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STRUCTURAL SYSTEM IDENTIFICATION BASED ON SUBSYSTEM ANALYSES

Seiji YAMADA® And Akira NISHITANI?

SUMMARY

In estimating the motion characteristics of a building, the modal decomposition technique is
frequently employed. However, it doesn't fit to the estimation of a substructure. This paper focuses
on the damping estimation of substructure. By means of the transfer matrix method, a structure is
divided into a number of substructures, which then are to be identified. A standing wave arisen
inside a structure is decomposed into forward and backward moving waves in virtue of the wave
propagation theory. Then, a spatial damping factor is estimated from the forward moving wave.
This damping factor is regarding the spatial information, which the modal analysis cannot deal
with. To demonstrate the validity the proposed method, numerical simulations are conducted with
respect to a four-story building models subjected to sinusoidal and white noise excitations induced
by AMD.

INTRODUCTION

Along with the remarkable development of sensing, measurement and computer technologies, system
identification of structures has recently extended its role in civil engineering field. In addition to the usual case,
system identification is conducted for the case of getting more precise information regarding the motion
characteristics of a controlled building [Nishitani and Yamada, 1999] and for the case of structural health
monitoring systems. In particular, the recent increasing demand for health monitoring technology will expectedly
accelerate more practical development of system identification. Despite that, certain difficulties arise in
conducting system identification practice of alarge structure. They are, for instance, the increase of computation
effort and time due to the handling of alarge structure.

From the above reason, it would be advantageous to divide an entire structure into a number of substructures or
subsystems and then to conduct system identification of each substructure. The idea of substructuresis dealt with
the transfer matrix method [Fukuwa et al, 1991; Pestel and Leckie, 1963; Yamakawa and Ohnishi, 1982] in
conjunction with the employment of wave propagation theory [Doyle, 1997; Flotow, 1986; Fukuwa et al, 1991;
Fukuwa et al, 1992; Mead, 1986; Tanaka and Kikushima 1990; Tokuoka, 1985]. This paper focuses on the
damping of each substructure in a building instead of dealing with a modal damping ratio. The damping of each
substructure is to be estimated in terms of spatial damping factor, which represents the transition of the state
from one substructure to other substructure. The spatial damping factor is regarding the spatial information,
which the modal analysis cannot deal with. Such a damping factor tells us how many degree of damping any
substructure has. This information about the damping of each substructure is used for structural health
monitoring systems. To demonstrate how effective this technique is, multi-story building model is employed,
which is excited by AMD installed on the top floor.
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EVALUATION OF SPATIAL DAMPING FACTORS

2.1 Transfer Matrix

Consider a shear structure model representing a multi-story building shown in Figure 1. Suppose the model
oscillates with frequency w [rad/s]. The state vector Z, for <th story consists of the displacement x, relative to
the base and the shear force Q, . The substructure from the upper point of (i —1)th mass to the upper point of
i th massisdefined as i th story and is utilized as a substructure.

Two sets of states with respect to m are dealt with: one is Z" on the upper point of the mass and the other Z;-
on the lower point of the mass (Figure 2). x” and Q" represent the state components of Z, and the state x,- and

- represent the state components of Z;". The relationship between these four components are given by the
following equation:
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The coefficient matrix of Z;" in the right-hand side of the above equation is called the point matrix.

The stiffness k; and damping ¢, of i th story are shown in Figure 3. Assuming the Kelvin model that consists of
k; and ¢, inthe parallel position, one gets
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The coefficient matrix of Z; in the right-hand side of the above equation is called the filed matrix.

Egs. (1) and (2) yield the following relationship between Z,” and Z ;.
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in which, the coefficient matrix of Z; represents how z" is effected by Z}; and is referred to as the transfer
matrix of i th story from the upper point of m_, to the upper point of m , denoted as U, .

Eq. (3) is the transfer matrix for the case of no external excitation. Since the structure is excited by AMD, only
the top story has an external input force. When excited by the movement of AMD f, applied to m,, Eq. (3) will
be
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If the transfer matrices of the model are known, all the states can be calculated the above formulations with
boundary conditions. If the states with respect to all the stories are obtained by the actual measurement, all the
story transfer matrices can be estimated. These relationships (Egs.(3) and (4)) are utilized to get the relationships
between the waves from story to story.
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2.2 Wave Propagation

Consider the structure subjected to certain sinusoidal excitation due to AMD. The excitation wave propagates
from the top floor to the boundary of each story, and the wave partially transmits and partially reflects. The
transmitting and reflecting waves are called forward and backward moving waves. There exist both forward and
backward moving waves inside the structure in the steady-state sinusoidal oscillation.

The wave vector W, is defined herein as certain kind of state vector consisting of the complex amplitudes w;"

and w of forward and backward moving waves with respect to i th story. In cooperation with the eigenvalues
A and A/ of U,, thetransition of the wave vector is given by

'O [a-aie) o w0

wE oo & PHw,E ®
i i-1

in which

a =Re(InA;) and B =1Im(InA,) (6)

Eq. (5) illustrates how the wave propagates to the vertical direction. This paper considers about a forward
moving wave in the following. In the Eqg. (5), as w;" and w; is complex amplitude, the expression of the wave
asafunction of thetime t isrepresented by multiplying e'“ . The forward moving wave is extracted.
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The relationship between w™ e/ and w7, €' yields the energy loss factor. Then spatial damping factor will
be estimated in the next subsection.

2.3 Spatial Damping Factor s Estimated Based on Energy L oss
In this study, a spatial damping factor between stories is dealt with. Such a spatial damping is estimated by
comparing the energy dissipated by a forward moving wave as it progresses downwards with the amount of

energy dissipated by the damped free vibration of a single-degree-of-freedom oscillatory system.

By means of the equation representing the damped free vibration of the SDOF system induced by an initial
displacement, the energy lossfactor , of the vibration can be written as

Y =1-exp = ®
f BJi-hz

inwhich h,, isthe viscous damping ratio of this system, describing how the free vibration is diminished as time
passes. On the other hand, from the equation for the forward moving wave, Eq. (7), the energy loss factor ¢, of
the forward moving wave is represented by
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Equalizing the two kinds of energy loss factors ¢, and ¢, given by Egs. (8) and (9), the spatial damping factor
h, of the forward moving wave leads to
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with o and 8 givenin Eq. (6).

. (10)
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NUMERICAL EXAMPLES
3.1 Modelsfor Numerical Examples

To demongtrate the validity of the proposed methodology, numerical examples are conducted for four-story
building models. The data of models are tabulated in Table 1. The specific procedure is: (i) to measure the
response displacement x; ; (ii) to calculate Q, ; (iii) to determine U, with x, and Q, from Eq. (3) or (4); (iv) to
obtain o and S from the eigenvalues of U; from Eq. (6); and (v) to evaluate the spatial damping factors
through Eq. (10). Repeating the above procedure at the various frequencies, the spatial damping factors as a
function of the frequency are estimated.

Table 1: Parameter of building modelsfor numerical examples

Model
Story A K1l K2 C1l C2
m[kg] All 2.6 2.6 2.6 2.6 2.6
4 9000 | 8100(-10%) 9000 9000 9000
K[N/mi 3 9000 9000 9000 9000 9000
2 9000 | 8100(-10%) | 8100(-10%) 9000 9000
1 9000 9000 9000 9000 9000
4 13.0 13.0 13.0 13.65(+5%) | 14.3(+10%)
[N/ 3 28.0 28.0 28.0 28.0 28.0
2 43.0 43.0 43.0 45.15(+5%) | 47.3(+10%)
1 58.0 58.0 58.0 58.0 58.0

3.2 Sinusoidal Excitation Input

Sinusoidal excitation is applied to Model A in the first place. Sinusoidal excitation inputs of amplitude 1 [cm]
are given by AMD on the top floor during the frequency range 0 [HZz] to 12 [HZ] with the increment of 0.4 [HZ].
The displacement responses of all the stories are measured as the outputs with the sampling time At egual to
0.001 [s] and 0.0001 [s].

The estimated spatial damping factors and actual values obtained from m, ¢ and k givenin Table 1. are plotted in
Figures 4 and 5.+t is recognized that shorter sampling time is as needed for higher frequency. Although shorter
sampling time would be better, the estimation is not always satisfactorily accurate with 0.0001 [s]. Moreover, the
accuracy of estimation would be worse with small damping. Therefore, short sampling time is heeded to improve
the estimation accuracy. However, short sampling time is not realistic in the application of the sinusoidal
excitation based methodology to an actua structure.

3.3 Random Input

Accounting for the above discussion, white noise input is used instead of sinusoidal excitation. However, the
building response to white noise excitation involves a huge number of frequencies. The direct employment of the
presented method for this case is not possible. In estimating x; for every frequency in Procedure (i), the
input/output data are formulated by the linear regression model and the compliance G(jw) is estimated by the
least squares method.

X(jw)

CUO = o)

11

inwhich, X(jw): displacement vector and F(jw) : excitation force due to AMD (scalar).

If F(jw) isknown, the complex amplitude vector of each story is calculated from G(jw) . Eqg. (11) leads to the
estimation of x, for every frequency. By conducting Procedures (ii), (iii), (iv) and (v), spatial damping factors
are estimated. In conducting the analysis, it is assumed that the acceleration responses of al the stories are
measured as outputs. The sampling timeis set to be 0.01 [g], the number of measured data is 512 with the degree
of the linear regression model equal to 10. The estimated spatial damping factors and their actual values are
shown in Figure 6. Thisfigure indicates that the estimated results agree with the actual values.
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In the following stage, this methodology is applied to structural health monitoring systems. Model A is supposed
to be in a good condition, four different kinds of building models are inspected by the methodology: they are
Models K1, K2, C1 and C2. The data are shown in Table 1. Models K1 and K2 are those models, which have
smaller stiffness than Model A, which, may result from certain damages. On the other hand, Models C1 and C2
are those models with larger damping.

The comparison of estimated spatial damping factors of Model K1, K2, C1 and C2 with those of Model A are
shown in Figures 7 through 10. The spatial damping factors of those stories with certain changes in
characteristics are different from Model A. The methodology successfully indicates how and where the changes
in stiffness and damping occur.

Table2: Natural frequencies and damping ratios of building models

Model
Mode A K1 K2 Cl Cc2
Natural 1 3.25 3.18 3.19 3.25 3.25
frequency 2 9.36 9.19 9.37 9.36 9.36
[HZ] 3 14.4 13.9 14.2 145 14.5
4 16.8 16.4 16.5 16.8 16.7
1 0.0513 0.0519 0.0522 0.0522 0.0530
Damping 2 0.108 0.104 0.108 0.109 0.109
ratio 3 0.159 0.174 0.179 0.163 0.168
4 0.205 0.207 0.194 0.211 0.218

The natural frequencies and damping ratios obtained by use of the modal analysis are shown in Table 2. Each
model has different values of both natural frequencies and damping ratios from Model A. Nevertheless, it is hard
to decide how and where the local characteristics changes have occurred.

CONCLUSIONS

The spatial damping factor of the subsystems of a structure has been discussed. The idea of subsystems is dealt
with the transfer matrix method in conjunction with the employment of wave propagation theory. The presented
methodology is also applied to structural health monitoring issue. It is demonstrated that: 1. The damping of each
story of a structure can be identified by means of presented methodology: 2. When applied to a structural health
monitoring issue, the methodology satisfactorily identifies where in the structure and how the stiffness and
damping changes from their original or desired values.
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