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LIMIT STATE ANALYSISOF FIXED-HEAD CONCRETE PILESUNDER
LATERAL LOADS

S.T.SONG! Y.H.CHAI?& Tom H. HALE?®

SUMMARY

Under seismic loads, deep foundations with fixed pile/pile-cap connection may be subjected to a large
curvature demand at the pile head. Damage induced by loca inglastic deformation depends on the
magnitude of the lateral displacement imposed on the pile. In this paper, an analytical model relating the
displacement ductility factor to the local curvature ductility demand is proposed for fixed-head piles
embedded in cohesive and cohesionless soils. The model indicates that the curvature ductility demand
depends on the strength and stiffness of the soil-pile system, as well as the location and length of the
plastic hinges. The model is useful for design of fixed-head piles since it is capable of estimating the
severity of the local damage in the pile for a wide range of pile and soil properties. The versatility of the
model is illustrated using an example of a fixed-head concrete pile constructed in soil types currently
classified in the US building codes. Seismic performance of the pile subjected to displacement ductility

factor commensurate with the current design is assessed for different soil conditions.
INTRODUCTION

Deep foundations for buildings and bridges often rely on the use of concrete piles that are restrained from
rotation at the pile head. Under lateral seismic loads, however, the fixity at the pile/pile-cap connection
induces alarge curvature demand at the pile head, with a potential for failure in the pile. Severe damage of
pile-supported foundations had been observed in recent earthquakes. As post-earthquake inspection of
pile foundations is difficult, damage assessment of piles becomes important, particularly if a certain level
of performanceis to be guaranteed for the structure.

For a fixed-head pile subjected to a large lateral load, sequentia yielding of the pile occurs until a plastic
mechanism is fully developed. Figure 1 shows the deflected shape and the associated bending moment
distribution at various limit states of a laterally loaded fixed-head pile. The first yield limit state of the
pile, which is shown in Figure 1(a), is characterized by a maximum bending moment at the pile/pile-cap
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connection where the flexural strength M,, of the pileis reached. A plastic hinge is then assumed to form
at the pile head with the center of rotation occurring at the ground level. Further displacement beyond the
first yield limit state involves a concentrated rotation of the plastic hinge, which is accompanied by a
redistribution of internal forces in the pile. The redistribution increases the bending moment in the non-
yielding portion of the pile until the formation of a second plastic hinge. Figure 1(b) shows the second
yield limit state where the second plastic hinge forms at a depth L, Continued lateral displacement after
the second plastic hinge formation is facilitated by inelastic rotations in both plastic hinges until the pile
reaches the ultimate limit state, as shown in Figure 1(c). The ultimate limit state is assumed to be
associated with a flexural failure, as dictated by a limiting curvature in the plastic hinge. In order to
control the damage due to flexural yielding of the pile, the curvature ductility demand in the pile from an
imposed lateral displacement must be properly assessed. A simple mechanistic model is developed in
subsequent sections for characterizing the latera response of fixed-head piles for various limit states. The
model is capable of predicting the lateral stiffness and latera strength of the pile as well as the curvature
ductility demand in the pile.
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Figure 1. Deflected shape and bending moment distribution of a laterally loaded fixed-head pile
(a) first yield limit state, (b) second yield limit state, and (c) ultimate limit state.

ANALYTICAL MODEL

Satisfactory seismic performance of fixed-head piles depends on the level of inelastic deformation
imposed on the pile. Inelastic deformation, as commonly characterized in terms of curvature demand, is
related to the stiffness and strength of the soil-pile system as well as the plastic hinge length of the pile. In
this section, a kinematic model, which relates the displacement ductility factor to the curvature ductility
factor, is derived. The model is developed for different soil conditions.

Lateral Stiffness of Soil-Pile System: Cohesive Soils

A common approach for seismic design of pile foundations assumes that a laterally loaded soil-pile system
can be analyzed as a flexural member supported by an elastic Winkler foundation. In this case, the sail is
replaced by a series of springs, which provide a soil reaction that is proportional to the lateral deflection.
For cohesive soils, the stiffness of the soil-spring is assumed to be independent of the depth, resulting in a
constant horizontal subgrade reaction k;, (in units of force/length®) for the Winkler foundation. Closed-
form solutions for the deflection and bending moment of an elastic pile embedded in cohesive soils are



well known [1]. For a fixed-head pile with an imposed lateral displacement A at the ground level, the
lateral stiffness of the soil-pile system is given by

Ki=> =2 2e ®
A Re

where V is the lateral force required to produce an eastic displacement A, El. is the effective flexura

rigidity of the pile, and R; is the characteristic length of the pile, which isdefined as R, =4/El ¢/ k, . At

the first yield limit state, the lateral deflection Ay, at the ground level can be obtained by equating the

bending moment at the pile/pile-cap connection to the ultimate moment capacity M, of the pile, assuming

an elasto-plastic moment-curvature responsei.e.

_M,R?
*T R,
Using the lateral stiffness K; of Eq. (1) and the yield displacement Ay, of Eq. (2), the lateral force to cause
the formation of the first plastic hingeis:

M
W=K¢ﬂ=J§Rf
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Upon the formation of the first plastic hinge, the boundary condition of the pile effectively changes to a
free-head condition, where closed-form solutions are also readily available. The reduced lateral stiffness
K and the corresponding plastic rotation 6 at the ground level after the first yield limit state are given by:
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The lateral stiffness of fixed-head piles embedded in cohesive soils requires the determination of the
characteristic length R, of the pile, which in turn requires an estimation of the modulus of horizontal
subgrade reaction kn. An expression for k, has been proposed by Davisson [2] for estimating the modulus
of horizontal subgrade reaction of cohesive soils:

ky, =67 S, (6)

where s, is the undrained shear strength of the cohesive soil, which may be determined from field tests or
from site classifications in current US building codes. For example, NEHRP [3] or ATC-40 [4] provides a
correlation between the undrained shear strength and soil profile type, which is reproduced in Table 1 for
completeness of this paper.

Table 1. Soil profile classifications and soil properties (adapted from NEHRP [3] and ATC-40 [4])

Cohesive soils Cohesionless soils

Soill  Loccrintion | Shear wave SPTN Undrained shear Friction angle
profile P velocity (m/sec)  (blows/0.305m) strength (kN/m?) ¢ (degrees)

Se Soft soil <180 <15 <50 <33

Sp Stiff soil 180 — 360 15-50 50 — 100 33-40

Sc Dense soil 360 - 760 > 50 > 100 > 40




Lateral Stiffness of Soil-Pile System: Cohesionless Soils

The above approach for determining the latera stiffness of fixed-head piles can be extended to piles
embedded in cohesionless soils. In this case, the sail resistance is modeled by a Winkler foundation with a
linearly increasing modulus of horizontal subgrade reaction. Solutions for estimating the deformation and
bending moment of elastic piles in cohesionless soils have been proposed by Matlock and Reese [5]. For a
fixed-head pile, the lateral stiffness of the soil-pile systemis given by:

Kls¥=1.08 E'g
A Rn

where R, is the characteristic length, which is defined as R, =X/El./ n, for cohesionless soils, and ny, is
the constant rate of increase of the modulus of horizontal subgrade reaction (in units of force/length®). At
the first yield limit state, the lateral deflection and force at the ground level, denoted as A, and V,
respectively, are given by:

_ MuR/’
Ele

(7)
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Similar to the case for cohesive soils, the reduced stiffness K, after the first yield limit state and its
corresponding rotation at ground level for pilesin cohesionless soils are:

_ V -V, =0.41Ele

A=Ay R’
_2A-Ay
3

The latera stiffness of a pile embedded in cohesionless soils depends on the rate of increase of modulus
of horizontal subgrade reaction n,. An estimation of n, and its correlation with the effective friction angle
and relative density of the soil is suggested in ATC-32 [6] and is reproduced in Figure 2 in this paper.
Note that Table 1, which is adopted from ATC-40 [4], also provides a correlation between the friction
angle and the sail profile classifications by NEHRP [3].

K2

forV>Vyand A> A, (10)

0 for A> Ay (11)

NEHRP [3] Soil Profile Type

SE SD SC
Friction Angle (5
28° 29° 30° 36° 41° 45°

. Very
Den
Medium ‘ ense Dense

Very

Loose Loose

T
] ‘ ‘ Above Water

20000 - o /
4 " AN m
15000 —— Wﬁ% 1 / Below
10000 +— ,/ /
5000 /

] //
0 E L ‘%/ T T 17 T T 17T
0 20 40 60 80 100

Relative Density (%)
Figure 2. Subgrade coefficient of cohesionless soils[6]
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Lateral Strength of Soil-Pile System: Cohesive Soils

For a laterally loaded fixed-head concrete pile, the response may be assumed to be characterized by a
dependable lateral strength with a varying level of ductility capacity, depending on the level of
confinement provided for the pile. The lateral strength of the pile can be determined by assuming that a
sufficiently large deflection has occurred so that an ultimate soil pressure, extending to the depth of the
maximum bending moment, is fully developed. The depth to the maximum bending moment, which
depends on the flexural strength of the pile and the ultimate pressure of the soil, defines the location of the
second plastic hinge and therefore influences the lateral strength and ductility of the pile.

The magnitude and distribution of the ultimate soil pressure acting on the pile depend on the failure
mechanism of the soil, the shape of the pile cross-section, the friction between the pile surface and
surrounding sail, etc. For cohesive soils, an estimation of the ultimate soil pressure distribution may be
obtained from consideration of a failure mechanism of the soil around the pile, as suggested by Reese and
Van Impein [7]. The failure mechanism in the upper region is controlled by a sliding soil wedge resulting
in a soil pressure that increases linearly with depth, while a plastic flow occurs around the pile in the
lower region leading to a constant ultimate lateral pressure. Using such failure mechanism, the ultimate
soil pressure distribution of cohesive soils maybe written as:

2+11JsJ for x<x;

pu(X)= ( Yo D (12)

11s, for x> x,

The depth delineating the two regions is defined as the critical depth X, , which varies with the undrained
shear strength and is given by

9s,
XX =y D=—-"——D 13
v 1/D+2\/§aJ (13

where vy, is the critical depth coefficient and ¥ is the effective unit weight of the soil. The ultimate soil
pressure distribution of Eq. (12) is plotted in Figure 3(a) and will be used for calculating the lateral
strength of fixed-head piles embedded in cohesive sails.
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Figure 3. Ultimate soil pressure distribution for laterally loaded fixed-head piles: (a) cohesive soils,
(b) cohesionless sails.



The depth at which the second plastic hinge forms Ly, and the ultimate lateral strength of the soil-pile
system V,, can be determined using the equilibrium condition for lateral force and bending moment. For
cohesive soils with an ultimate pressure distribution given by Eqg. (12), the normalized depth to the second
plastic hinge, defined as L'm = L, / D, is given by the solution of the equation:

1.2 3L

Lm™ +— for Ly <
2 m 2 v m S Yy
M, = (14
11.. 3 .

where M =M, / (s,D?) is the normalized flexural strength of the pile. Upon the determination of the
normalized depth to the second plastic hinge, the normalized lateral strength V; can be obtained by

* 2
2L +g Lm
2 Y,

Vy = (15)
11L*m _%Wr for L*m > Wr

for Ly <y,

where the normalized lateral strength isdefined as V; =V, / (s, D?).

Lateral Strength of Soil-Pile System: Cohesionless Soils

The latera strength, as well as the depth to the second plastic hinge, of a fixed-head pile embedded in a
cohesionless soil can be determined similarly to that for cohesive soils. Studies on the magnitude and
distribution of the ultimate soil pressure on piles in cohesionless soils have been made in the past, and an
ultimate lateral pressure distribution that is convenient for design has been proposed by Broms [8]. The
lateral pressure p, on the pile is taken to be equal to 3 times the Rankine passive pressure of the soil:

Pu(Xx)=30v(X) Kp (16)

where 67 (x) is the vertical effective overburden stress, which may be taken as the effective unit weight
Y multiply by the depth x, and the term K, is the coefficient of passive soil pressure and is given by

_[t+sino
Kp—%m% a7)

where ¢ isthe friction angle of the cohesionless soil. The ultimate pressure distribution of Eq. (16), which
varies linearly with depth, is shown in Figure 3(b).

The depth at which the second plastic hinge forms L, and the ultimate lateral strength of the soil-pile
system V, can be determined using the ultimate soil pressure distribution of Eq. (16). The normalized
depth to the second plastic hinge, defined as Ly, = L/ D, and the normalized ultimate strength, defined
asVy =V, / (Kpy'D?), for pilesin cohesionless soils, are given by:

L =3/2M;; (18)

Vy =—=Ln (19

where the normalized flexural strength M, isdefinedas M; =M, / (K,y'D*).



Kinematic Relation between Displacement and Curvature Ductility Factors
To ensure a satisfactory performance, the severity of local damage may be controlled by limiting the
curvature ductility demand in the potential plastic hinge region. The curvature ductility demand, which is
different for the two plastic hinges, depends on the displacement ductility imposed on the pile. In order to
estimate the local inelastic deformation and hence the curvature ductility demand in the critical region, the
lateral response of afixed-head pile is approximated by atri-linear force-displacement response, as shown
in Figure 4, with an initial stiffness K; followed by a reduced stiffness K,. The first and second yield limit
states are defined by the lateral displacement Ay; and Ay,, respectively. The lateral displacement beyond
Ay, is characterized by a constant lateral force signifying afully plastic response. The ultimate limit stateis
defined by the lateral displacement A,, which depends on the ductility capacity of the plastic hinges. The
lateral force-displacement response of the fixed-head pile can be further idealized by a bilinear elasto-
plastic response, which is also shown in Figure 4, with the equivalent elasto-plastic yield displacement A,.
Herein the displacement ductility factor u, is defined as
Au_Ay Ky

Ha=—*=

= 20
Ay Ay Ay <0

where A, is the increased plastic displacement from the stage of second plastic hinge formation to the
ultimate limit state, asindicated in Figure 4. The relation between the displacement and curvature ductility
factors can be established by formulating Eq. (20) as a function of the yield and ultimate curvatures of the
pile section.
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Figure 4. | dealized lateral for ce-displacement response of fixed-head piles

The equivalent elasto-plastic yield displacement A, in Eq. (20) may be related to the ultimate lateral
strength V,, using theinitial stiffness K, of the bilinear curve:

M

Ky
while the lateral displacement at the second yield limit state Ay, in Eq. (20) may be determined from the
idealized tri-linear responsg, i.e.

Ky K2
where V, is the lateral force required to develop the first plastic hinge. The next step of the formulation
involves the determination of the plastic rotation for both hinges. The lateral displacement of the pile from
Ay to Ay resultsin arotation of €' in both plastic hinges. The plastic hinge rotation €', isrelated to the
plastic displacement A’ as shown in Figure 1(c), by

Ay (22)

(22)



A**
0p =—" 23
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where L, = Ly D isthe depth to the second plastic hinge. In order to estimate the curvature ductility, the
plastic rotation is taken to be uniformly distributed over the plastic hinge. For the first plastic hinge, the

plastic rotation 67y can be written as

0 =(@u—0i)Lp for gu >0i 20, (24)
where ¢; is the curvature in the first plastic hinge at the lateral displacement Ay, ¢, is the ultimate
curvature in the first plastic hinge, and L, is the equivalent plastic hinge length for the first hinge. By
normalizing the first plastic hinge lengthto A ,» = L. / D, the combination of Egs. (23) and (24) givesthe
plastic displacement A7}, as

A*r*a =(¢ul —0i )7b pl LmD? (29)
Egs. (21), (22) and (25) can be substituted into Eq. (20) to give a relation between the displacement
ductility factor and the curvature demand in the first plastic hinge:
Vy , Ki Mi=Vy) | A L D2 (01— 1)

Vu K2 Vu Ay
By defining the coefficients o=V, /V, =Ay, /Ay and B=A, /(0y Ln’) , the curvature ductility factor e
in thefirst plastic hinge is related to the displacement ductility factor s by

(26)

Ha =

K1 7\«pl
=00+ —(1—0t) + —2— (W1 — Mo 27
Ua Kz( ) B L (Mor — g ) (27)
where g is defined as po = du / ¢y, and py is the curvature ductility demand in the first plastic hinge at
the lateral displacement Ay, which is defined as o =i / ¢y .

The kinematic relation in Eq. (27) requires the determination of the curvature ductility e, which
involves the plastic rotation of the first plastic hinge at the lateral displacement Ay,. The plastic
displacement A"y, which occurs from the first yield limit state to the second yield limit state, indicated as
Ap=Ay,—Ay inFigure 4, isassociated with a plastic rotation 6', in thefirst hinge. Assuming auniform
distribution of plastic rotation in the plastic hinge, the curvature ductility factor i is related to the plastic
rotation ', by:

o _4

e*

q)y q)y Lpl

The plastic rotation 67, in Eq. (28) can be obtained using the expression for pile head rotation, asgiven in
Eq. (5) for cohesive soils and Eq. (11) for cohesionless soils. By replacing the numerator A—Ay; by A
in Eq. (5) and (11), the plastic rotation 6, can be written as:

e*p: Ap
Nblm
where the coefficient n is defined as nsﬁRC/Lm for cohesive soils and n=15R,/L, for

cohesionless soils. From the idealized tri-linear response shown in Figure 4, the plastic displacement A",
in Eq. (29) isrelated to the lateral strength and reduced stiffness of soil-pile system, i.e.

Vu _Vy _ ﬁVu _Vy
K> Ky Ki
By substituting Vy = oV, and Vi, / Ky =Ay =B o, L.’ into Eq. (30), A, can bere-written as

(28)

(29)

Ap = (30)
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The combination of Egs. (28), (29) and (31) allows the curvature ductility p to be determined:
Kj_ B L*m
i =1+— 1-o (32)
Woi Kz Mo ( )

where L, is the normalized depth to the second plastic hinge and A, is the normalized plastic hinge
length of the first hinge. Upon the determination of the intermediate curvature ductility factor, i.e. py in
Eq. (32), the ultimate curvature ductility demand i in the first plastic hinge can be determined using Eq.
(27) for agiven displacement ductility factor a.

Damage assessment of fixed-head piles also requires an estimation of the curvature ductility demand in
the second plastic hinge, even though the curvature ductility demand would likely be smaller than that of
the first plastic hinge. Similar to Eq. (24) for the first plastic hinge, the rotation 67, due to the plastic
displacement of A, may be written in terms of the ultimate curvature demand ¢, in the second hinge:

0% = (duz—0y)Lp2 for duz =0, (33)

where L is the equivalent plastic hinge length of the second hinge. The combination of Egs. (23) and
(33) givesthe plastic displacement A, as

A*; = (¢u2—¢y)7‘p2 LmD? (34)

where A2 =Ly / D is the normalized plastic hinge length of the second hinge. Following the same
approach for the first plastic hinge, Egs. (20), (21), (22) and (34) can be solved simultaneously to obtain
the relation between the displacement ductility factor p, and the curvature ductility demand py:

(o2 —1) (35)

7\,p2
B Lm
where ez = du2 / ¢y IS the curvature ductility demand in the second plastic hinge. Note that Eq. (35) is
similar to the kinematic relation for the first plastic hinge in Eq. (27), except that the plastic hinge length

is different and the curvature ductility demand at lateral displacement Ay, is equal to unity for the second
plastic hinge.

Wa :oc+ﬁ(1—oc)+
K2

In order to ensure a good performance of a pile-supported foundation, the ultimate displacement imposed
on the pile may be limited to a design displacement. If the design displacement is sufficiently large to
cause inelastic deformation in both plastic hinges, the curvature ductility demand can be predicted using
the kinematic relation of Egs. (27) and (35). However, in the case of a small lateral displacement where
the limiting design displacement A, is less than the displacement at the formation of the second plastic
hinge Ay, (but larger than Ayz), only one plastic hinge will form at the pile head. In this case, the kinematic
relation will be different from that given by Eq. (27). In order to derive the kinematic relation for this
condition, the displacement ductility factor p, may be written as:

A _An Ap

= 36
Ay Ay Ay (30

where Ay is the elasto-plastic yield displacement as before, and A',, is the plastic displacement, which is
less than or equal to A'p. Similar to Eq. (29), the plastic displacement A', can be related to the plastic
rotation of thefirst hinge 67, by

Ap= e,pn Lm (37)



where the coefficient 1 has been defined previously for cohesive and cohesionless soils. By writing the
plastic rotation as 0% = (w1 — dy )L p1, Where o, is the ultimate curvature in the first plastic hinge, the
displacement ductility factor u, in Eg. (36) can be written as
Ay MLl (0u-0,)
A — - +

A A

(38)

y y

Substituting a=Ay /Ay and Ay =B¢, L.” into Eq. (38), the relation between the displacement
ductility factor n, and curvature ductility factor py for Ay <A, <Ay, is
A
o =0+ P (1 1) (39)
BLn
where [y =0u/¢y. The set of eguations, namely Egs. (27), (35) and (39), allows a full range of
curvature ductility demand for fixed-head piles to be estimated.

Plastic Hinge L ength of Fixed-Head Concr ete Piles
The curvature demand in the yielding region of a pile is related to the equivalent plastic hinge length of
the pile. Studies of bridge columns or extended pile-shafts have resulted in empirical expressions for the
equivalent plastic hinge length. For the case of fixed-head piles, it is reasonable to assume that the length
of thefirst plastic hinge is similar to the plastic hinge length of afixed-based bridge column, since the first
plastic hinge of the pile forms against a supporting member. In this case, the equivalent plastic hinge
length L of the pileisassumed to be the same as that of a fixed-based column except that the height of
the column is replaced by one-half of the distance to the second hinge. This approach is based on the
assumption that the bending moment in the upper region of fixed-head piles is similar to the reversed
moment distribution in a laterally loaded column with full fixity at both ends. More specificaly, the
equivalent plastic hinge length for the first hinge of the fixed-head pile is taken from that proposed by
Priestley et al. [9]:

Lpr =0.04Lm + 0.022 fyedy > 0.044 f e dpi (40)

where fy¢ is the expected yield strength of the reinforcing steel (in MPa units) and dy is the diameter of the
longitudina reinforcement of the pile. The equivaent plastic hinge length of the first plastic hinge,
however, should not be taken as greater than the pile diameter. For the second plastic hinge, the spread of
curvature will be more significant than that of the first plastic hinge. In this paper, the equivalent plastic
hinge length for the second plastic hinge is taken from the plastic hinge length for extended pile-shafts
with a zero above-ground height, as proposed by Chai [10]. In this case, a plastic hinge length of L, = D,
or anormalized plastic hinge length of A ,, = 1.0, is appropriate for the second plastic hinge.

ILLUSTRATIVE EXAMPLE

To illustrate the use of the analytical model, consider the following reinforced concrete fixed-head pile
embedded in two different soils, which are classified according to NEHRP [3] as: (1) class E site with
cohesive soils, and (2) class C site with cohesionless soils. The pile has a diameter of D = 0.61 m and an
embedded length of 22 m, as shown in Figure 5. The following parameters are assumed for the pile: (i) the
longitudinal reinforcement is provided by 12 # 25 bars, resulting in alongitudinal steel ratio of 0.020; (ii)
the transverse reinforcement is provided by #13 spira at a pitch of 75 mm, resulting in a confining steel
ratio of 0.015; (iii) a concrete cover of 75 mm is used for the transverse spiral of the pile; (iv) the expected
concrete compressive strength, as suggested by ATC-32 [6], is f'=1.3f':=44.8 MPa, and (v) the
longitudinal and transverse steel are provided by grade A706 steel with a expected yield strength
fye = 475MPa. The pileis subjected to an axial compression of 2000 kN or 0.2 f{ Ay .
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The moment-curvature response of the pile section may be idealized by an elasto-plastic response. In this
case, the effective flexura rigidity of the pile is Ele =1.029x10° kN -m?, and the equivalent €lasto-
plastic yield curvature is ¢, = 0.0079 rad/m. The ultimate bending moment of the pile, based on the elasto-
plastic idedlization, is M= 809.9 kN-m. As a means for ensuring a good seismic performance of a
structure, studies have suggested that damage can be controlled by limiting the strain values in the critical
regions. For example, Kowalsky [11] suggested a damage-control strain of 0.018 for the extreme
compressive fiber of the confined concrete core, or 0.060 for the extreme tension fiber of longitudinal
steel. Following this suggestion for damage-control of fixed-head piles, the limiting curvature of the pile
in this exampleis ¢, = 0.126 rad/m, which will be taken as the ultimate curvature of the section. Thus for
the level of confining steel provided for the pile, the curvature ductility capacity is (e )eap = 16.0. TO
demonstrate the applicability of the model, the curvature ductility demand will be estimated for a range of
imposed displacement ductility factor up to 4.

Example 1: Soft Clay in Site ClassE

The lateral response of the fixed-head pile in this example will be assessed for a cohesive sail, classified
as profile type & or soft clay per NEHRP [3]. The effective unit weight of the soft clay is taken as
¥ =17.5 kN/m® and the undrained shear strength is taken as s, = 35 kPa. From Eq. (6), the modulus of
horizontal subgrade reaction is k, = 2345 kN/m?. It should be noted that the soil stiffness estimated by Eq.
(6) is intended for analyses at the working load level. For assessment of curvature ductility demand,
however, the soil stiffness should correspond to the first yield limit state of the pile. Thusthe soil stiffness
that is appropriate for curvature ductility assessment should strictly be reduced since softening of the soil
would have occurred upon first yielding of the pile. Currently no recommendation exists for the
appropriate level of modification, and as such, the lateral stiffness of the soil predicted by Eqg. (6) will be
used in this example without reduction to illustrate the procedure. For ki, =2345kN/m? and
El, =1.029x10° kN — m?2, the characteristic length of the pileis R. =4/El. / k, =2.57 m. The critical
depth of the pile, beyond which the ultimate lateral resistance of soil remains constant, isx, = 1.75 m, or
corresponding to acritical depth coefficient of v, =2.87, as estimated from Eqg. (13).

Theinitial lateral stiffness of the soil-pile system, as calculated from Eq. (1), is K; =8536 kN/m, whereas
the reduced lateral stiffness, due to the first plastic hinge formation, is K, =4268kN/m, as calculated
from EqQ. (4). The ratio of the two lateral stiffness coefficientsis Ky / K, = 2.0. From Egs. (2) and (3), the
lateral displacement and force at the first yield limit state are Ay; = 0.052 m and Vy, = 445 kN, respectively.



Using a normalized flexural strength of M, = M, / (sJ D3) =102.0 and acritical depth coefficient of v,
= 2.87, the normalized depth to the second plastic hinge may be obtained by solving Eq. (14), which gives
L., =6.27, or an actual depth of L, =3.83m. The corresponding normalized lateral strength may be
estimated by Eq. (15), which gives V; =56.1, or an actual lateral strength of V, =730kN . From Egs.
(21) and (22), the elasto-plastic yield displacement is A, = 0.086 m and the lateral displacement at the
formation of the second plastic hinge is Ay, = 0.119 m. The curvature ductility demand depends on the
ratio between Vy and V,, which is represented by the coefficient of o=V, /V, =0.61. Using an elasto-
plastic yield displacement of A, =0.086 m, an elasto-plastic yield curvature of ¢, =0.0079rad/m and
the depth to the second plastic hinge of L, =3.83m, the coefficient is B = A, /(¢y L") = 0.74. For
R. =257m and L,, =3.83m, the coefficient n, which isdefined as n=+v/2 R. / L, for cohesive soils, is
equal to 0.95. For this example, the equivalent plastic hinge length of the first plastic hinge of the pileis
taken as L =0.52m from Eqg. (40), which corresponds to a normalized length of A, =0.86, while the
plastic hinge length for the second plastic hinge is taken as Ly, = D =0.61m, which corresponds to a
normalized length of A, =1. The curvature ductility demand i in the first plastic hinge at the lateral
displacement Ay, is e =5.46, as calculated from Eq. (32). The substitution of o=0.61, B =0.74,
n=0.95, A, =0.86 and L, =6.27 into Eq. (39) gives the kinematic relation for small lateral
displacements where only one plastic hinge forms. The same set of values plusK; /K, =2.0, A,, =1
and p, =5.46 can be substituted into Egs. (27) and (35) for the case of large lateral displacement where
both plastic hinges form.

The resulting kinematic relations for the first and second plastic hinges are plotted in Figure 6(a). It can be
seen that the curvature ductility factor increases linearly with the displacement ductility factor for both
plastic hinges. The dope of the straight line for the first plastic hinge is greater than that for the second
plastic hinge due to the shorter length of the first plastic hinge. In the small displacement range where
only one plastic hinge forms, i.e. u, <1.39, the slope of the line is also dlightly different from the slope
where two plastic hinges form. For a curvature ductility capacity of 16.0 as estimated for the pile section,
the result in Figure 6(a) indicates that the fixed-head pile can tolerate a displacement ductility factor of
3.33. Note that for a displacement ductility factor of u, = 1, the curvature ductility demand in the first
plastic hinge is uy = 3.23. The reason for the curvature ductility factor greater than unity is due to the
definition of the elasto-plastic yield displacement A,, which is larger than the lateral displacement to
causefirst yield of the pile Ay, .
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Example 2: Dense Sand in Site Class C

The same fixed-head pile is analyzed for a cohesionless soil classified as profile type & per NEHRP
(2001). The sand is assumed to be dry with an effective unit weight of ¥ =20.5 kN/m® and an internal
friction angle of ¢ =42°. For the selected friction angle, the passive soil pressure coefficient is
Kp=Il+s n$)/ 1-s na): 5.04. The rate of increase of modulus of horizontal subgrade reaction, which
is extrapolated from the above-water curve of Figure 2, is n, = 27000 kN/m®. Although the soil stiffness
should similarly be modified for assessment of curvature ductility demand, as discussed previously for
cohesive soils, the soil stiffness estimated from Figure 2 will aso be used without modification to
illustrate the procedure. Using the same flexural rigidity of El, = 1.029x10° kN-m? and a soil stiffness of
N, = 27000 kN/m®, the characteristic length of the soil-pile systemis R, =%/El./ n, =1.31m.

The lateral stiffness of the soil-pile system, as estimated from Egs. (7) and (10), is K; = 49801 kN/m and
K, = 18906 kN/m, giving a stiffness ratio of K,/ K, = 2.6. The lateral displacement and force required to
develop the first plastic hinge are Ay, = 0.013 m and V, =669.3kN , as calculated from Egs. (8) and (9),
respectively. Using the normalized flexural strength of M; =M,/ (K,y D*)=56.56, the normalized
depth to the second plastic hinge is L, =4.84 from Eq. (18), which corresponds to an actua depth of
L, =2.95m. The normalized latera strength of the soil-pile system is V,, =35.09 from Eqg. (19), giving
an actua latera strength of V,, =823.6 kN . The elasto-plastic yield displacement may be calculated from
Eq. (21), whichis Ay =0.017 m. The lateral displacement at the second yield limit state is Ay, = 0.022m,
as calculated from Eq. (22). Using V, =669.3kN and V, =823.6 kN, the coefficient o=V, /V, isequa
to 08l For A,=0017m, L,=29m, ad ¢,=0.0079rad/m, the coefficient is
B=A,/(0yLy’)=024. Using R,=1.31m and L,, =2.95m, the coefficient n for cohesionless soils is
nN=15R, /L, =0.66. The normalized plastic hinge lengths are the same as before for the cohesive sail,
i.e. Apn=0.86 and A, =1. The curvature ductility e in the first plastic hinge a the latera
displacement A, is ug =2.01, as estimated from Eq. (32). Substituting o.=0.81, $=0.24, n=0.66,
Ap=086, and Ln=4.84 into Eq. (39) gives the kinematic relation for the case of small lateral
displacement where only one plastic hinge forms. The same set of values plus K1/ K, =2.6, A, =1 and
Wi =2.01 can be substituted into Egs. (27) and (35) for the case where both plastic hinges form. The
resulting kinematic relations are plotted in Figure 6(b) for comparison with the case of soft clay.

The curvature ductility demand for the pile in dense sand follows the same trend as the soft clay with
linearly increasing curvature ductility factor for increased displacement ductility factor. For a given
displacement ductility factor, however, the curvature ductility demand in dense sand is significantly
smaller than the curvature ductility demand in soft clay. For example, at a displacement ductility factor of
us =4, the curvature ductility demand is 4 =5.68 for the case of dense sand compared to the curvature
ductility demand of p, =19.65 for soft clay. Although not plotted in Figure 6(b), the estimated curvature
ductility capacity of 16.0 for the pile section would correspond to a displacement ductility factor of
wa =115, whichissignificantly larger than the displacement ductility normally adopted for design.

PRELIMINARY RESULTSFOR DAMAGE ASSESSMENT

Under lateral seismic loads, damage to piles is often related to the curvature ductility demand in the
critical regions of the pile. Consequently, the curvature ductility demand is used as an indicator of pile
damage in this paper. The curvature ductility demand however depends not only on the displacement
ductility imposed on the pile, but also on the properties of the soil. Since a wide range of soil conditions



exist in practice, seismic performance of a fixed-head pile may vary significantly depending on the site
condition. In this section, the performance of a fixed-head is assessed for a wide range of soils, from
profile type S: to profile type S per NEHRP [3] or ATC-40 [4]. The assessment is made using the same
pile details as presented in the previous section. The variation in soil profile types is achieved by varying
the undrained shear strength from s, = 20 to 250 kN/m? for cohesive soils and by varying the relative
density from D, =15% to 90% for cohesionless soils. The curvature ductility demand in the fixed-head pile
is calculated for displacement ductility factors of p, = 2.5 and p, = 3.

The resulting curvature ductility demand for the first and second plastic hinges of the fixed-head pile is
plotted in Figure 7. Figure 7(a) shows the curvature ductility demand versus the undrained shear strength
of cohesive soils. Note that the soil profile type is also labeled on the horizontal axis in the figure. It can
be seen that the curvature ductility demand is relatively constant for a given displacement ductility factor.
For an imposed displacement ductility factor of u, = 3, for example, the curvature ductility demand in the
first plastic hinge increases slightly from py = 13.4 a an undrained shear strength of s, = 20 kN/m? to Wo1
= 14.9 at an undrained shear strength of s, = 100 kN/m?, and then decreases slightly to Ue1 = 14.6 when
the undrained shear strength increases to s, = 250 kN/m? For soft cohesive soils (sail type &), the
variation of curvature ductility demand in the second plastic hinge is less compared to that of the first
plastic hinge. For the pile analyzed in this example, the curvature ductility capacity of (W, )ep = 16.0 is
adequate for alarge range of cohesive soils.
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The curvature ductility demand for the same pile embedded in cohesionless soils is shown in Figure
7(b). The curvature ductility demand decreases with increased soil stiffness, as signified by theincreasein
relative density, especialy for the first plastic hinge. The decrease in curvature ductility demand is more
significant for piles embedded in S cohesionless soils. Similar to the trend observed for cohesive soils,
the decrease in curvature ductility demand in the second plastic hinge is smaller than that of the first
plastic hinge. The curvature ductility capacity of (u,)ep = 16.0 is adequate for a large range of
cohesionless soils for an imposed displacement ductility factor of p, = 3. It is important to note that the
results presented in Figure 7 are preliminary since they have been calculated without a modification in the
soil stiffness for both cohesive and cohesionless soils. An adjustment of the soil stiffness however may



lead to an increased curvature ductility demand in the pile. Further research into the appropriate level of
soil stiffness modification for curvature ductility demand estimation is warranted.

CONCLUSIONS

Seismic design of deep foundations should include an assessment of the curvature ductility demand in the
potential plastic hinge region of the pile. In this paper, an analytical model is developed for assessing the
curvature ductility demand of fixed-head piles embedded in cohesive and cohesionless soils. The model is
useful for performance-based design since local damage can be controlled by limiting the curvature
ductility demand in the plastic hinges of the pile. For the proposed model, the lateral response is
characterized by alinear elastic response, followed by first yielding of the pile at the pile head, and then
by afull plastic mechanism after the formation of the second plastic hinge. The elastic response of the pile
and itsfirst yield limit state are determined using classical solutions of aflexural element supported by an
dastic Winkler foundation. The ultimate lateral strength, as defined by a fully plastic mechanism, is
determined using the flexural strength of the pile and the ultimate pressure distribution of the soil. A
kinematic relation between the global displacement ductility factor and local curvature ductility demand is
developed by assuming a concentrated plastic rotation in both plastic hinges. The kinematic relation
indicates that the curvature ductility demand depends on the ratio of the first yield lateral force to ultimate
lateral force, the initia stiffnessto post first yield stiffness ratio, the depth to the second plastic hinge, and
the plastic hinge length of the pile. The versatility of the proposed model isillustrated using a fixed-head
reinforced concrete pile embedded in two different soil types, as classified in current US building codes.
Although results presented in this paper are preliminary, the model is nonethel ess shown to be capable of
predicting the local ductility demand for awide range of pile and soil properties.
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