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SUMMARY 
 
This paper presents a theoretical model for reinforced concrete members under cyclic torsion.  It is based 
on the softened truss model (STM) but has been extended to include the tension stiffened portion of the 
torsional response.  The STM was derived to predict a member’s response under a monotonically 
increasing torsion. It uses a softened stress-strain relationship for concrete in compression derived from 
shear panel tests and neglects the tensile strength of concrete.  The model proposed in this paper uses a 
bilinear relationship for concrete in tension and additional compatibility equations for the tension stiffened 
region.  It provides an improved prediction of both the pre-cracking and post-cracking torsional behavior.  
The model is compared to the envelope curve of a reinforced concrete (RC) girder tested under pure 
torsion using full-reversal cyclic loading. It is one girder tested as part of an experimental investigation 
aimed at studying the behavior of RC girders loaded in combined shear and torsion under seismic-like 
cyclic loading.  The hollow box girder tested was 14.7 meter long and loaded under several full-reversal 
torsional cycles. The model is also calibrated to three other torsional members found in literature. 
  

INTRODUCTION 
 
There are many civil engineering structures where torsion could be a significant loading condition.  The 
most noticeable are bridges, spandrel beams, and the RC core around the elevator shaft of buildings.  In 
bridges, the torsion could be due to the geometric complexities of horizontally curved bridges and/or to 
large eccentric vertical loads. In an earthquake, if the center of mass in a slender building is eccentric, it 
will cause cyclic torsional loads on its RC core.  In practice, torsion is typically combined with shear and 
bending action.  However the behavior of pure torsion under cyclic loading is investigated in this paper. 
 
The behavior of an RC member is modeled differently before and after cracking.  Before first cracking, the 
concrete behaves as an elastic, isotropic material and the reinforcement can be ignored [1].   In members 
with a square cross section, the shear stress developed in the beam flows around the member and is a 
maximum at the midpoint of the outside surface.  When the principle tensile stress reaches concrete’s 
tensile strength, cracking occurs.  In RC girders under to pure torsion, the stiffness of the uncracked 
member can be predicted by St. Venant’s theory.  After cracking, the member behaves as a composite 
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member and the properties of the concrete, the reinforcing, and their interaction must be considered to 
accurately predict the member response to torsion. 
 
Different models have been developed to predict the torsional behavior of RC members under 
monotonically increasing loads.  Shuzhi et al [2] developed a model based on the skew bending theory.  A 
tri-linear model based on the truss model theory described below, which considers the cracking, yielding, 
and ultimate torque points was developed by Mo [3].  Two models based on the truss analogy are the 
compression field theory model (CFT) [4] and the softened truss model (STM) [5].  Both are rational 
models capable of accurately predicting the peak torsional capacity of a RC girder.  Also, both models can 
predict the torque-twist response before and after peak reasonably well.  The models differ in their 
treatment of spalling of the concrete cover and the assumed stress-strain relationship for concrete.  Both of 
these models are based on the smeared crack assumption and neither incorporates tension-stiffening 
effects.  

RESEARCH SIGNIFICANCE 
 
The purpose of this paper is to provide a theoretical model capable of predicting the pre-cracking and 
post-cracking torsional response of a member under monotonic and cyclic loading.  The STM for torsion 
was modified to account for the tension stiffening effect of concrete, and the model can now provide an 
improved prediction of the torsional response envelope for moderately to highly reinforced members. 
 
The model is used to predict the behavior of three members in literature as well as the primary envelope 
curve of a 14.7 m long hollow box girder tested in this project.  The girder is part of an experimental 
investigation aimed at studying the behavior of RC girders loaded in combined shear and torsion under 
seismic-like cyclic loading.  The hollow box girder tested was full-size and loaded under pure torsion.  
Considerable information about the seismic performance of hollow concrete bridge girders will be 
obtained from the tests that are part of this research 

 
SOFTENED TRUSS MODEL FOR TORSION 

 
The STM for torsion is a truss model based on satisfying equilibrium, compatibility, and the uniaxial 
stress-strain relationships of concrete and reinforcing steel.  The truss model was first proposed by Ritter 
[6] and Morsch [7] for shear, and then extended to treat torsion by Rausch [8].  The truss is formed when 
the principal tensile stress causes diagonal cracks in the concrete perpendicular to the principal 
compressive stress.  In the truss model for torsion, the internal compressive stresses are assumed to spiral 
around the beam at an angle α  with the longitudinal axis [1] as shown in Figure 1.  The resulting member 
is a space truss with tension acting in the longitudinal and hoop reinforcement which is counteracted the 
compression in the concrete strut formed by diagonal cracking.  The basic equilibrium and compatibility 
equations for a girder in pure torsion are shown below [5]. 
 
Equilibrium:   
 2 2cos sinl d r l lfσ σ α σ α ρ= + +  (1) 

 2 2sin cost d r t tfσ σ α σ α ρ= + +  (2) 

 ( )sin coslt d rτ σ σ α α= −  (3) 

Compatibility:   
 2 2cos sinl d rε ε α ε α= +  (4) 

 2 2sin cost d rε ε α ε α= +  (5) 

 ( )2 sin coslt d rγ ε ε α α= −  (6) 

             



Figure 1. Truss model. (adapted from [4]) 
 
Additional equilibrium equations use Bredl’s thin tube analogy to calculate the internal torque.  Bredl’s 
theory assumes that shear flow is constant thru the wall thickness along all four edges.  By defining the 
area enclosed by the centerline of the shear flow as oA , the internal torque can be expressed by the 
following simple expression [1]. 
 
 2 o d ltT A t τ=  (7) 
 
In the STM, the RC is modeled as a continuous medium after cracking, and uses average values for stress 
and strain.  The stress-strain relationships for concrete in compression consider the softening effect due to 
diagonal tension cracks.  Concrete softening was first reported by Robinson and Demorieux [9], and later 
quantified by Vecchio and Collins [10] using tests on RC panels subjected to pure shear.  The STM 
assumes that non-softened concrete has a parabolic stress strain distribution.  The amount of softening is 
quantified by the softening coefficient ζ .  The softened stress-strain relationship for concrete in 
compression assumes proportional stress and strain softening.  Figure 2 shows the relationship for cracked 
and uncracked concrete.  Tests on shear panels showed that ζ  is highly dependent on the average 
principle tensile strain, rε , but is also a function of the average principle compressive strain, dε , the angle 
of the diagonal cracks, α , and the load path [11].  Based on shear panel testing, the University of Houston 
proposed the following expression for ζ  as a function only of rε  [12]. 
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Warping in torsional members causes bending stresses in the compressive strut in addition to axial 
compression.  The girder wall is assumed to deform into a hyperbolic paraboloid shape [1].  Equation (9) 
gives the relationship between the wall curvature, ψ , the angle of the diagonal cracks, α , and the girder 
twist per length, θ . 
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Figure 2. Truss model. (adapted from [11]) 

 
Tests have shown that the curvature causes a linear strain distribution, with the maximum compressive 
strain occurring at the surface, and tension occurring at a certain depth into the wall [1].  The depth over 
which the stress remains compressive is defined as the shear flow zone [5].  The STM assumes the 
resultant compressive stress acts at a depth of the half shear flow zone thickness.  Equation (10) shows the 
relationship between the depth of the shear flow zone, dt , the maximum compressive strain, dsε , and the 
wall curvature, ψ .  Equation (11) can be derived from the compatibility condition of warping deformation 
and relates the member’s twist to shear strain. 
 

REINFORCED CONCRETE IN TENSION 
 
Testing of shear panels has shown that the average tensile strength of concrete is not zero after cracking 
[10, 12].  The tensile strength at a discrete crack location can be assumed to be zero.  However the average 
stress along a length of concrete includes the contribution of concrete that is still uncracked and will 
provide resistance to tension stress [11].  Before cracking, the tensile response is nearly linear, but after 
cracking the concrete strength drops quickly with increasing strain [13].   
 
The stress-strain relationship of a steel reinforcing bar stressed in tension is different than the relationship 
for a bar embedded in concrete.  The embedded bar is stiffened by the concrete between the cracks.  So 
the average stress of an embedded bar will be different than the stresses at a discrete point in a bare bar 
[14].  The contribution of concrete to the reinforcing stiffness is known as tension stiffening [15]. 
 
Relationships for the tensile strength of concrete and tension stiffening are interrelated, and were 
developed for membrane elements under shear.  For simplicity, the STM for torsion neglects the 
contribution of concrete in tension, and uses an elastic perfectly plastic model for plain reinforcing bars 
[11].   By neglecting the tensile stresses in concrete, the STM assumes that the member is initially fully 
cracked.  In reality the first cracks form at a few discrete locations, and the concrete between the cracks 
increases the girder’s torsional stiffness. 
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STRESS-STRAIN RELATIONSHIPS OF CONCRETE IN TENSION 
 
Equation (12) is a simple expression for the stress-strain relationship of concrete in tension before 
cracking. It is based on the assumption of linear elastic behavior before cracking.  After cracking, 
expressions for the descending branch were developed at University of Toronto and the University of 
Houston and are given by Equations (13) and (14) respectively.  Vebo and Ghali [16] used a simple linear 
expression for the descending branch as given in Equation (15). 
 
 σ ε=r c rE  (12) 
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MODIFICATION OF STM TO INCLUDE TENSION STIFFENING 

 
In torsional members with low to moderate levels of reinforcement, the pre-peak behavior is dominated by 
the tension stiffening of concrete. Tension stiffening is also important for modeling the envelope curve of 
a member under cyclic torsional loading.  Including the effect of tension stiffening in the STM should 
improve the modeling of the pre-peak torsional response.   
 
Adding tension stiffening to the STM involves changing two aspects of the model.  First an expression for 
the principal tension stress, σ r , must be developed.  Second, compatibility Equation (10) needs to be 
modified because Bredl’s theory assumes the shear flows uniformly in a thin tube near the outer edge of 
the member.  Although this is a good assumption in a fully cracked member, in an uncracked member St. 
Venant’s theory is assumed to be valid.  Several modifications to the STM are needed to account for the 
transition between these two different behaviors in a member stiffened by concrete.  
 
Concrete Stress-Strain Relationship in Tension 
The STM for membrane elements accounts for tension stiffening by including the contribution of concrete 
in tension before and after cracking and by using the smeared stress-strain curve of reinforcing bars 
embedded in concrete.  The expressions for reinforcing bars embedded in concrete are complex, but are 
necessary when using Equation (14) for the tensile strength of concrete.  Using an elastic perfectly plastic 
relationship of a bare bar for the reinforcing steel with equation (14) for concrete will overestimate the 
capacity of a membrane element. 
 
In order to use the simple relationship for a bare bar an alternate expression for concrete is needed.  
Equation (16) gives the simple bilinear model used in this analysis, and Figure 3 compares Equations (13), 
(14) and (15).  The variable β  is the fraction of concrete modulus, cE , used as the descending branch 
stiffness.  A value of 0.016 is used for β  in Equation (16b) in this paper. 
 
                               For σ ε ε ε= ≤r c r r crE  (16a) 
 ( )       For σ β ε ε ε ε= − − >r cr c r cr r crf E  (16b) 
 



 
Figure 3. Concrete Models. 

 
Stress and Strain in Concrete Strut 
The transition between an uncracked torsional member to a fully cracked one requires modifying the STM 
compatibility Equation (17) relating the surface compressive strain to the thickness of the shear flow zone.  
Figure 4 shows the relationship given by Equation (10) from the STM and the modified relationship given 
by Equation (17).  The length a  is added to dt  provide a transition between the St. Venant’s theory and 
the thin tube theory assumed in the STM. Collins suggested using equation (19b) to calculate dt  for an 
uncracked member [17].  Equation (19b) is also used by the American Concrete Institute in ACI318-02 to 
derive the equation for the cracking strength of members under pure torsion.  When a  is equal to zero, 
Equation (17) is identical to Equation (10).   
 
 ε ψ=ds R  (17) 
 Where:   = +dR t a  (18) 
                                   For 0= =dt R a  (19a) 
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Adding the distance a  to dt  requires a new expression for 1k , the ratio of the average stress to the peak 
stress.  By similar triangles, the strain ε  at a distance x  from the neutral axis are related in Equation (20).  
From the STM, the resultant of the softened compression stress block has a magnitude of C , as shown in 
Equation (21).  The softened stress-strain relationship for concrete in compression is given by Equation 
(22), where the strain at the peak stress ε p  is equal to 0ζε . 
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Figure 4. Comparison to STM. 
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Method of Solution 
A detailed explanation of the solution method to solve the system of equations that are part of the STM is 
given by Hsu [11].  The modifications to the STM described above only have a minor effect on the 
solution method.  Equation (25) gives  R  in terms of the smeared strains, oA  and op .  Equation (26), and 
(27) give ε l  and ε t  in terms of lf  and tf .  They also include the tensile stress in concrete σ r , and R  
instead of dt .  
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When the longitudinal reinforcing steel is not yielding, calculating the strain in the longitudinal direction 
requires solving Equation (26) as a second degree polynomials for ε l .  In the STM, one of the solutions 
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will typically be negative so selecting the correct solution is simple.  However with the addition of tension 
stiffening to the STM, both solutions can be positive, and selecting the correct one requires more 
consideration.  The correct solution should satisfy Equation (1) for equilibrium.  Equations (28), (29), and 
(30) can be derived from compatibility Equations (4) and (5) and the trigonometric identity 

2 2sin cos 1α α+ = .   
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Substituting these three equations into Equation (1) results in Equation (31) which is calculated for 1ε l  
and 2ε l , the two possible solutions.  The ε li  which results is in the smallest value of Equation (31) is then 
used.  Equilibrium Equation (2) is used to derive Equation (32), a similar expression for calculating the 
strain in the transverse direction. 
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EXPERIMENTAL PROGRAM 
 
This experimental investigation will include three girders loaded under combined torsion and shear in 
addition to the pure torsion girder described in this paper.  A review of the test setups described in 
literature previously used to test specimens under monotonic combined shear and torsion were not 
conducive to full-reversal cyclic tests. The test setup for this investigation was designed to create a region 
of constant shear and constant torsion in the test regions.  To create a constant shear load the girder was 
made symmetric with one test region on each side of the centerline, and a point load will be applied mid-
span.  Two frames are used at each end provide reactions for the upward and downward vertical loads into 
the strong-floor. This way an inflection point is created in the moment diagram near the middle of each 
test region. 
 
The girder specimen for pure torsion was 14.6m long, with a 760mm by 760mm square cross-section as 
shown in Figure 5.  Two test regions in the specimen were hollow with 150mm thick walls.  The 
longitudinal reinforcement consisted of 16 #13 bars evenly distributed around the cross section.  Closed 
hoop reinforcement was spaced every 130mm in the test regions. 
 
 



 
Figure 5. Test specimen cross-section. 

 
The torsional load was applied at the middle of the girder, and reacted at each end by two sets of frames as 
shown in Figure 6.  The reaction frames were capable of resisting torsion and vertical loads, but had 
rollers to allow the specimen free longitudinal movement.  Another two reaction frames at the middle of 
the beam prevented longitudinal and transverse movement, but permitted vertical and rotational 
movement.  Two displacement-controlled hydraulic actuators applied two equal but opposite forces to 
create the torsion acting on the girder.   One end of the actuators was connected to a frame that “clam-
shelled” around the girder, while the other end reacted to the lab’s strong floor through a frame.   
The torsional load was applied in ten groups of three full-reversal cycles at each twist increment.  A cycle 
consisted of twisting the girder to a specified rotation angle, then reversing the direction of twist and 
stopping at the same specified rotation angle in the opposite direction, and finally returning to the initial 
position at the end of the cycle.  The rotation angle of subsequent twist increments was increased.  Figure 
7 shows the twist applied at each cycle. 
 
A computer controlled the actuator displacements during loading using an internal linear variable 
differential transformer (LVDT) inside each actuator.  Elastic losses in the steel loading and reaction 
frames and inelastic losses in bearing pads did not allow the actuator’s LVDT to directly measure the 
girder’s response to the applied cyclic loads.  In order to measure the girder’s response, the twist was 
recording at four locations along each test region.  The twist was calculated from the displacement 
measurements of two LVDT’s on opposite sides of the cross section. 
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Figure 6. Test setup. 

 

 
Figure 7. Applied twist. 

 
 
 
 
 
 
 
 

-30

-20

-10

0

10

20

30

1 3 5 7 9 11
Cycles

T
w

is
t (

x 
0.

00
1 

ra
d/

in
) 

   
 .

First yielding

Reaction frame 

Actuator 

Load frame 
Reaction frame 

Test specimen 

Actuator 



TEST RESULTS 
 
The girder’s response to cyclic torsional loads was determined from this experiment.  Figure 8 shows the 
applied torque versus twist as calculated from the relative rotations of the two innermost rotation 
measurements in one test specimen.  Point “A” indicates the formation of the first diagonal cracks.  The 
initiation of yielding in the longitudinal bars occurred at point “B”, and point “C” indicates where all the 
measured hoop and longitudinal bars were yielding.  Significant spalling occurred after point “D.”  The 
pinched loops typically associated with shear behavior are observed and become significant in the last few 
cycles.   
 
Three full-reversal cycles of displacement-controlled rotation were applied at each twist increment.  The 
primary envelope curve made of the peak torque and the associated twist of the first cycle of each twist 
increment is shown in Figure 9.  The same figure shows the envelopes for the second and third cycle of 
each twist increment, respectively.  The location of points A, B, C, and D are also indicated in Figure 9. 
The initial cycle created the first cracks in the specimen.  As expected, the girder’s rotational stiffness was 
considerably less after this point, as shown by the reduction in slope of the envelope curves.  The girder’s 
rotational stiffness was slightly reduced again at the onset of yielding.  The peak torque values in the 
second and third cycle envelopes are less than the first cycle values, but are nearly equal to each other 
until point D.  After point D, the spalling concrete cover caused a considerable reduction in the torsional 
stiffness of each subsequent cycle. 
 

 
Figure 8. Cyclic torsional response. 
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Figure 9. Envelope curves. 

 
ANALYTICAL MODEL RESULTS 

 
The modified STM equations presented in this paper are used to predict the envelope torsional response 
for the girder tested.  Figure 10 shows a comparison of the measured response, the response predicted by 
the STM, and the tension stiffened response predicted by the modified STM presented in this paper.  The 
measured response shown in Figure 10 is the positive torque portion of the first cycle envelope shown in 
Figure 9.  Figure 11 shows a similar comparison for three torsional girders found literature [4] [18] [19].   
 
Although the STM is able to accurately predict the girder’s torsional capacity, the modified equations 
under-predict the tension stiffened response as shown in Figure 10.  The low percentage of reinforcement 
in the girder caused response to be dominated by tension stiffening.  Figure 11a shows another member 
where tension stiffened region dominates the torsional response.  However for girders with a moderate to 
high percentage of reinforcement, the tension stiffened response was modeled by the proposed model very 
well as shown in Figures 11b and 11c.  

 
Figure 10. Experimental and Predicted Torsional Behavior of Tested Girder. 
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Figure 11. Experimental and Predicted Torsional Behavior of Members found in Literature. 

 
 

(a)  Specimen G6, Hsu (1968) [18] 

(b)  Specimen T2, Lampert and Thurlimann (1968)  [19] 

(c)  Specimen PT5,  Collins and Mitchell (1972)  [4] 
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CONCLUSIONS 
 
The model presented in this paper provides an improved prediction of the tension stiffened region of the 
torsional response envelope for members with moderate to high levels of reinforcement.  At the end of the 
tension stiffened region, the model reduces to the equations presented in the STM. 
 
The girder tested experienced spalling after both the longitudinal and hoop reinforcing yielded.  Before 
spalling, the peak torque of second and third cycles at each load increment were nearly equal.  Spalling 
considerably reduced the torsional stiffness of each subsequent cycle and caused the peak torque in the 
third cycle to be significantly less than the second cycle. 
 

NOTATION 
 

cA  =  area enclosed by the outside perimeter of concrete 

oA  =  area enclosed by the centerline of the shear flow 

cp  =  outside perimeter of the cross-section 

op  =  perimeter of the centerline of shear flow 
C  =  resultant of the concrete compressive force 

cE  =  modulus of elasticity of concrete, taken as 47000 'cf  in psi or 3900 'cf  in MPa 

'cf  =  cylinder concrete compressive strength, in psi or MPa 

crf  =  stress at concrete cracking, taken as 3.75 'cf  in psi or in 0.311 'cf  MPa 

lf , tf  =  stress in the longitudinal and hoop steel, respectively 

lyf , tyf  =  yield stress in the longitudinal and hoop steel, respectively 

1k  =  ratio of the average stress to the peak stress 
s  =  stirrup spacing 
T  =  torque 

dt  =  depth of the shear flow zone 
α  =  angle of inclination of the diagonal compression struts 
β  =  fraction of the initial concrete stiffness in the descending branch 

ltγ  =  shear strain in the l-t coordinate system 
εa  =  concrete strain at a distance dt  from the surface 
εcr  =  strain a concrete cracking, taken as 0.00008 mm/mm 

dε , rε  =  average principal compression and tension strain, respectively 
εds  =  concrete strain at the surface 

lε , tε  =  strain in the longitudinal and hoop steel, respectively 
ε li , ε ti  =  one of the two possible solutions for lε  or tε  respectively 
ε p  =  concrete strain at the peak concrete stress 
ζ  =  softening coefficient 
θ  =  angle of girder twist per length 

lρ , tρ  =  volume percentage of longitudinal and hoop steel, respectively 

dσ , rσ  =  average principal compression and tension stress, respectively 

lσ ,σ t , ltτ  =  average normal and shear stresses in the l-t coordinate system 
ψ  =  wall curvature of the diagonal concrete struts 
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