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SUMMARY 
 
Under seismic loads, deep foundations with fixed pile/pile-cap connection may be subjected to a large 
curvature demand at the pile head. Damage induced by local inelastic deformation depends on the 
magnitude of the lateral displacement imposed on the pile. In this paper, an analytical model relating the 
displacement ductility factor to the local curvature ductility demand is proposed for fixed-head piles 
embedded in cohesive and cohesionless soils. The model indicates that the curvature ductility demand 
depends on the strength and stiffness of the soil-pile system, as well as the location and length of the 
plastic hinges. The model is useful for design of fixed-head piles since it is capable of estimating the 
severity of the local damage in the pile for a wide range of pile and soil properties. The versatility of the 
model is illustrated using an example of a fixed-head concrete pile constructed in soil types currently 
classified in the US building codes. Seismic performance of the pile subjected to displacement ductility 
factor commensurate with the current design is assessed for different soil conditions. 
 

INTRODUCTION 
 
Deep foundations for buildings and bridges often rely on the use of concrete piles that are restrained from 
rotation at the pile head. Under lateral seismic loads, however, the fixity at the pile/pile-cap connection 
induces a large curvature demand at the pile head, with a potential for failure in the pile. Severe damage of 
pile-supported foundations had been observed in recent earthquakes. As post-earthquake inspection of 
pile foundations is difficult, damage assessment of piles becomes important, particularly if a certain level 
of performance is to be guaranteed for the structure.  
 
For a fixed-head pile subjected to a large lateral load, sequential yielding of the pile occurs until a plastic 
mechanism is fully developed. Figure 1 shows the deflected shape and the associated bending moment 
distribution at various limit states of a laterally loaded fixed-head pile. The first yield limit state of the 
pile, which is shown in Figure 1(a), is characterized by a maximum bending moment at the pile/pile-cap 
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connection where the flexural strength Mu of the pile is reached. A plastic hinge is then assumed to form 
at the pile head with the center of rotation occurring at the ground level. Further displacement beyond the 
first yield limit state involves a concentrated rotation of the plastic hinge, which is accompanied by a 
redistribution of internal forces in the pile. The redistribution increases the bending moment in the non-
yielding portion of the pile until the formation of a second plastic hinge. Figure 1(b) shows the second 
yield limit state where the second plastic hinge forms at a depth Lm. Continued lateral displacement after 
the second plastic hinge formation is facilitated by inelastic rotations in both plastic hinges until the pile 
reaches the ultimate limit state, as shown in Figure 1(c). The ultimate limit state is assumed to be 
associated with a flexural failure, as dictated by a limiting curvature in the plastic hinge. In order to 
control the damage due to flexural yielding of the pile, the curvature ductility demand in the pile from an 
imposed lateral displacement must be properly assessed. A simple mechanistic model is developed in 
subsequent sections for characterizing the lateral response of fixed-head piles for various limit states. The 
model is capable of predicting the lateral stiffness and lateral strength of the pile as well as the curvature 
ductility demand in the pile.  

 

 
Figure 1. Deflected shape and bending moment distribution of a laterally loaded fixed-head pile 

(a) first yield limit state, (b) second yield limit state, and (c) ultimate limit state. 
 

ANALYTICAL MODEL 
 
Satisfactory seismic performance of fixed-head piles depends on the level of inelastic deformation 
imposed on the pile. Inelastic deformation, as commonly characterized in terms of curvature demand, is 
related to the stiffness and strength of the soil-pile system as well as the plastic hinge length of the pile. In 
this section, a kinematic model, which relates the displacement ductility factor to the curvature ductility 
factor, is derived. The model is developed for different soil conditions. 
 
Lateral Stiffness of Soil-Pile System: Cohesive Soils 
A common approach for seismic design of pile foundations assumes that a laterally loaded soil-pile system 
can be analyzed as a flexural member supported by an elastic Winkler foundation. In this case, the soil is 
replaced by a series of springs, which provide a soil reaction that is proportional to the lateral deflection. 
For cohesive soils, the stiffness of the soil-spring is assumed to be independent of the depth, resulting in a 
constant horizontal subgrade reaction kh (in units of force/length3) for the Winkler foundation. Closed-
form solutions for the deflection and bending moment of an elastic pile embedded in cohesive soils are 



well known [1]. For a fixed-head pile with an imposed lateral displacement ∆ at the ground level, the 
lateral stiffness of the soil-pile system is given by 
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where V is the lateral force required to produce an elastic displacement ∆, EIe is the effective flexural 
rigidity of the pile, and Rc is the characteristic length of the pile, which is defined as 4

hec k/EIR ≡ .  At 
the first yield limit state, the lateral deflection ∆y1 at the ground level can be obtained by equating the 
bending moment at the pile/pile-cap connection to the ultimate moment capacity Mu of the pile, assuming 
an elasto-plastic moment-curvature response i.e. 
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Using the lateral stiffness K1 of Eq. (1) and the yield displacement ∆y1 of Eq. (2), the lateral force to cause 
the formation of the first plastic hinge is: 
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Upon the formation of the first plastic hinge, the boundary condition of the pile effectively changes to a 
free-head condition, where closed-form solutions are also readily available. The reduced lateral stiffness 
K2 and the corresponding plastic rotation θ at the ground level after the first yield limit state are given by: 
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The lateral stiffness of fixed-head piles embedded in cohesive soils requires the determination of the 
characteristic length Rc of the pile, which in turn requires an estimation of the modulus of horizontal 
subgrade reaction kh. An expression for kh has been proposed by Davisson [2] for estimating the modulus 
of horizontal subgrade reaction of cohesive soils: 

uh sk 67=  (6) 

where su is the undrained shear strength of the cohesive soil, which may be determined from field tests or 
from site classifications in current US building codes. For example, NEHRP [3] or ATC-40 [4] provides a 
correlation between the undrained shear strength and soil profile type, which is reproduced in Table 1 for 
completeness of this paper.  

 
Table 1. Soil profile classifications and soil properties (adapted from NEHRP [3] and ATC-40 [4]) 

    Cohesive soils Cohesionless soils 

Soil 
profile 

Description 
Shear wave 

velocity (m/sec) 
SPT N 

(blows/0.305m) 
Undrained shear 
strength (kN/m2) 

Friction angle 
 φ  (degrees) 

SE Soft soil < 180 < 15 < 50 < 33 
SD Stiff soil 180 – 360 15 – 50 50 – 100 33 – 40 
SC Dense soil 360 - 760 > 50 > 100 > 40 

 



Lateral Stiffness of Soil-Pile System: Cohesionless Soils 
The above approach for determining the lateral stiffness of fixed-head piles can be extended to piles 
embedded in cohesionless soils. In this case, the soil resistance is modeled by a Winkler foundation with a 
linearly increasing modulus of horizontal subgrade reaction. Solutions for estimating the deformation and 
bending moment of elastic piles in cohesionless soils have been proposed by Matlock and Reese [5]. For a 
fixed-head pile, the lateral stiffness of the soil-pile system is given by: 
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where Rn is the characteristic length, which is defined as 5
hen n/EIR ≡  for cohesionless soils, and nh is 

the constant rate of increase of the modulus of horizontal subgrade reaction (in units of force/length3). At 
the first yield limit state, the lateral deflection and force at the ground level, denoted as ∆y1 and Vy 
respectively, are given by: 
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Similar to the case for cohesive soils, the reduced stiffness K2 after the first yield limit state and its 
corresponding rotation at ground level for piles in cohesionless soils are:  

3
1

2 410
n

e

y

y

R

EI
.

VV
K =

∆−∆
−

≡   for V > Vy and ∆ > ∆y1  (10) 

n

y

R
1

3

2 ∆−∆
=θ    for ∆ > ∆y1 (11) 

The lateral stiffness of a pile embedded in cohesionless soils depends on the rate of increase of modulus 
of horizontal subgrade reaction nh. An estimation of nh and its correlation with the effective friction angle 
and relative density of the soil is suggested in ATC-32 [6] and is reproduced in Figure 2 in this paper. 
Note that Table 1, which is adopted from ATC-40 [4], also provides a correlation between the friction 
angle and the soil profile classifications by NEHRP [3].  
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Figure 2. Subgrade coefficient of cohesionless soils [6] 



  
Lateral Strength of Soil-Pile System: Cohesive Soils 
For a laterally loaded fixed-head concrete pile, the response may be assumed to be characterized by a 
dependable lateral strength with a varying level of ductility capacity, depending on the level of 
confinement provided for the pile. The lateral strength of the pile can be determined by assuming that a 
sufficiently large deflection has occurred so that an ultimate soil pressure, extending to the depth of the 
maximum bending moment, is fully developed. The depth to the maximum bending moment, which 
depends on the flexural strength of the pile and the ultimate pressure of the soil, defines the location of the 
second plastic hinge and therefore influences the lateral strength and ductility of the pile. 
 
The magnitude and distribution of the ultimate soil pressure acting on the pile depend on the failure 
mechanism of the soil, the shape of the pile cross-section, the friction between the pile surface and 
surrounding soil, etc. For cohesive soils, an estimation of the ultimate soil pressure distribution may be 
obtained from consideration of a failure mechanism of the soil around the pile, as suggested by Reese and 
Van Impe in [7]. The failure mechanism in the upper region is controlled by a sliding soil wedge resulting 
in a soil pressure that increases linearly with depth, while a plastic flow occurs around the pile in the 
lower region leading to a constant ultimate lateral pressure. Using such failure mechanism, the ultimate 
soil pressure distribution of cohesive soils maybe written as:  
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The depth delineating the two regions is defined as the critical depth rx , which varies with the undrained 
shear strength and is given by  
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where ψr is the critical depth coefficient and 'γ  is the effective unit weight of the soil. The ultimate soil 
pressure distribution of Eq. (12) is plotted in Figure 3(a) and will be used for calculating the lateral 
strength of fixed-head piles embedded in cohesive soils. 
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Figure 3. Ultimate soil pressure distribution for laterally loaded fixed-head piles: (a) cohesive soils, 
(b) cohesionless soils. 

 



The depth at which the second plastic hinge forms Lm and the ultimate lateral strength of the soil-pile 
system Vu can be determined using the equilibrium condition for lateral force and bending moment. For 
cohesive soils with an ultimate pressure distribution given by Eq. (12), the normalized depth to the second 
plastic hinge, defined as D/LL m

*
m ≡ , is given by the solution of the equation:  

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

ψ>ψ−

ψ≤
ψ

+

=

r
*
mr

*
m

r
*
m

r

*
m*

m

*
u

LL

L
L

L

M

for
4

3

4

11

for
2

3

2

1

22

3
2

 (14) 

where )( 3Ds/MM uu
*
u ≡  is the normalized flexural strength of the pile. Upon the determination of the 

normalized depth to the second plastic hinge, the normalized lateral strength *
uV  can be obtained by 
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where the normalized lateral strength is defined as )( 2Ds/VV uu
*
u ≡ .  

 
Lateral Strength of Soil-Pile System: Cohesionless Soils 
The lateral strength, as well as the depth to the second plastic hinge, of a fixed-head pile embedded in a 
cohesionless soil can be determined similarly to that for cohesive soils. Studies on the magnitude and 
distribution of the ultimate soil pressure on piles in cohesionless soils have been made in the past, and an 
ultimate lateral pressure distribution that is convenient for design has been proposed by Broms [8]. The 
lateral pressure pu on the pile is taken to be equal to 3 times the Rankine passive pressure of the soil: 

pvu Kx)x(p )(3 σ′=  (16) 

where )(xvσ′  is the vertical effective overburden stress, which may be taken as the effective unit weight 
'γ  multiply by the depth x, and the term Kp is the coefficient of passive soil pressure and is given by  
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where φ  is the friction angle of the cohesionless soil. The ultimate pressure distribution of Eq. (16), which 
varies linearly with depth, is shown in Figure 3(b).  

 
The depth at which the second plastic hinge forms Lm and the ultimate lateral strength of the soil-pile 
system Vu can be determined using the ultimate soil pressure distribution of Eq. (16). The normalized 
depth to the second plastic hinge, defined as D/LL m

*
m ≡ , and the normalized ultimate strength, defined 

as )( 3DK/VV pu
*
u γ′≡ , for piles in cohesionless soils, are given by: 
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Kinematic Relation between Displacement and Curvature Ductility Factors 
To ensure a satisfactory performance, the severity of local damage may be controlled by limiting the 
curvature ductility demand in the potential plastic hinge region. The curvature ductility demand, which is 
different for the two plastic hinges, depends on the displacement ductility imposed on the pile. In order to 
estimate the local inelastic deformation and hence the curvature ductility demand in the critical region, the 
lateral response of a fixed-head pile is approximated by a tri-linear force-displacement response, as shown 
in Figure 4, with an initial stiffness K1 followed by a reduced stiffness K2. The first and second yield limit 
states are defined by the lateral displacement ∆y1 and ∆y2, respectively. The lateral displacement beyond 
∆y2 is characterized by a constant lateral force signifying a fully plastic response. The ultimate limit state is 
defined by the lateral displacement ∆u, which depends on the ductility capacity of the plastic hinges. The 
lateral force-displacement response of the fixed-head pile can be further idealized by a bilinear elasto-
plastic response, which is also shown in Figure 4, with the equivalent elasto-plastic yield displacement ∆y. 
Herein the displacement ductility factor µ∆ is defined as 
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where **
p∆  is the increased plastic displacement from the stage of second plastic hinge formation to the 

ultimate limit state, as indicated in Figure 4. The relation between the displacement and curvature ductility 
factors can be established by formulating Eq. (20) as a function of the yield and ultimate curvatures of the 
pile section. 
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Figure 4. Idealized lateral force-displacement response of fixed-head piles 

 
The equivalent elasto-plastic yield displacement ∆y in Eq. (20) may be related to the ultimate lateral 
strength Vu using the initial stiffness K1 of the bilinear curve: 
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while the lateral displacement at the second yield limit state ∆y2 in Eq. (20) may be determined from the 
idealized tri-linear response, i.e.: 
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where Vy is the lateral force required to develop the first plastic hinge. The next step of the formulation 
involves the determination of the plastic rotation for both hinges. The lateral displacement of the pile from 
∆y2 to ∆u results in a rotation of **

pθ  in both plastic hinges. The plastic hinge rotation **
pθ  is related to the 

plastic displacement **
p∆ , as shown in Figure 1(c), by 
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where DLL *
mm =  is the depth to the second plastic hinge. In order to estimate the curvature ductility, the 

plastic rotation is taken to be uniformly distributed over the plastic hinge. For the first plastic hinge, the 
plastic rotation **

pθ  can be written as 
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where φi is the curvature in the first plastic hinge at the lateral displacement ∆y2, φu1 is the ultimate 
curvature in the first plastic hinge, and Lp1 is the equivalent plastic hinge length for the first hinge. By 
normalizing the first plastic hinge length to D/Lpp 11 ≡λ , the combination of Eqs. (23) and (24) gives the 
plastic displacement **

p∆  as  
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Eqs. (21), (22) and (25) can be substituted into Eq. (20) to give a relation between the displacement 
ductility factor and the curvature demand in the first plastic hinge:  
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By defining the coefficients yyuy /V/V ∆∆=≡α 1  and )( 2
myy L/ φ∆≡β , the curvature ductility factor µφ1 

in the first plastic hinge is related to the displacement ductility factor µ∆ by 
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where µφ1 is defined as yu / φφ≡µφ 11 , and µφi is the curvature ductility demand in the first plastic hinge at 
the lateral displacement ∆y2, which is defined as yi / φφ≡µφi .     
 
The kinematic relation in Eq. (27) requires the determination of the curvature ductility iφµ , which 
involves the plastic rotation of the first plastic hinge at the lateral displacement ∆y2. The plastic 
displacement *

p∆ , which occurs from the first yield limit state to the second yield limit state, indicated as 
12 yy

*
p ∆−∆=∆  in Figure 4, is associated with a plastic rotation *

pθ  in the first hinge. Assuming a uniform 
distribution of plastic rotation in the plastic hinge, the curvature ductility factor µφi is related to the plastic 
rotation *

pθ  by: 
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The plastic rotation *
pθ  in Eq. (28) can be obtained using the expression for pile head rotation, as given in 

Eq. (5) for cohesive soils and Eq. (11) for cohesionless soils. By replacing the numerator 1y∆−∆  by *
p∆  

in Eq. (5) and (11), the plastic rotation *
pθ  can be written as: 
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where the coefficient η is defined as mc L/R2≡η  for cohesive soils and mn L/R.51≡η  for 
cohesionless soils. From the idealized tri-linear response shown in Figure 4, the plastic displacement *

p∆  
in Eq. (29) is related to the lateral strength and reduced stiffness of soil-pile system, i.e. 
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By substituting uy VV α=  and 2
1 myyu LK/V φβ=∆=  into Eq. (30), *

p∆  can be re-written as 
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The combination of Eqs. (28), (29) and (31) allows the curvature ductility µφi to be determined: 
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where *
mL  is the normalized depth to the second plastic hinge and λp1 is the normalized plastic hinge 

length of the first hinge. Upon the determination of the intermediate curvature ductility factor, i.e. µφi in 
Eq. (32), the ultimate curvature ductility demand µφ1 in the first plastic hinge can be determined using Eq. 
(27) for a given displacement ductility factor µ∆.  
 
Damage assessment of fixed-head piles also requires an estimation of the curvature ductility demand in 
the second plastic hinge, even though the curvature ductility demand would likely be smaller than that of 
the first plastic hinge. Similar to Eq. (24) for the first plastic hinge, the rotation **

pθ  due to the plastic 
displacement of **

p∆  may be written in terms of the ultimate curvature demand φu2  in the second hinge: 
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where Lp2 is the equivalent plastic hinge length of the second hinge. The combination of Eqs. (23) and 
(33) gives the plastic displacement **

p∆  as 
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where D/Lpp 22 ≡λ  is the normalized plastic hinge length of the second hinge. Following the same 
approach for the first plastic hinge, Eqs. (20), (21), (22) and (34) can be solved simultaneously to obtain 
the relation between the displacement ductility factor ∆µ  and the curvature ductility demand µφ2: 

( ) ( )11 2
2

2

1 −µ
β
λ+α−+α=µ φ∆ *

m

p

LK

K
 (35) 

where yu / φφ≡µφ 22  is the curvature ductility demand in the second plastic hinge. Note that Eq. (35) is 
similar to the kinematic relation for the first plastic hinge in Eq. (27), except that the plastic hinge length 
is different and the curvature ductility demand at lateral displacement ∆y2 is equal to unity for the second 
plastic hinge.  
 
In order to ensure a good performance of a pile-supported foundation, the ultimate displacement imposed 
on the pile may be limited to a design displacement. If the design displacement is sufficiently large to 
cause inelastic deformation in both plastic hinges, the curvature ductility demand can be predicted using 
the kinematic relation of Eqs. (27) and (35). However, in the case of a small lateral displacement where 
the limiting design displacement ∆u is less than the displacement at the formation of the second plastic 
hinge ∆y2 (but larger than ∆y1), only one plastic hinge will form at the pile head. In this case, the kinematic 
relation will be different from that given by Eq. (27). In order to derive the kinematic relation for this 
condition, the displacement ductility factor µ∆ may be written as:  
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where ∆y is the elasto-plastic yield displacement as before,  and p'∆  is the plastic displacement, which is 
less than or equal to *

p∆ . Similar to Eq. (29), the plastic displacement p'∆  can be related to the plastic 
rotation of the first hinge pθ′  by 

mpp L' ηθ′=∆  (37) 



where the coefficient η  has been defined previously for cohesive and cohesionless soils. By writing the 
plastic rotation as ( ) 11 pyup Lφ−φ=θ′ , where 1uφ  is the ultimate curvature in the first plastic hinge, the 
displacement ductility factor µ∆ in Eq. (36) can be written as 
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Substituting yy / ∆∆=α 1  and 2
myy Lφβ=∆  into Eq. (38), the relation between the displacement 

ductility factor ∆µ  and curvature ductility factor 1φµ  for 21 yuy ∆≤∆≤∆  is: 
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where yu / φφ≡µφ 11 . The set of equations, namely Eqs. (27), (35) and (39), allows a full range of 
curvature ductility demand for fixed-head piles to be estimated. 
 
Plastic Hinge Length of Fixed-Head Concrete Piles 
The curvature demand in the yielding region of a pile is related to the equivalent plastic hinge length of 
the pile. Studies of bridge columns or extended pile-shafts have resulted in empirical expressions for the 
equivalent plastic hinge length. For the case of fixed-head piles, it is reasonable to assume that the length 
of the first plastic hinge is similar to the plastic hinge length of a fixed-based bridge column, since the first 
plastic hinge of the pile forms against a supporting member. In this case, the equivalent plastic hinge 
length 1pL  of the pile is assumed to be the same as that of a fixed-based column except that the height of 
the column is replaced by one-half of the distance to the second hinge. This approach is based on the 
assumption that the bending moment in the upper region of fixed-head piles is similar to the reversed 
moment distribution in a laterally loaded column with full fixity at both ends. More specifically, the 
equivalent plastic hinge length for the first hinge of the fixed-head pile is taken from that proposed by 
Priestley et al. [9]: 

 blyeblyemp df.df.L.L 044002200401 ≥+=  (40) 

where fye is the expected yield strength of the reinforcing steel (in MPa units) and dbl is the diameter of the 
longitudinal reinforcement of the pile. The equivalent plastic hinge length of the first plastic hinge, 
however, should not be taken as greater than the pile diameter. For the second plastic hinge, the spread of 
curvature will be more significant than that of the first plastic hinge. In this paper, the equivalent plastic 
hinge length for the second plastic hinge is taken from the plastic hinge length for extended pile-shafts 
with a zero above-ground height, as proposed by Chai [10]. In this case, a plastic hinge length of Lp2 = D, 
or a normalized plastic hinge length of 2pλ = 1.0, is appropriate for the second plastic hinge. 

 
ILLUSTRATIVE EXAMPLE 

 
To illustrate the use of the analytical model, consider the following reinforced concrete fixed-head pile 
embedded in two different soils, which are classified according to NEHRP [3] as: (1) class E site with 
cohesive soils, and (2) class C site with cohesionless soils. The pile has a diameter of D = 0.61 m and an 
embedded length of 22 m, as shown in Figure 5. The following parameters are assumed for the pile: (i) the 
longitudinal reinforcement is provided by 12 # 25 bars, resulting in a longitudinal steel ratio of 0.020; (ii) 
the transverse reinforcement is provided by #13 spiral at a pitch of 75 mm, resulting in a confining steel 
ratio of 0.015; (iii) a concrete cover of 75 mm is used for the transverse spiral of the pile; (iv) the expected 
concrete compressive strength, as suggested by ATC-32 [6], is == cce 'f.'f 31 44.8 MPa; and (v) the 
longitudinal and transverse steel are provided by grade A706 steel with a expected yield strength 

MPa475=yef . The pile is subjected to an axial compression of 2000 kN or gc Af. ′20 . 
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Figure 5. Details of a fixed-head pile 

 
The moment-curvature response of the pile section may be idealized by an elasto-plastic response. In this 
case, the effective flexural rigidity of the pile is EIe = 25 mkN100291 −×. , and the equivalent elasto-
plastic yield curvature is φy = 0.0079 rad/m. The ultimate bending moment of the pile, based on the elasto-
plastic idealization, is uM = 809.9 kN-m. As a means for ensuring a good seismic performance of a 
structure, studies have suggested that damage can be controlled by limiting the strain values in the critical 
regions. For example, Kowalsky [11] suggested a damage-control strain of 0.018 for the extreme 
compressive fiber of the confined concrete core, or 0.060 for the extreme tension fiber of longitudinal 
steel. Following this suggestion for damage-control of fixed-head piles, the limiting curvature of the pile 
in this example is rad/m1260.u =φ , which will be taken as the ultimate curvature of the section. Thus for 
the level of confining steel provided for the pile, the curvature ductility capacity is ( φµ )cap = 16.0. To 
demonstrate the applicability of the model, the curvature ductility demand will be estimated for a range of 
imposed displacement ductility factor up to 4. 
 
Example 1: Soft Clay in Site Class E 
The lateral response of the fixed-head pile in this example will be assessed for a cohesive soil, classified 
as profile type SE or soft clay per NEHRP [3]. The effective unit weight of the soft clay is taken as 

517.' =γ  kN/m3 and the undrained shear strength is taken as su = 35 kPa. From Eq. (6), the modulus of 
horizontal subgrade reaction is kh = 2345 kN/m2. It should be noted that the soil stiffness estimated by Eq. 
(6) is intended for analyses at the working load level. For assessment of curvature ductility demand, 
however, the soil stiffness should correspond to the first yield limit state of the pile. Thus the soil stiffness 
that is appropriate for curvature ductility assessment should strictly be reduced since softening of the soil 
would have occurred upon first yielding of the pile. Currently no recommendation exists for the 
appropriate level of modification, and as such, the lateral stiffness of the soil predicted by Eq. (6) will be 
used in this example without reduction to illustrate the procedure. For 2kN/m2345=hk  and 

25 mkN100291 −×= .EI e , the characteristic length of the pile is m5724 .k/EIR hec =≡ . The critical 
depth of the pile, beyond which the ultimate lateral resistance of soil remains constant, is xr = 1.75 m, or 
corresponding to a critical depth coefficient of 872.r =ψ , as estimated from Eq. (13). 
 
The initial lateral stiffness of the soil-pile system, as calculated from Eq. (1), is kN/m85361 =K , whereas 
the reduced lateral stiffness, due to the first plastic hinge formation, is kN/m42682 =K , as calculated 
from Eq. (4). The ratio of the two lateral stiffness coefficients is K1 / K2 = 2.0. From Eqs. (2) and (3), the 
lateral displacement and force at the first yield limit state are ∆y1 = 0.052 m and Vy = 445 kN, respectively. 



Using a normalized flexural strength of ( )3Ds/MM uu
*
u =  = 102.0 and a critical depth coefficient of ψr 

= 2.87, the normalized depth to the second plastic hinge may be obtained by solving Eq. (14), which gives 
276.L*

m = , or an actual depth of m833.Lm = . The corresponding normalized lateral strength may be 
estimated by Eq. (15), which gives 156.V *

u = , or an actual lateral strength of kN730=uV . From Eqs. 
(21) and (22), the elasto-plastic yield displacement is ∆y = 0.086 m and the lateral displacement at the 
formation of the second plastic hinge is ∆y2 = 0.119 m.  The curvature ductility demand depends on the 
ratio between Vy and Vu, which is represented by the coefficient of  610.V/V uy ==α . Using an elasto-
plastic yield displacement of m0860.y =∆ , an elasto-plastic yield curvature of rad/m00790.y =φ  and 
the depth to the second plastic hinge of m833.Lm = , the coefficient is β  = ∆y /(φy Lm

2) = 0.74. For 
m572.Rc =  and m833.Lm = , the coefficient η , which is defined as mc L/R2=η  for cohesive soils, is 

equal to 0.95. For this example, the equivalent plastic hinge length of the first plastic hinge of the pile is 
taken as m5201 .Lp =  from Eq. (40), which corresponds to a normalized length of 8601 .p =λ , while the 
plastic hinge length for the second plastic hinge is taken as m6102 .DLp == , which corresponds to a 
normalized length of 12 =λ p . The curvature ductility demand µφi in the first plastic hinge at the lateral 
displacement ∆y2 is 465i .=µφ , as calculated from Eq. (32). The substitution of 610.=α , 740.=β , 

950.=η , 8601 .p =λ  and 276.L*
m =  into Eq. (39) gives the kinematic relation for small lateral 

displacements where only one plastic hinge forms. The same set of values plus 2.021 =K/K , 12 =λ p  
and 465i .=µφ  can be substituted into Eqs. (27) and (35) for the case of large lateral displacement where 
both plastic hinges form.  
 
The resulting kinematic relations for the first and second plastic hinges are plotted in Figure 6(a). It can be 
seen that the curvature ductility factor increases linearly with the displacement ductility factor for both 
plastic hinges. The slope of the straight line for the first plastic hinge is greater than that for the second 
plastic hinge due to the shorter length of the first plastic hinge. In the small displacement range where 
only one plastic hinge forms, i.e. 391.<µ∆ , the slope of the line is also slightly different from the slope 
where two plastic hinges form. For a curvature ductility capacity of 16.0 as estimated for the pile section, 
the result in Figure 6(a) indicates that the fixed-head pile can tolerate a displacement ductility factor of 
3.33. Note that for a displacement ductility factor of µ∆ = 1, the curvature ductility demand in the first 
plastic hinge is µφ1 = 3.23. The reason for the curvature ductility factor greater than unity is due to the 
definition of the elasto-plastic yield displacement y∆ , which is larger than the lateral displacement to 
cause first yield of the pile 1y∆ .  
 

    
                                           (a)                                                                                   (b) 

Figure 6. Kinematic relation for a fixed-head pile embedded in the (a) SE cohesive soil (b) SC  
cohesionless soil 



 
Example 2: Dense Sand in Site Class C 
The same fixed-head pile is analyzed for a cohesionless soil classified as profile type SC per NEHRP 
(2001). The sand is assumed to be dry with an effective unit weight of 520.' =γ  kN/m3 and an internal 
friction angle of °=φ 42 . For the selected friction angle, the passive soil pressure coefficient is 

( ) ( ) 04511 .sin/sinK p =φ−φ+= . The rate of increase of modulus of horizontal subgrade reaction, which 
is extrapolated from the above-water curve of Figure 2, is nh = 27000 kN/m3. Although the soil stiffness 
should similarly be modified for assessment of curvature ductility demand, as discussed previously for 
cohesive soils, the soil stiffness estimated from Figure 2 will also be used without modification to 
illustrate the procedure. Using the same flexural rigidity of EIe = 5100291 ×.  kN-m2 and a soil stiffness of 
nh = 27000 kN/m3, the characteristic length of the soil-pile system is m3115 .n/EIR hen =≡ .  
 
The lateral stiffness of the soil-pile system, as estimated from Eqs. (7) and (10), is K1 = 49801 kN/m and 
K2 = 18906 kN/m, giving a stiffness ratio of K1 / K2 = 2.6. The lateral displacement and force required to 
develop the first plastic hinge are ∆y1 = 0.013 m and kN3669.Vy = , as calculated from Eqs. (8) and (9), 
respectively. Using the normalized flexural strength of 5656)( 4 .D'K/MM pu

*
u =γ= , the normalized 

depth to the second plastic hinge is 844.L*
m =  from Eq. (18), which corresponds to an actual depth of 

m952.Lm = . The normalized lateral strength of the soil-pile system is 0935.V *
u =  from Eq. (19), giving 

an actual lateral strength of kN6823.Vu = . The elasto-plastic yield displacement may be calculated from 
Eq. (21), which is m0170.y =∆ . The lateral displacement at the second yield limit state is ∆y2 = 0.022 m, 
as calculated from Eq. (22). Using kN3669.Vy =  and kN6823.Vu = , the coefficient uy V/V=α  is equal 
to 0.81. For m0170.y =∆ , m952.Lm = , and rad/m00790.y =φ , the coefficient is 

240)( 2 .L/ myy =φ∆=β . Using m311.Rn =  and Lm m952.= , the coefficient η for cohesionless soils is 
66051 .L/R. mn ==η . The normalized plastic hinge lengths are the same as before for the cohesive soil, 

i.e. 8601 .p =λ  and 12 =λ p . The curvature ductility iφµ  in the first plastic hinge at the lateral 
displacement 2y∆  is 012i .=µφ , as estimated from Eq. (32). Substituting 810.=α , 240.=β , 660.=η , 

8601 .p =λ , and 844.L*
m =  into Eq. (39) gives the kinematic relation for the case of small lateral 

displacement where only one plastic hinge forms. The same set of values plus 2.621 =K/K , 12 =λ p  and 
012i .=µφ  can be substituted into Eqs. (27) and (35) for the case where both plastic hinges form. The 

resulting kinematic relations are plotted in Figure 6(b) for comparison with the case of soft clay. 
 
The curvature ductility demand for the pile in dense sand follows the same trend as the soft clay with 
linearly increasing curvature ductility factor for increased displacement ductility factor. For a given 
displacement ductility factor, however, the curvature ductility demand in dense sand is significantly 
smaller than the curvature ductility demand in soft clay. For example, at a displacement ductility factor of 

4=µ∆ , the curvature ductility demand is 6851 .=µφ  for the case of dense sand compared to the curvature 
ductility demand of 65191 .=µφ  for soft clay. Although not plotted in Figure 6(b), the estimated curvature 
ductility capacity of 16.0 for the pile section would correspond to a displacement ductility factor of 

511.=µ∆ , which is significantly larger than the displacement ductility normally adopted for design. 
 

PRELIMINARY RESULTS FOR DAMAGE ASSESSMENT 
 

Under lateral seismic loads, damage to piles is often related to the curvature ductility demand in the 
critical regions of the pile. Consequently, the curvature ductility demand is used as an indicator of pile 
damage in this paper. The curvature ductility demand however depends not only on the displacement 
ductility imposed on the pile, but also on the properties of the soil. Since a wide range of soil conditions 



exist in practice, seismic performance of a fixed-head pile may vary significantly depending on the site 
condition. In this section, the performance of a fixed-head is assessed for a wide range of soils, from 
profile type SE to profile type SC per NEHRP [3] or ATC-40 [4]. The assessment is made using the same 
pile details as presented in the previous section. The variation in soil profile types is achieved by varying 
the undrained shear strength from su = 20 to 250 kN/m2 for cohesive soils and by varying the relative 
density from Dr =15% to 90% for cohesionless soils. The curvature ductility demand in the fixed-head pile 
is calculated for displacement ductility factors of µ∆ = 2.5 and µ∆ = 3.  
 
The resulting curvature ductility demand for the first and second plastic hinges of the fixed-head pile is 
plotted in Figure 7. Figure 7(a) shows the curvature ductility demand versus the undrained shear strength 
of cohesive soils. Note that the soil profile type is also labeled on the horizontal axis in the figure. It can 
be seen that the curvature ductility demand is relatively constant for a given displacement ductility factor. 
For an imposed displacement ductility factor of µ∆ = 3, for example, the curvature ductility demand in the 
first plastic hinge increases slightly from µφ1 = 13.4 at an undrained shear strength of su = 20 kN/m2 to µφ1 
= 14.9 at an undrained shear strength of su = 100 kN/m2, and then decreases slightly to µφ1 = 14.6 when 
the undrained shear strength increases to su = 250 kN/m2. For soft cohesive soils (soil type SE), the 
variation of curvature ductility demand in the second plastic hinge is less compared to that of the first 
plastic hinge. For the pile analyzed in this example, the curvature ductility capacity of ( φµ )cap = 16.0 is 
adequate for a large range of cohesive soils. 

  

    
                                            (a)                                                                                (b) 

Figure 7. Curvature ductility demand of a fixed-head pile embedded in profile type SC to SE (a) 
cohesive soils (b) cohesionless soils 

 
The curvature ductility demand for the same pile embedded in cohesionless soils is shown in Figure 

7(b). The curvature ductility demand decreases with increased soil stiffness, as signified by the increase in 
relative density, especially for the first plastic hinge. The decrease in curvature ductility demand is more 
significant for piles embedded in SE cohesionless soils. Similar to the trend observed for cohesive soils, 
the decrease in curvature ductility demand in the second plastic hinge is smaller than that of the first 
plastic hinge. The curvature ductility capacity of ( φµ )cap = 16.0 is adequate for a large range of 
cohesionless soils for an imposed displacement ductility factor of µ∆ = 3. It is important to note that the 
results presented in Figure 7 are preliminary since they have been calculated without a modification in the 
soil stiffness for both cohesive and cohesionless soils. An adjustment of the soil stiffness however may 



lead to an increased curvature ductility demand in the pile. Further research into the appropriate level of 
soil stiffness modification for curvature ductility demand estimation is warranted. 

 
CONCLUSIONS 

 
Seismic design of deep foundations should include an assessment of the curvature ductility demand in the 
potential plastic hinge region of the pile. In this paper, an analytical model is developed for assessing the 
curvature ductility demand of fixed-head piles embedded in cohesive and cohesionless soils. The model is 
useful for performance-based design since local damage can be controlled by limiting the curvature 
ductility demand in the plastic hinges of the pile. For the proposed model, the lateral response is 
characterized by a linear elastic response, followed by first yielding of the pile at the pile head, and then 
by a full plastic mechanism after the formation of the second plastic hinge. The elastic response of the pile 
and its first yield limit state are determined using classical solutions of a flexural element supported by an 
elastic Winkler foundation. The ultimate lateral strength, as defined by a fully plastic mechanism, is 
determined using the flexural strength of the pile and the ultimate pressure distribution of the soil. A 
kinematic relation between the global displacement ductility factor and local curvature ductility demand is 
developed by assuming a concentrated plastic rotation in both plastic hinges. The kinematic relation 
indicates that the curvature ductility demand depends on the ratio of the first yield lateral force to ultimate 
lateral force, the initial stiffness to post first yield stiffness ratio, the depth to the second plastic hinge, and 
the plastic hinge length of the pile. The versatility of the proposed model is illustrated using a fixed-head 
reinforced concrete pile embedded in two different soil types, as classified in current US building codes. 
Although results presented in this paper are preliminary, the model is nonetheless shown to be capable of 
predicting the local ductility demand for a wide range of pile and soil properties. 
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