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SUMMARY

To simplify the analysis of soil-structure interaction (SSI) systems, different fixed-base models
have been recently developed by the author to efficiently represent the SSI system and shown to
have good accuracy. However, the modified mass and damping matrices of these models do not
hold the properties of symmetry and orthogonality, which are usually valid or assumed for
ordinary structural systems. In the present paper, this problem is further explored to establish a
lumped-parameter model possessing classical normal modes. An iteration algorithm is suggested
to incorporate the Gram-Schmidt orthogonalization process and the formulation in the modal space
for the determination of orthogonal mode shapes, natural frequencies, and modal damping ratios. It
is demonstrated with a numerical example that this new fixed-base model has excellent accuracy.
Consequently, the complicated SSI systems can be directly analyzed using conventional computer
codes for structural dynamics with the fixed-base model developed in this study.

INTRODUCTION

Even though various methods have been proposed by different researchers to simplify the analysis of soil-
structure interaction (SSI) systems, the complicated formulation and intensive computation required to obtain the
analytical solution for this problem still limits its popular application to engineering practice. Since most of the
analysis complexity results from the frequency dependence of the dynamic soil stiffness, many attempts have
been made to simplify the SSI analysis by representing the soil with frequency-independent models. Recently,
several lumped-parameter models for the soil were developed by minimizing the total square errors between the
dynamic stiffness of these models and that for the actual soil [De Barros and Luco 1990, Jean et al. 1990, Wolf
1991]. Other than using frequency-independent models to replace the soil, an alternative way to simplify the
procedure in the SSI analysis is to represent the whole structure-foundation-soil system with a lumped-parameter
model as that of a fixed-base structure. Using this type of fixed-base model, it is not necessary to introduce any
additional degrees of freedom. A methodology using system identification technique has been recently
developed by the author to determine an equivalent fixed-base model for the whole SSI system [Wu 1997]. The
damping matrix of this fixed-base model was modified from the structural damping matrix to account for the
altered resonant peak responses and its mass matrix was also modified from the structural mass matrix to
resemble the decrease in the system natural frequencies. In a related study, an effort was further made to
establish a uniquely solved fixed-base model in order to avoid the intensive computation due to applying system
identification techniques [Wu 1998].

While almost perfect accuracy has been demonstrated for the above fixed-base models, the modified mass and
damping matrices of these models do not hold the properties of symmetry and orthogonality, which are usually
valid or assumed for ordinary structural systems and can considerably simplify the dynamic analysis.
Consequently, these fixed-base models may not be conveniently solved by directly applying conventional
computer codes for structural dynamic analysis. In the present paper, this problem is further explored to develop.
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a lumped-parameter model possessing classical normal modes. The resonant frequencies and their corresponding
peak responses are firstly obtained using the method suggested in the previous work [Wu 1998] to calibrate the
lumped-parameter model. With these resonant responses and a set of initially assumed orthogonal modes, an
iteration algorithm incorporating the Gram-Schmidt orthogonalization process and the formulation in the modal
space is designed to determine the orthogonal mode shapes, natural frequencies, and modal damping ratios to
synthesize a fixed-base model with classical normal modes. An illustrative five-story shear building resting on
soft soil is used for demonstrating the effectiveness of this new lumped-parameter model.

REVIEW OF PREVIOUSLY DEVELOPED FIXED-BASE MODELS

Actual SSI System vs. Fixed-base Model

It has been shown that the SSI effects can be conveniently quantified by applying an SSI transfer matrix in the
frequency domain to modify the effective load from the free-field ground motion [Gupta and Trifunac 1991, Wu
and Smith 1995]. Therefore, the governing equations for the SSI system with multi-degree-of-freedom (MDOF)
structural model can be expressed in the frequency domain as
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where )(ωgX  = Fourier transform of ground acceleration, X(ω) = Fourier transform of structural displacement

vector, M = mass matrix of structure, C = damping matrix of structure, K = stiffness matrix of structure, S(ω) =
SSI transfer matrix, ΓΓΓΓ = M1, and 1 = column vector in which each element is unity. If the structural

displacement vector X(ω) is normalized to the ground acceleration )(ωgX , eq. (1) can be written as
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where Y(ω) = )(/)( ωω gXX  = normalized structural displacement vector.

The basic idea of fixed-base model is to account for the SSI effects by modifying the original structural
parameters such that the dynamic structural responses of the SSI system can be well represented. It was recently
discussed by the author [Wu 1997] that the effectiveness of the fixed-base model depends on the choice of the
parameters to modify and the algorithm to determine them. It was also shown that the best choice for the fixed-
base model is to modify the structural mass and damping but keep the stiffness unchanged. The structural
damping is modified to account for the altered resonant peak responses due to the wave radiation in the soil. On
the other hand, the structural mass is modified to resemble the decrease in the system natural frequencies due to
soil flexibility. Based on the above studies, the fixed-base model can be formulated as
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where M̂  and Ĉ  are the modified mass and damping matrices for the equivalent model. Since the matrices to

be determined are M̂  and Ĉ , eq. (3) can be reformulated further as
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For an N-DOF system, the 22N  entries in M̂  and Ĉ  can be determined from the formulation of eq. (4) by
applying certain algorithms to make the responses of the fixed-base model resemble those of the actual SSI
system as close as possible.

Fixed-base Model Using System Identification and Uniquely-Solved Fixed-base Model

For each fixed frequency, the formulation in eq. (4) can provide 2N equations to determine the modified mass
and damping matrices by comparing its corresponding N entries in the real and imaginary parts, respectively. As

a result, if L exciting frequencies are chosen, NL ×2  equations will be available to solve for the 22N  entries in

M̂  and Ĉ . An algorithm using system identification techniques was recently proposed by the author [Wu 1997]
where a great number (L>>N) of actual SSI responses covering an extensive frequency range were used to

identify M̂  and Ĉ . The least squares method was adopted to minimize the total error between the responses for
the actual SSI system and for the fixed-base model. In addition, to improve the accuracy of the equivalent model,
different weightings applied to the response equations at different frequencies were suggested such that the



contribution at resonant frequencies to the total error can be emphasized. Even though excellent accuracy has
been demonstrated for the above model, its computation cost resulting from the calculation of numerous SSI
responses may be very expensive.

The success for the weighted fixed-base model to achieve better accuracy is based on the fact that the frequency
response near the resonant frequencies of a system shows peak values and contributes most crucially to the
composition of its corresponding time response. Further exploration of this idea would naturally lead to a
meaningful limiting case where the weightings introduced on the resonant frequency responses are infinitely
large compared to those applied to the other frequency responses. This case is equivalent to simply selecting the

responses at the N resonant frequencies for the determination of M̂  and Ĉ . Since NL =  in this case, the
modified system matrices can be uniquely solved and the responses for the fixed-base model must be identical to
those for the actual SSI system at these N resonant frequencies. Consequently, good accuracy can be expected
for this fixed-base model and the computation cost is significantly reduced because only N frequency responses
are needed. However, the N resonant frequencies for the SSI system are not known beforehand. For the above
fixed-base model to be feasible, an effective algorithm to determine the resonant frequencies of the complicated
SSI system is necessary. It is well known that each modal response reaches the peak value at its corresponding
resonant frequency. Therefore, if the SSI analysis is performed in the modal space [Wu and Smith 1995], the
resonant frequencies can be directly obtained by examining each modal frequency response and then locating the
frequency where its maximum amplitude occurs. Many codes are available to solve this optimization problem.

 FIXED-BASE MODEL WITH CLASSICAL NORMAL MODES

To establish a fixed-base model whose mass, damping, and stiffness matrices can all be diagonalized through the
transformation with a set of orthogonal modes, the most convenient way would be to directly determine the
orthogonal mode shapes, natural frequencies, and modal damping ratios. Therefore, the crucial parts for
developing of this model are how the dynamic analysis is formulated in the modal space and how the orthogonal
bases can be extracted from a given set of vectors. In this section, these two constituents are firstly described,
followed by developing an iteration algorithm to integrate them for determining the new fixed-base model.

Formulation for Fixed-base Model in Modal Space

Assuming that the fixed-base model formulated in eq. (3) possesses classical normal modes and ΦΦΦΦ̂  = matrix
consisting of orthogonal mode shapes of the fixed-base model, a coordinate transformation can be performed by
letting
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where )(ωY  = normalized modal structural displacement vector. Using eq. (5), eq. (3) can be reformulated into
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using the following orthogonality conditions:
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where jω̂  = j-th mode natural frequency of fixed-base model, jξ̂  = j-th mode percentage of critical damping of

fixed-base model, I = NN ×  identity matrix, and ]diag[⋅  denotes a diagonal matrix. In eq. (6), ΓΓΓΓΦΦΦΦΓΓΓΓ Τˆ= . Since

all the property matrices are diagonalized in the modal space, each modal displacement )(ωjY  can be

independently solved as
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In addition, the amplitude of each modal displacement )(ωjY  can be shown through differentiation to reach its

corresponding peak value
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Based on the above analysis, it is obvious that the normalized modal structural displacement vector at any
frequency can be efficiently obtained from

)(ˆ)( Τ ωω KYY ΦΦΦΦ=  (10)

if the normalized structural displacement vector Y(ω) at that frequency is known and the orthogonal modes have
been accurately estimated. Moreover, if the responses at the resonant frequencies are given, eq. (10) can be
firstly utilized to evaluate the resonant modal responses. Eq. (9) can then be applied to determine the natural
frequencies and modal damping ratios under the constraint that the modal displacements will reach their peak
amplitudes at these resonant frequencies.

Extraction of Orthonormal Basis through Gram-Schmidt Process

Since all the mode vectors of the fixed-base model are required to be orthogonal to each other with respect to all
the property matrices, an orthogonalization process is necessary to preserve the orthogonality of mode vectors.
Therefore, the Gram-Schmidt orthogonalization process, which has been established in applied mathematics
(e.g., Wylie and Barrett 1995), is briefly reviewed herein for its application in this study. Assuming that

rvvv  , , , 21  are r linearly independent vectors, there must exist an orthogonal basis { }ruuu  , , , 21  for

these vectors. According to the Gram-Schmidt orthogonalization process, this set of basis can be generalized to
be orthonormal with respect to any coefficient matrix B and obtained through the following procedures:
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where kw ’s are the transition vectors used to calculate the orthonormal basis.

Iteration Algorithm

Let [ ] NN ×)(ωY  denote the NN ×  complex matrix consisting of the N resonant frequency responses. With a

given orthogonal matrix (with respect to K) ΦΦΦΦ̂ , its corresponding matrix [ ] NN ×)(ωY  in the modal space can be

obtained using eq. (10). Adopting the diagonals in [ ] NN ×)(ωY  (i.e., the dominant modal response at each

resonant frequency) and applying eq. (9), the natural frequencies and modal damping ratios can then be
determined. However, employing these modal parameters in eq. (8) to reconstruct [ ] NN ×)(ωY , the previous

values may not be recovered unless the initially assumed orthogonal matrix ΦΦΦΦ̂  is the true mode matrix for the

fixed-base model. This difficulty results from the fact that the orthogonal mode matrix ΦΦΦΦ̂  and the other modal
parameters cannot be decided simultaneously. In other words, the natural frequencies and modal damping ratios

are determined following the selection of ΦΦΦΦ̂ , or vice versa. Accordingly, an iteration algorithm is necessary for

the convergence of ΦΦΦΦ̂ , jω̂ , and jξ̂  to satisfy eqs. (5) to (8).

Eq. (5) can be reformulated as
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where }{⋅RRRR  and }{⋅IIII  denote the real and imaginary parts of a complex-valued quantity, respectively. In this

study, the regressive solution of eq. (12), which minimizes the total square errors of the equation, is suggested to
determine a new set of mode vectors. Since orthogonality may not be preserved during the regression process,
the Gram-Schmidt process is consequently applied to obtain a set of orthogonal modes with respect to K.
Incorporating the above procedures, an efficient iteration algorithm can be summarized as follows:

   (1) Determine the normalized frequency responses [ ] NN ×)(ωY  for the actual SSI system at the N resonant

frequencies using the method previously proposed by the author [Wu 1998];



   (2) Select an initial assumption for the orthogonal mode shapes ΦΦΦΦ̂  of the fixed-base model (the orthogonal
mode shapes ΦΦΦΦ  of the superstructure is usually a reasonable guess);

   (3) Use eq. (10) to compute the normalized frequency responses [ ] NN ×)(ωY  in the modal space;

   (4) Adopt the diagonals in [ ] NN ×)(ωY  and apply eq. (9) to determine the natural frequencies and modal

damping ratios;
   (5) Employ the modal parameters obtained from the previous step into eq. (8) to reconstruct a new set of

[ ] NN ×)(ωY ;

   (6) Create a set of raw mode shapes from the regressive solution of eq. (12);
   (7) Apply the Gram-Schmidt orthogonalization process with eq. (11) to produce a new set of orthogonal mode

shapes with respect to K;
   (8) Check if this new set of orthogonal mode shapes is convergent to the previous set of mode shapes under a

prescribed tolerance? If yes ⇒  stop the iteration; Otherwise ⇒  go to step (3).

With the convergent orthogonal mode shapes, natural frequencies, and modal damping ratios obtained from the
above iteration algorithm, a new fixed-base model with classical normal modes is completely established.

 NUMERICAL EXAMPLE

A five-story shear building resting on a homogeneous elastic soil through a rigid square foundation is considered
to evaluate the accuracy of the new lumped-parameter model. All the parameters for this system are taken the
same as those adopted in a recent study by the author [Wu 1997]. The natural frequencies for the superstructure
are listed in Table 1. In addition, a uniform modal damping is assumed to be 2% of the critical damping for each
structural mode. A high column stiffness 180,000kN/m and low shear velocity 150m/sec of soil are intentionally
selected for the demonstration of significant SSI effects. Two half-side lengths of foundation, 5m and 3m are
chosen to illustrate different types of SSI effects.

The normalized modal frequency responses )(ωY  for the actual SSI system with b = 3m and its corresponding

fixed-base model are plotted in Fig. 1 where the response amplitude is normalized with respect to the square of
the corresponding natural frequency of superstructure. As expected, each modal response of the actual SSI
system reaches its peak value at the corresponding resonant frequency and can be well represented by the fixed-
base model in the neighborhoods of these resonant frequencies. In this study, the optimization toolbox of
MATLAB is utilized to obtain these resonant frequencies and the results for the two SSI systems are also listed
in Table 1. With the 5 resonant frequencies for the actual SSI system determined, the SSI responses at these
frequencies are computed and the natural frequencies and modal damping ratios for the fixed-base model can be
obtained using the suggested iteration algorithm. The results for both the cases of b = 3m and b = 5m are listed in
Table 2.

To evaluate the accuracy of the new proposed model, the responses calculated from the actual SSI system and
the new fixed-base model with classical normal modes are compared in the following different perspectives. The
normalized frequency responses of the top floor are firstly displayed in Fig. 2 for the systems with b = 3m and b
= 5m. The results show that the new fixed-base model can accurately represent the actual SSI system. This
approximation is excellent in the low frequency range. In the high frequency range where the contribution to the
total structural response is usually insignificant, the accuracy has deteriorated but the approximate responses are
still representative of the actual system. To further investigate the effectiveness of the new model, the earthquake
responses for the actual SSI system and the fixed-base model are also computed. The 1940 El Centro earthquake
and the 1989 Loma Prieta earthquake are chosen as the free-field ground motions. The time histories for the base
shear vb are displayed in Fig. 3 for El Centro earthquake and in Fig. 4 for Loma Prieta earthquake. The almost
perfect accuracy of the new model is demonstrated for both SSI systems. Furthermore, to have a thorough
evaluation on this new model, the response spectra that present the peak responses for the structures with
different fundamental frequencies are displayed in Fig. 5 for the two chosen earthquakes. In preparing these
spectra, the structure with a half side-length of 3m is considered and its column stiffness is varied to produce
different fundamental natural frequencies. Again, the results show that the new model accurately represents the
actual SSI system in all the different cases.



 CONCLUSIONS

A new fixed-base model possessing classical normal modes for a general MDOF soil-structure interaction
system is developed in this paper applying an iteration algorithm incorporating the Gram-Schmidt
orthogonalization process and the formulation in the modal space. The convergent orthogonal mode shapes,
natural frequencies, and modal damping ratios can be determined to establish this fixed-base model. It is shown
with a numerical example that this new fixed-base model has excellent accuracy. Consequently, the complicated
SSI systems can be directly analyzed using conventional computer dynamic codes with the fixed-base model
developed in this study.
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Table 1.  Natural frequencies of superstructure and SSI systems

Mode 1 2 3 4 5

Superstructure 2.48 7.24 11.42 14.67 16.73

SSI system (b=5m) 2.07 7.02 11.34 14.64 16.72

Natural

frequency

(Hz) SSI system (b=3m) 1.50 6.62 11.15 14.67 16.73

Table 2.  Natural frequencies and damping ratios of fixed-base model

Mode 1 2 3 4 5

Natural frequency b = 5m 2.07 7.03 11.35 14.65 16.72

(Hz) b = 3m 1.50 6.63 11.16 14.67 16.73

Damping ratio b = 5m 2.35 3.41 2.77 2.03 1.48

(%) b = 3m 0.81 4.02 3.04 1.92 1.05
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Figure 1. Comparison of modal responses in the frequency domain

Figure 2. Comparison of roof floor displacement in the frequency domain
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Figure 3. Comparison of base shear to El Centro earthquake

Figure 4. Comparison of base shear to Loma Prieta earthquake

Figure 5. Comparison of base shear spectrum to different earthquakes
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