2). Here, the responses of the 
models, whose mass and stiffness are non-uniform, represent the ductility factors and the base shear 
coefficients of the frames from which the models are built. We examine the effect of the rotation 
component by torsional oscillation on the total deformation of the models. The general characteristics of 
the earthquake responses of the wooden house models with uniaxial and biaxial eccentricities and the 
response characteristics of two kinds of models are also shown. 
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ANALYTICAL METHOD 
 

In order to discuss the torsional oscillation due to the rotation of floors or building structures with 
non-uniform mass or stiffness when subjected to earthquake ground motions, we use a simple one-story 
structural model (Fig.1) instead of a full-scale wooden-framed house. The model is assumed to have a 
rigid floor. In this figure, the frames with stiffnesses, i kx and j ky, are positioned, in which the suffixes, i 
and j,represent the number of frames in the x and y directions. The motion of the floor is prescribed by the 
two horizontal displacements, x and y, and the rotation angle, θ, at the center of gravity. Therefore, this 
model is 3-degree-of-freedom system (x, y and θ ). When the structural model is subjected to 
two-directional earthquake ground motions ( GG yx &&&& , ), as shown in Fig.1, the equations of motion on the 

horizontal displacement and the rotation angle at the center of gravity of the rigid floor are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

∑ −=++ Gxi xMFxCxM &&&&&

 
∑ −=++ Gyj yMFyCyM &&&&&

 

∑ ∑ =−+ 0yjyjxixi FlFlIθ&&  
 
in which, M = mass; C = viscous damping; and ( )y,xF =κκ

 = the restoring-force of the respective 

frames. By introducing the yield rotational angle, i δ κ  , and the distance from each frame to the center of 
gravity, ),( yxl =κκ , we can rewrite Fκ of the Eq. (3) as Eq. (4). 
 

( )κκκκκ δiiiii ;k,uFF =  
in which  
 

θyixi lxu +=
 

θxjyj lyu −=
 

 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Fig. 1  1-story structural model with rigid floor (plan) 
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Let ( )θiz =  denote the product of the radius of rotation, i, and the rotation angle, θ . Then Eqs. (1)-(3) 
can be rewritten as follows: 
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in which 
 

}/,/{},{ ieieee yxyx =  

 
where ēx and ēy  are called as the eccentricity ratios that mean the ratio of eccentric distance, 

),( yxe =κκ to the radius of rotation, i. 
The horizontal stiffness of a building is prescribed by wall ratio and is expressed by the following 
equation3). 
 

120/

13.0
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=
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in which K = the total horizontal stiffness of structure; k = the horizontal stiffness of bearing shear wall 
calculated from the wall ratio ; λ = the stiffness factor ; R = the wall ratio ; S = the area of floor ; and H = 
the height. The coefficient, 0.13 (ton/m) represents the standard strength of a bearing shear wall per unit 
length (1m) for the wall factor 1.0 when the wall deforms to 1/120 (rad). 
 

 
ANALYTICAL MODELS 

 
Figs. 2 (a) and (b) show two hysteretic characteristics - (a) represents the quadri-linear type, and (b) the 
slip one –, and these are used at the rate of 4:6 (combination factor γ  = 0.4). In this analysis, the final 
plastic dimensionless stiffness ratio, r0 = 0.3 of hysteretic characteristics, is selected with reference to the 
secant stiffness at the time of 1/120 (rad) deformation. The respective yield angle points of the hysteretic 
characteristics are shown in the figure. The critical damping ratio of the models is hκ = 0.05 (κ = x, y 
direction). 
The values of floor area, weight, unit weight, height, wall ratio, eccentric ratio and eccentric distance for 
the two full-scale wooden framed house models4), Models A and B, introduced to the analysis are listed in 
Table 1. The unit weights of both models are almost average values of wooden framed houses. The wall 
ratio of the y direction for the models is a little bit larger than the one for the x direction. It is clear from 
Table 1 that Model A can be regarded as a uniaxial (y direction) eccentric model. The eccentric ratios of 
the two directions of Model B are almost the same, and therefore Model B must be a biaxial eccentric 
model. Figs. 3 and 4 show the arrangement of the columns and the walls, and the frame number of the 
two directions of Models A and B, respectively. Symbols •  and × in the figure represents the positions 
of the center of gravity and the center of stiffness, respectively. The thick solid line in the figure 
represents the shear wall of about 91cm, and all of the wall ratios are assumed to be 1.0. Model A has 14 
(A-N) and 7 (1 - 7)frames in the x and y directions, respectively. On the other hand, Model B has 9(A-I) 
and 8 (1 - 8) frames, respectively.  

 

(7) 

(9-1)  
 

(9-2)  
 

(8) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model A Model B
Floor area（㎡） 121.32 98.37
Weight (kN) 238.04 163.37
Unit weight（kN/ ㎡） 1.96 1.66
Height（ｃｍ） 300 300
Wall ratio（ｃｍ/ ㎡） x 22.50 19.84

y 28.13 26.69
Eccentric ratio Rex 0.021 0.085

Rey 0.229 0.073
x 1.21 - 56.07
y 119.82 38.85

Eccentric distance
（ｃｍ）

Table 1  Properties of two analytical models 

(a) Quadri-linear type (b) Slip type 

Fig. 2 Two kinds of hysteretic characteristics 

Fig. 3  Bearing shear walls and frame numbers of Model A (plan) 
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Table 2 shows the natural periods for 3-dimensional (3-D) models and the models replaced by a damped 
mass system. Here, a stiffness factor of λ= 4 is introduced on the basis of past studies. The 1st and 2nd 
natural periods of the 3-D model correspond to the ones, written in parentheses, of the x and y directions 
of the damped mass system model, respectively. The 1st natural period of Model A is slightly longer than 
the one of the damped mass system model. This means that the interaction effect appears on the period 
when torsional oscillation is thought to occur in the 3-D model. However, this difference in the period 
may be neglected. Model A is regarded as the uniaxial eccentric model, and therefore the 2nd natural 
period is actually in agreement with the damped mass system model one. In Model B, the natural periods 
of the 3-dimensional model are longer than the damped mass system model ones in the x and y directions. 
This means that the influence of torsional oscillation on the period can be seen in Model B. Model A has 
a longer natural period than the one of Model B. 

 
 
 
 
 
 
 
 
 

From the solution of the eigen equation, the three eigen vectors, u1, u2 and u3 show the 1st, 2nd and 3rd 
eigen vectors, respectively. The x and y components are dominant in vectors u1 and u2, respectively. It is 
clear that the rotation component is more dominant in vector u3 as compared with u1 and u2. The values of 
eigen vectors are as follows. 
 
 
 
  
 

Fig. 4  Bearing shear walls and frame numbers of Model B (plan) 

Table 2  Natural period 

Model A Model B

1st 0.370(0.352) 0.341(0.338)

2nd 0.314(0.314) 0.299(0.292)

3rd 0.276 0.260

Natural period of 3-
dimensional structural

models (sec)



  

                            

 

 

 

 

 

 

 

 

 

RESULTS 

 

In this paper, the NS and EW components of El Centro recorded accelerograms (1940) are introduced in 
the analysis. The maximum velocity value of the NS component is adjusted to 75 cm/sec, so called as 
Level 3. The NS and EW components are used as input ground motions in the y and x directions of the 
model, respectively. The ductility factor response µ in this study is defined as a value in which the 
maximum deformation angle is normalized by the yield angle 1/120 (rad) for the models. The coefficient 
of base shear is a value in which absolute acceleration of response is normalized by the gravitational 
acceleration. When µ exceeds 4.0, it is assumed that the corresponding model suffers severe damage or 
collapse. This is the severest criterion. The other criteria are determined by damage levels in proportion to 
the angle responses. 
Figs. 5 and 6 show the relationship between the ductility factor response µ  and the respective frames of x 
and y directions for Models A and B, respectively. In the figures, the stiffness factor value λ (= 3, 4, and 
5) is used as a parameter. In Model A, it is seen that the µ  is large in frame A of the southern end side 
and in frame 1 of the western end side (see Fig. 5). In case of λ =3, however, the total horizontal stiffness 
of the model is underestimated, and therefore, the frames 1 and A remarkably deform. When λ = 4 and 5, 
however, no model suffers severe damage. On the other hand, in Model B, µ  of all frames does not 
remarkably deform. In frame 8, the µ  is slightly larger than the other frames in the x and y directions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of eigen vectors: 
　

　　u =　

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

θ

y

x

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
−

0010

0040

0001

.

.

.

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

000.0

000.1

006.0

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−
005.0

021.0

000.1

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

− 000.0

050.0

000.1

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−

−

001.0

000.1

116.0

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

004.0

000.1

216.0

For Model  A:

For Model  B:

u1  = u2 = u3  =

u1  = u2 = u3  =

A B C D E F G H I J K L M N

0

1

2

3

4

5

6

7

8

 λ=3

 λ=4

 λ=5

d
u
c
t
i
l
i
t
y
 
f
a
c
t
o
r

fr ame

① ② ③ ④ ⑤ ⑥ ⑦

0

1

2

3

4

5

6

7

8

 λ =3

 λ =4

 λ =5

d
u
c
t
i
l
i
t
y
 
f
a
c
t
o
r

fr ame

Fig. 5  Ductility factor response (Model A) 

(a) x direction  (b) y direction 



The relationships between the coefficient of base shear, CB, corresponding to the ductility factor 
response, and the respective frames are shown in Figs.7 and 8 for Models A and B, respectively. The CB 
of the y direction is larger than that of the x direction. It is clear from Table 1 that the wall ratio of the y 
direction is 6-7 cm/m2 larger than that of the x direction. 
Figs. 9 and 10 show the contribution of the rotational component to the ductility factor response for the 
two models. These figures show that the degree of contribution in Model A is larger than that of Model B.  
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Fig. 8  Coefficient of base shear, CB (Model B) 

Fig. 7  Coefficient of base shear, CB (Model A) 

(a) x direction (b) y direction 

(a) x direction (b) y direction 
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Fig. 6  Ductility factor response (Model B) 

(a) x direction (b) y direction 
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It is obvious that the maximum contribution is about 70 %, that of the end frame is larger, and that there is 
no contribution on the frame, which is at the center of gravity position. However, we can see some frames 
with a different tendency when the maximum µ or the maximum rotation angle occur in a frame. This is a 
case of the difference of the time between the maximum occurrences. 
Figs.11 and 12 show the maximum deformation of lθ  with the rotation component as a function of the 
frame numbers for the two models. From the result for Model A , in the case of λ = 3, almost all frames 
enter into the plastic region, and in some frames the µ  approaches the value of 3. In the case of λ = 4 and 
5, its value is smaller than 2. In the case of Model B, no frame enters into the plastic region. 
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(a) x direction (b) y direction 

Fig. 11  Maximum deformation with rotation component (Model A) 
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Fig. 9  Contribution of rotation component to the maximum deformation (Model A) 

Fig. 10  Contribution of rotation component to the maximum deformation (Model B) 
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We also compare the ductility factor response of the respective frames of the 3-dimensional model with 
the one of the damped mass system model. By calculating the case of γ = 0.4, ratio r0 = 0. 3, and λ = 4 for 
Models A and B, we can obtain the rate ε  using the following equation. 
 

 
The results of the rate ε are shown in Figs.13 and 14 as a function of the frame number. The ductility 
factor responses of the frames at the center of gravity position never agree with the ones of the damped 
mass system for the two models. This is because the 3-D model has eccentricity and torsional oscillation 
takes place. As compared with the ductility factor responses of the damped mass system model, the rates 
of ε  of the 3-D model of Model A are about 70% at the soft frame and about 150% at the stiff frame in 
the x and y directions. On the other hand, in the case of Model B, the rates are about 85% and about 
110%, respectively. It is clear that the response characteristics of the 3-D model differ remarkably from 
the ones of the damped mass system model. 
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(a) x direction (b) y direction 

Fig. 12  Maximum deformation with rotation component (Model B) 
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Fig. 13  Ratio of the ductility factor in a 3-dimensional model to  
one of a dumped mass system model (Model A) 



 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

In this paper, we demonstrated the earthquake response characteristics with torsional oscillation of 
full-scale wooden frame house models, of which mass and stiffness were non-uniform, are subjected to 
the recorded ground motions. Here, the responses of the models represented the ductility factors and the 
base shear coefficients of the frames comprising the model. We examined the effect of the rotation 
component by torsional oscillation on the total deformation of the models. We also showed the general 
characteristics of the earthquake responses of the wooden house models with uniaxial and biaxial 
eccentricities and the differences of response in the two kinds of models. 
Using the horizontal stiffness obtained from the wall factor, when it is assumed that the stiffness factor λ 
= 3, the ductility factor response µ exceeds 4.0, and we note that some frames suffer serious damage or 
the model may even collapse. In case of λ =4 and 5, the µ is within 3, and the frames suffer only moderate 
damage. The response characteristics of the 3-dimensional model differ remarkably from the ones of the 
damped mass system model. The torsional oscillation cannot be neglected in wooden houses with 
non-uniform bearing shear walls. Therefore, it is necessary to arrange bearing shear walls as uniformly as 
possible, and to introduce and analyze the 3-dimensional model for designing wooden-framed houses in 
order to prevent torsional oscillation. 
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