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SUMMARY 
 
For more precise prediction of strong ground motions from future earthquakes, we examined empirical 
relations of the effective stress on the subfaults in the asperities to the fault type and the depth. The 
existing variable-slip rupture models for crustal earthquakes showed that the effective stress on the 
subfaults in the asperities varied several hundred percent as a function of the fault type (strike-slip fault 
with a surface rupture, oblique-slip fault with a buried rupture, and reverse fault with a buried rupture) 
and 10 to 30 percent as a function of the depth of the subfaults. 
 

INTRODUCTION 
 
 The strong motion pulses of about 1-second period caused huge damage to the structures in the 
1995 Hyogo-Ken Nambu, Japan, earthquake of MJMA 7.3 (e.g. Tanaka et al.[1]; Editorial Committee for 
the Report on the Hanshin-Awaji Earthquake Disaster[2]). 
 A lot of efforts have been made to capture the feature of the complexity of the fault rupture and to 
characterize the source model for predicting the strong ground motions precisely in a wide period range 
including 0.5 to 2 seconds. Several characterized source models have been proposed for strong motion 
prediction: a fractal model (e.g. Kikuchi and Fukao[3]), a slip wavenumber spectrum model (e.g. 
Somerville et al.[4]), and an asperity model (e.g. Somerville et al.[4]). The asperity model is composed of 
the asperity, on which larger slip is distributed, and the background, on which smaller slip is distributed, 
and this model is often used in Japan as a source model for future earthquakes, because it is easy to apply 
the information of the trench investigation of the active faults or of the locked zone on the plate boundary 
to the asperity model. 
 Among the needed parameters given to the asperity and the background for strong motion 
prediction, the area and the final slip are estimated based on the statistics of the crustal earthquakes by 
Somerville et al.[5] and of the subduction earthquakes by Somerville et al.[6]. 
 On the other hand, the effective stress is estimated based on different ideas. Irikura and Miyake[7] 
applied the equation of the stress drop of a circular fault (Eshelby[8]) to the effective stress on the 
asperity, noticing that the equation should be checked by a dynamic source model. Dan et al. [9] estimated 
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the effective stress on the asperity based on the level of the acceleration source spectrum in a short-period 
range, called short-period level (Dan and Sato [10]). 
Recently, Irikura et al. [11] and Dan et al. [12] applied the equation of the stress drop of the asperity 
model (Das and Kostrov[13]) to the effective stress on the asperity. Dan and Sato [14] showed that these 
three different ideas led the same value of about 100 bars on the asperity based on the statistics of the 
crustal earthquakes by Somerville et al. [5]. 
 McGarr[15] showed that the peak velocities and the peak accelerations changed systematically as 
a function of the fault type and the depth. Here, the fault type was the reverse fault, the normal fault, and 
the strike-slip fault, and all of them were the crustal earthquakes. Kawase et al. [16] carried out a 
parametric study on the asperity model based on the source model for the 1995 Hyogo-Ken Nambu 
earthquake derived by Matsushima and Kawase [17], compared their results with the attenuation of the 
peak ground velocity proposed by Midorikawa [18], and finally suggested that the effective stress on the 
asperity should be dependent on the depth. 
 Hence, we first inferred the effective stress on the asperities from the variable-slip rupture models 
for the crustal earthquakes analyzed by Somerville et al. [5], and then examined the empirical relation of 
the effective stress on the asperities to the fault type and the depth to obtain the basic information of the 
effective stress on the asperities for the characterized asperity model for the strong motion prediction. 
 

DATABASE USED IN THIS STUDY 
 
 Our database was the effective stress on the asperities inferred from the variable-slip rupture 
models for the crustal earthquakes by the following equation (Dan et al.[9]): 

σmpq = ρmpqβmpqVmpq/2.      (1) 
Here, m is a subscript for each fault, pq is a subscript for each subfault, ρ is the density of the medium at 
the subfault, β is the S-wave velocity of the medium at the subfault, V is the velocity averaged over the 
time from 10 % cumulative slip to 70 % cumulative slip. The variable-slip rupture models were taken 
from those Somerville et al.[5] analyzed, but the model for the 1995 Hyogo-Ken Nambu earthquake was 
replaced by the recent model obtained by Sekiguchi et al.[19]. 
 We chose the asperities, which had 1.5 times or larger slip than the averaged slip over the entire 
fault, based on the procedure of the asperity definition by Somerville et al.[5]. Here, we excluded the 
subfaults with no slip in averaging the slip over the entire fault. 
 Table 1 lists the parameters of the variable-slip rupture models for the crustal earthquakes used in 
this study. In the table, SS shows a strike-slip fault, RV a reverse fault, OB an oblique fault, NM a normal 
fault, SR a surface rupture fault, and BR a buried rupture fault. 
 

EFFECTIVE STRESS INFERRED FROM VARIABLE-SLIP RUPTURE MODEL 
 
 The open circles in Fig. 1 (a) shows the effective stress on the subfaults in the asperity and the 
depth for the 1992 Landers, California, earthquake. This figure indicates that the effective stress increases 
as the depth increases. Figs. 1 (b) to (l) also show the effective stress on the subfaults in the asperities and 
the depth for other crustal earthquakes, indicating again that the effective stress increases as the depth 
increases.  
 McGarr [15] compiled strong motion records from crustal earthquakes and showed that the peak 
ground velocities, normalized in the distance and the seismic moment, were described by a linear function 
of the focal depth and that the peak ground velocities from reverse faults were systematically larger than 
those from normal faults. Moreover, the shear strength of the crust is described by a linear function of the 
depth (e.g. Scholz[20]). From these two points, we assumed the effective stress σasp on the asperities as 



 
 

 σasp = kH+k0.      (2) 
Here, H is the depth, k is a constant for the fault type, and k0 is a constant for each fault. 
 We determined k and k0 in eq. (2) for four strike-slip faults, for five reverse faults, for two oblique 
faults, and for one normal-slip fault to minimize the following error: 
 ε =ΣmwmΣpq [σaspmpq- (kHmpq+k0m)]2.    (3) 
Here, wm is a weighting factor for the area of the subfault of each fault. 
The results are shown in the two right columns in Table 1. 
 The lines in Fig. 1 are the empirical relation of the effective stress on the subfaults in the 
asperities to the depth by eq. (2), twice the relation, and a half of the relation, covering the effective stress 
shown by the open circles. 
 Fig. 2 shows the effective stress on the subfaults in the asperities normalized at the depth of 0 km 
and the seismic moment. The normalized effective stress of the reverse faults is larger than that of other 
fault types, and the normalized effective stress of the surface rupture faults is smaller than that of the 
buried rupture faults. 
 The slip direction (rake) on the fault and the difference between the surface rupture fault and the 
buried rupture fault depend on the stress and strength status at the source. Hence, it is necessary to study 
the relation between the stress and strength status and the effective stress. 
 We averaged the normalized effective stress for the strike-slip faults with a surface rupture, for the 
oblique-slip faults with a buried rupture, and for the reverse faults with a buried rupture, and obtained the 
following relations: 
  σasp[bar] =0.5×�[km]+ 44   for strike-slip fault with a surface rupture,  (4) 

σasp[bar] =3.1×H[km]+ 49   for oblique-slip fault with a buried rupture, (5) 
  σasp[bar] =3.5×H[km]+131  for reverse fault with a buried rupture.  (6) 
 In order to compare these relations of eq. (4) to eq. (6), we normalized the relations by the 
effective stress for the strike-slip faults with a surface rupture at the depth of 10 km: 
  1.0±0.10   for strike-slip fault with a surface rupture (depth 10±10 km), (7) 
  1.6±0.63   for oblique-slip fault with a buried rupture (depth 10±10 km), (8) 
  3.4±0.71   for reverse fault with a buried rupture (depth 10±10 km). (9) 
 Eq. (7) to eq. (9) indicate that the effective stress on the subfaults in the asperities varies several 
hundred percent as a function of the fault type (strike-slip fault with a surface rupture, reverse fault with a 
buried rupture, and oblique-slip fault with a buried rupture) and 10 to 30 percent as a function of the 
depth of the subfaults. 
 



 
 

Fig. 1  Empirical relation of effective stress on the subfaults in the asperities to the fault type and 
the depth for crustal earthquakes.  



 
Fig. 2  The effective stress on the subfaults in the asperities normalized at the depth of 0 km and the 

seismic moment. 
 

CONCLUSIONS 
 
 For more precise prediction of strong ground motions from future earthquakes, we examined 
empirical relations of the effective stress on the subfaults in the asperities to the fault type and the depth. 
The existing variable-slip rupture models for crustal earthquakes showed that the effective stress on the 
subfaults in the asperities varied several hundred percent as a function of the fault type (strike-slip fault 
with a surface rupture, oblique-slip fault with a buried rupture, and reverse fault with a buried rupture) 
and 10 to 30 percent as a function of the depth of the subfaults. 
 Because the slip direction (rake) on the fault and the difference between the surface rupture fault 
and the buried rupture fault depend on the stress and strength status at the source, it is necessary to study 
the relation between the stress and strength status and the effective stress. 
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