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OPTIMAL STRATEGY FOR BUSINESS RECOVERY AFTER EARTHQUAKES
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SUMMARY

A methodology for choosing the best recovery strategy is presented for a company that owns
multiple income-producing properties damaged in an earthquake.  The basic idea is to choose
recovery actions that maximize the net asset value of the properties owned by the company.  This
methodology helps to address the question of whether each property should be repaired or
demolished.  It allows the optimal expenditure rate and optimal time for repair or demolition to be
determined.  Furthermore, when the total cost of repairs is subject to a budget constraint, the
methodology shows whether each property should be repaired immediately, delayed or never
repaired.

INTRODUCTION

When an earthquake causes damage to multiple properties owned by a company, numerous decisions are
required on how to make best use of the company's resources for recovery.  Most of these decisions are financial
and quantitative in nature, and the choices made are key to the effectiveness of recovery efforts.  Despite the
importance of this process, only a few researchers have studied quantitative tools to assist management in
earthquake recovery [e.g. Cheng and Wang, 1996; Beck et al, 1999].

In this paper, we present a methodology for determining optimal recovery strategies for a company that owns
income-producing buildings.  The basic idea is to choose that recovery action among a set of possibilities that
maximizes the net asset value of the properties owned by the company.  The theory is applicable to many types
of businesses that own properties subject to possible earthquake damage.  However, the focus here is on a
company that owns commercial property that it leases out.

The primary decisions following an earthquake are whether to repair or demolish each building that has been
damaged and the speed at which repairs or demolition should be performed.  For each building, the decision to
repair or demolish depends on the present value of the building after accounting for repair costs when compared
to the cost of demolition and either rebuilding the structure or selling the land. The speed of repairs or demolition
may be chosen to maximize the present value of the property based on the work being completed.

In the following, we assume that the damage to structural and nonstructural components of multiple rental units
owned by a company is known.  A rental unit corresponds to a portion of a building that is under one lease, or is
available for such a lease, before the earthquake.  It may correspond to one or more floors, or a portion of a floor
in a building.  It is assumed that rental units may be repaired in parallel.  The components of a rental unit
(member connections, wall partitions, glazing, and so on), must be repaired before the rental unit can be
occupied and rent received.  It is assumed that all of the components of a unit must be repaired in series.

OPTIMAL EXPENDITURE RATE FOR REPAIRS

Here, we address the question of how rapidly repairs should be performed.  To minimize lost income, the repairs
should be done as rapidly as possible.  On the other hand, this may require putting so many workers on the job
that they get in each other’s way and their efficiency is reduced.  In addition, the present value of the cost of
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repairs is reduced if the repairs are done more slowly because of the discounting of future costs; conceptually,
funds that are put aside at the present time can earn interest before they are spent on repairs at a later time. We
first consider in some detail the case of one rental unit with one damaged component to be repaired.  This case
forms a basic element of the methodology.  We then extend this to the case of multiple rental units.

One Rental Unit with One Damaged Component

Consider a single rental unit that has a rental income rate R(t) and operating expense rate E(t) at time t.  The
value of the rental unit at t=0 can be taken as the present value of its future net income stream

dtetEtRI rt∫
∞ −−=
0

))()(( (1)

where r is the continuous discount rate. If an earthquake occurs at time t=0 and damages the rental unit so that it
is not functional, the company receives no rental income until repairs are completed but it must still pay the
operating expenses.  If the time before repairs are completed is T, then the present value of the lost income and
the cost of repairs for the rental unit are

dtetRTL rtT −∫= )()(
0

    and    dtetxTC
T rt∫ −=
0

)()( (2)

where x(t) is the rate of expenditure at time t to repair the damage.  This is the control variable that will be used
in seeking the optimal rate of repair.  Although in reality x(t) could not be changed continuously, the continuous-
time cost-benefit analysis presented here gives insight into the recovery process.

Let D denote a damage index for the rental unit, that is, a scalar measure of the damage caused by the
earthquake.  For example, the Park-Ang index [Park and Ang, 1985] could be used or D may be defined as the
“standard” cost of repair using a minimum size crew.  (The actual cost of repairs can differ from the standard
cost if multiple crews are used because this can alter the labor efficiency).  Suppose that the rate at which the
damage is repaired is related to the expenditure rate x through a recovery function f(x).  It is evident that

dttxfD
T
∫= 0

))(( (3)

The recovery function depends on the nature of the damage index and the required repairs, as well as the labor
efficiency for the job.  Clearly, f(0)=0.  We further assume that for all x,  f'(x)>0 and f''(x)<0.  These last two
properties model the "law of diminishing returns'', that is, as the expenditure rate increases, the improvement in
the rate of damage repair decreases.

The asset value of the rental unit after damage is repaired at time T is the present value of its original income
stream less the present value of the lost income and repair costs

( )∫ −+−=−−= T rt dtetxtRITCTLITV
0

)()()()()( (4)

The optimal expenditure rate strategy can now be formulated as follows: find the repair time T and expenditure
rate profile x(t) for t∈ [0, T] that maximize the functional in Eq. (4) subject to the time-independent constraint
that all the initial damage must be repaired, as given in Eq. (3).  When the conditions for the recovery function
are satisfied, the asset value V(T) does have a maximum which can be found using the calculus of variations by
introducing a Lagrange multiplier λ and then finding the unconstrained extremum of the modified functional

( ) ( )∫∫ −++−= − TT rt dttxfDdtetxtRITV
00

* ))(()()()( λ (5)

The Euler equation for the optimal expenditure rate x(t) for this variational problem is 0=+− dxdfe rt λ  and so

rtexftxf −′=′ ))0(())((        or, by differentiation,      )()()( xfxfrtx ′′′−= (6)
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Taking into account the assumptions made on the recovery function, we can see that for positive discount rate r,
the optimal expenditure rate increases over time.

To determine the optimal repair time ,T̂  the condition dV*/dT = 0 is imposed, which gives

))ˆ(())ˆ(()ˆ()ˆ( TxfTxfTxTR ′=+  (7)

Let x(t)=X(t; x0) be the solution of Eq. (6) with initial value x(0)=x0≥0.  Substituting this solution in the constraint
Eq. (3), one finds the repair time )( 0xTT = as a function of the initial rate of expenditure x0.  Then, we can

deduce the optimal value 0x̂  from Eq. (7) using the fact that the optimal repair time ). x̂( 0
ˆ TT =  The optimal rate

of expenditure X(t; 0x̂ ) is then completely defined.  The corresponding optimal asset value is

[ ] rxxfxfrRedtetRITV TTrT rt /ˆ)ˆ(')ˆ()()()ˆ(ˆ
000

ˆˆ

0
ˆ −+−−= −−∫  (8)

The above analysis assumes that 0x̂ >0 and so the optimal x(t) is always positive and increasing.  A more

complete analysis can be done in which x(t) is constrained to be non-negative by adding a term ∫
T

dttxt
0

)()(σ to

V*(T) where σ(t) is a Lagrange multiplier satisfying the Kuhn-Tucker conditions: σ(t)>0 if x(t)=0 and σ(t)=0 if
x(t)>0.  The Euler equation for the extremum of the revised V* remains the same if x(t)>0 and so Eq. (6) still
holds in this case.  The Euler equation also shows that the optimal expenditure profile is always continuous.
Therefore, if x(t) is not always positive, then 0)( =tx [ ]0,0 if tt ∈  and )0;()( 0ttXtx −= [ ]000 , if Tttt +∈  where

Т0 is the repair duration, that is, .))0,((0

0∫=
T

dttXfD   Thus, it may be optimal to wait for a time t0 before starting

repairs.  This possibility can be introduced in an analysis similar to the budget-constraint case presented later.
This analysis shows that a necessary and sufficient condition for X(t; 0x̂ ) to be the optimal profile with 0x̂ >0 is

)0;())0;(())0;(()( 0000 TXTXfTXfTR −′>  (9)

This condition is equivalent to the present value of the rental income rate received after repairs,

,)( 0
0

rTeTR − giving a return on the optimal cost of repairs, ),(ˆ
0TC  that exceeds the discount rate r when the

expenditure rate on repairs is X(t;0) for ∈t [0, 0T ].  If Eq. (9) is not satisfied, there are two important cases:

 (a) R(t) for t > T0 is non-increasing: In this case, the optimal recovery strategy is to never start repairs, that is,
x(t)=0 for .0≥t   Conceptually, the rental income rate remains so low that the cost of repairs can never be
compensated.  In reality, local government regulations would most likely not allow this option and so demolition
must be considered.  The optimal asset value when the rental unit is never repaired is

∫∫
∞ −∞ − −=−=
000 )()( dtetEdtetRIV rtrt (10)

 (b) R(t) for t > T0 is non-decreasing: Suppose first that there exists 00 ≥t such that

)0;())0;(())0;(()( 00000 TXTXfTXfTtR −′=+ (11)

then the optimal recovery strategy is to wait for time 0t  (possibly zero) and then use X(t- 0t ;0) as the expenditure

profile.  In this case, repairs are delayed until rents have risen to a level which compensates for the cost of
repairs.  The optimal repair time is 00

ˆ TtT +=  and the optimal asset value is

( ) 0000
)(

0
/)0;())0;(('))0;(()()ˆ(ˆ 0000 VrTXTXfTXfedtetRITV TtrTt rt >−−−= +−+ −∫ (12)

If Eq. (11) is not satisfied for any 00 ≥t , then the optimal recovery strategy is to never start repairs, as in (a).
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If a limit on the expenditure rate is desirable, then an inequality constraint x(t) < K may be imposed.  In this case,

a term ∫ −T
dttxKt

0
))()((ρ  is added to V*(T) in Eq. (5) where ρ(t) is a Lagrange multiplier satisfying the Kuhn-

Tucker conditions: ρ(t)>0 if x(t)=K and ρ(t)=0 if x(t)<K.  The Euler equation for the extremum of the revised V*
remains the same as before if x(t)<K.  If x0=K then x(t)=K for all t because an optimal solution never decreases.
If x(0)=x0<K then Eq. (6) holds while x(t)<K.  If x(t) never reaches K, then the unconstrained optimal profile
applies and the Euler equation for the optimal repair time T̂ is the same as Eq. (7).  If x(t) reaches K, then the
optimal rate of expenditure profile that maximizes the asset value is given by

][ if     )(                            ; ]0[ if     )()()( ,TttKtx,ttxfxfrtx ss ∈=∈′′′−= (13)

where ts is the smallest t such that x(t)=K.  By evaluating the Euler equation for x(t)=K, we get an equation for ts:

)(/)( 0xfKfe srt ′′=− (14)

Also, the Euler equation for the optimal repair time T̂ becomes

)ˆ()())ˆ(( 0
ˆ

xfKfeKTR Tr ′=+ − (15)

where T̂ and 0x̂ are related through the constraint Eq. (3) and the solution for x(t) from Eq. (13) with x(0)= 0x̂ .

Figure 1 shows some possible optimal profiles of the rate of expenditure over time.

As an illustrative example, consider a recovery function of the form f(x) = αxΩ  with the constraint 0≤x(t) ≤K.

Let ts be the smallest time such that x(t) = K in the case where x(t) reaches K.  Then for t< ts, the optimal
expenditure rate is governed by Eq. (6), which implies that

);()( 0
)1(

0 xtXextx rt == −α (16)

Eq. (14) then shows that ts = [(1-α)/r]⋅ln(K/x0).  The optimal initial rate of expenditure 0x̂ and optimal repair

time T̂ follow from Eqs. (3) and (7) or (15)

( )[ ] 0ˆ)1()ˆ(    and                       )1(1eˆ )1/(ˆ
0

1T̂r
0 =−−−−= −− αααα αααα TrexTRrxΩD   if ∉st [0, T̂ ]  (17)

( )[ ] ( ) ( ) ( ) 0ˆˆ)ˆ(   and  ˆ)1(1eˆ 00
ˆ1tr

0 =−++−−= −− αααα ααα xKxeKTRΩK-tTrxΩD Trα
s

s     if ∈st [0, T̂ ]  (18)

Consider a severely damaged rental unit characterized by the following data: undamaged present value,
I = $1,000,000; damage index, D = 1; discount rate, r = 10% per year; recovery function parameters, α = 0.8,
Ω = 2⋅10e-5; rental rate, R(t)=$100,000 per year; maximum expenditure rate, K = $140,000 per year.  The
corresponding optimal recovery results are shown in Table 1.  The second and third columns are the optimal
solutions for no upper limit on x(t) and the upper limit K, respectively.  The next column shows the results for an
arbitrarily chosen constant profile x(t) = k = $100,000/yr and the last column gives the results for the optimal

constant profile ktx ˆ)( = , a special case which may also be addressed with the methodology presented herein.  As

one would expect, the asset value is highest for the unconstrained problem and lowest for the arbitrarily chosen
non-optimal constant expenditure rate.  Note that the difference in asset values between the optimal
unconstrained rate and optimal constant rate cases is relatively small.  This is a potentially useful observation,
since approximating a constant expenditure rate may be more practical than following a specified curve.
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Table 1:  Example of one rental unit with one damaged component

f(x) = Ωxα )(ˆ0 tx≤ Ktx ≤≤ )(ˆ0 ktx =)( ktx ˆ)( =
year)per  ($  ˆ0x 103,944 95,341 100,000 238,122

year)per  ($  )ˆ(ˆ Tx 400,000 140,000 100,000 238,122

(years)  T̂ 2.70 3.93 5.00 2.50

($)  )ˆ(ˆCost TC 508,834 436,886 393,469 526,287

($)  )ˆ(ˆ ValueAsset TV 259,861 238,353 213,061 252,697

Multiple Rental Units with Multiple Damaged Components

Consider the case where a company owns N rental units (R.U.) and Mi damaged components are to be repaired in
unit i for i=1,…,N.  The following notation is used:

Dij  = damage index for R.U. i and component j Ii  =  present value of R.U. i before damage

xij(t) = rate of  expenditure to repair damage Dij at time t fij(xij)  =  recovery function for Dij

Tij  =  time at which the repair of damage Dij is completed Ri(t) = rental income rate for R.U. i

Li  =  present value of lost income from R.U. i during repairs Ei(t) = operating expense rate for R.U. i

Ci   =  present value of the cost to repair rental unit i r  =  discount rate

V  = asset value of the assemblage of all N repaired rental units

As in the single rental unit case,

dtetEtRI rt
iii ∫

∞ −−=
0

))()(( dtetRTL iT rt
iii ∫ −=

0
)()(      ∑ ∫=

−= i ijM
j

T rt
ijii dtetxTC 1 0

)()( (19)

where Ti = maxj Tij is the total repair time for rental unit i. The asset value and repair constraint equations become

( )∑ = −−= N
i iii CLIV 1               dttxfD ijT

ijijij ∫= 0
))(( (20)

For the case with N rental units each having a single damaged component, the formulation and results are exactly
analogous to the case of one unit with one component.  With no constraint on expenditure rate, the optimal
profile for each unit is obtained by solving

)()()( iiiii xfxfrtx ′′′−=    ))ˆ(())ˆ(()ˆ()ˆ( iiiiiiiiii TxfTxfTxTR ′=+     dttxfD iT
iii ∫=

ˆ

0
))(( (21)

where the subscript j=1 in Eq. (19) and (20) has been eliminated.  The condition for the optimal repair time in
Eq. (21) holds if ;0)0(ˆ ≥ix otherwise, repairs should be delayed, as described earlier.

Consider now the case of one rental unit with M components to be repaired in series.  The subscript i=1 in Eq.
(19) and (20) can be eliminated and Eq. (19) becomes

dtetEtRI rt∫
∞ −−=
0

))()((   dtetRL MT rt∫ −=
0

)( ∑ ∫=
−

−
= M

j
T

T
rt

j dtetxC j

j
1

1
)(  (22)

Let τj = Tj -Tj-1  (so ∑ == j
k kjT 1τ ), and T0=0.  The problem is to find the extremum of

∑∑ ∫∫ ==
−− ++−−=

−

M
j jj

M
j

T

T jjj
rt

j
T rt DdttxfetxdtetRIV j

j

M

110
*

1
))](()([)( λλ (23)

where the Lagrange multipliers λj have been introduced in order to impose the constraints that all damage to
each component must be repaired.  Define the new variables
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otherwise                             0)                               0)(

             ],,0[for                 )              )()( 11

==

∈+=+= −−

(τRx

τ)R(T(τRTxx

jj

jjjjjj

τ

ττττ
(24)

Then Eq. (23) may be written

]))(([)]()([ 1 01 0
* 1 ∑ ∫∑ ∫ ==

−− −++−= − M
j jjjj

M
j

r
jj

rT
dxfDdexReIV jjj ττλτττ ττ τ (25)

The corresponding Euler equation with respect to )(τjx is 0))((1 =′+−− − τλτ
jjj

rrT
xfee j which leads to   

)()( jjjjj xfxfrx ′′′−= (26)

The initial state xj(0) is such that the constraint  jjj Ddxfj =∫
τ ττ
0

))(( is satisfied.  Repairs may need to be

delayed if the rental income rate is sufficiently low, as described before.  If not, then optimizing the functional
V* with respect to repair time τj, we have

MjxfxfxR MMMMMMMMMM =′=+ for ))(())(()()( ττττ  (27)

MjxfxfxeCreR jjjjjjjj
M

jk
rT

k
rT

jj
kj <′=+− ∑ +=

− − for ))(())(()()( 1
1 ττττ   (28)

where [ ]∫ −+= k dexRC r
kkk

τ τ τττ
0

)()( .  Comparing with Eq. (7) governing the optimal repair time for a single

component, we see that Eq. (28) corresponds to the solution maximizing the asset value of a fictitious rental unit
with one damage component j and rental income rate at τj of

∑ +=
− −−= M

jk
rT

k
rT

jjj
kj eCreRR 1

1)()(
~ ττ (29)

The fictitious asset values Vj(τj) may be calculated from

jjjjjMMM CVVCIV
~

)()(           and          )( 11 −=−= ++ τττ    for j<M (30)

where [ ]∫ −+= k dexRC r
jjj

τ τ τττ
0

)()(
~~

 for j<M.  The asset value of the actual rental unit is then V = V1.

The optimization to repair one rental unit with M damaged components is therefore equivalent to optimizing the
repair in reverse order of M fictitious rental units, each with one damaged component.

When budget considerations do not limit the repairs that can be made, the general case of N rental units with Mi

damaged components for unit i can be treated using a combination of the methods presented in the foregoing.
Each rental unit can be optimized as described for the case of N units with one component, and the components
of each rental unit can be optimized using the backward induction strategy already developed.  In this case, all
repairs of rental units are carried out simultaneously to the extent that this is possible.

Binding Budget Constraint

Consider now the case of N rental units with Mi components for unit i where there is a binding budget constraint
on the present value of the total repair cost.  By “binding”, we mean that if the repair of each rental unit is
independently optimized, the present value of the total repair cost exceeds the budgeted amount B. The budgeted
funds may come from internal company funds, earthquake insurance, loans and government disaster-assistance
funds. To reduce the repair costs, some waiting time before starting repairs may be necessary for each rental unit.

 Let ti be the waiting time before repairs are started on rental unit i. Then the total asset value of all rental units is

[ ]∑∑ =
−

= −+−=+= N
i

rt
iiiiii

N
i iii

ieTCTtLITtVV 11 )ˆ(ˆ)ˆ()ˆ( (31)
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where we use the notation in equations (19) and (20) and ijji TT ˆmaxˆ = is the optimal total duration of repairs for

rental unit i. The optimal cost of repairs without waiting is

∑ ∫=
−

−
= i ij

ji

M
j

T

T

rt
ijii dtetxTC 1

ˆ

ˆ
1,

)(ˆ)ˆ(ˆ  (32)

where ijij Tx ˆ  and ˆ are the optimal expenditure rate and optimal repair time for damage ijD of component j of

rental unit i.  If repairs are delayed, then the budget constraint may be written ,)ˆ(ˆ
1 BeTC irtN

i ii ≤−
=∑  so

introducing a Lagrange multiplier μ where μ>0 if the budget constraint is active (otherwise μ=0), we get

[ ] BeTCTtLIeTCBVV
N

i

rt
iiiiii

N

i

rt
ii

ii µµµ ++−+−=



 −+= ∑∑ =

−
=

−
11

)ˆ(ˆ)1()ˆ()ˆ(ˆ* (33)

Differentiating V* with respect to the waiting time variables ti leads to

( )[ ] irt
iiiii ertTCdtdV −+−−= µη 1)()ˆ(ˆ* (34)

where )ˆ(ˆ)ˆ()(
ˆ

ii
Tr

iiiii TCeTtRt i−+≡η can be interpreted as the return on the optimal cost of repairs given by

the present value of the rental income rate received at completion of repairs.  Since we want to maximize V*, the
sign of dV*/dti determines the optimal strategy for rental unit i:

(a) If , )1()0( ri µη +≤ then there are two important cases. First, assume that )(tRi  is non-increasing for

iTt ˆ> , then rental unit i should not be repaired (i.e. optimal ti →∞ because 0* ≥idtdV ). On the other

hand, if )(tRi  is non-decreasing, then either there exists 0≥it such that , )1()( rtii µη += which gives

the optimal waiting time, or else ,0 allfor   )1()( ≥+< iii trt µη which implies that the rental unit should

not be repaired.

(b) If  ,) 1()0( ri µη +> then the repairs of rental unit i should be started immediately (i.e. optimal ti =0).

Numerical iteration may be required to determine the Lagrange multiplier μ which satisfies the budget constraint
on the total cost of repairs. In this process, μ is gradually increased from zero (which corresponds to neglecting
the budget constraint) using a small increment at each iteration until the budget constraint is satisfied for all the
rental units which are to be repaired according to the above optimal strategy.

REPAIR OR DEMOLISH?

In general, a building consists of an aggregate of rental units.  Since it is usually not practical to demolish
individual rental units within a building, and even abandonment of selected units may not be an option, it is
necessary to combine all of the building’s rental units together when investigating whether to repair or to
demolish the building.  If the present value of the building, when repaired according to the optimal strategy,
exceeds the present value for optimal demolition, then the repair option should be chosen.  Otherwise,
demolition is appropriate.  The present value for optimal demolition is the maximum value of

d
T rtrT

Ld CdtetEeVV dd −−= ∫ −−
0

)( (35)

where Cd and Td are the present value of the cost and the time to demolish the building and VL is the value of the
land less the balance of any loans on the property after demolition is completed.  The optimal demolition rate can
be investigated in the same way as for repairs, except that the recovery function is replaced by a demolition
function relating the rate of progress on each job to the rate of expenditure on that job.

Another possibility is to demolish and rebuild.  To assess this properly, the present value of the rebuilt structure
and the rebuilding cost must also be evaluated.  This could be carried out using the methodology described for
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repairs, except that the recovery function would now be replaced by a construction function relating the rate of
progress on each job to the rate of expenditure on that job.

CONCLUSIONS

A methodology has been presented for determining the optimal actions for recovering from earthquake damage
to company-owned properties.  The strategy is to choose the actions which will maximize the asset value of the
properties.  It is shown that for repairs on each damaged component, the optimal expenditure rate should increase
with time, although if the net income from each property is sufficiently small, it may be optimal to delay the
repairs.  When the total cost of repairs is subject to a budget constraint, the optimal strategy shows which
properties should be repaired immediately, which should be repaired after a certain time delay and which should
never be repaired. In the latter case, local government regulations would most likely not allow abandonment of
the property and so demolition must be considered.

In current work on the research project, we are developing the optimal strategy methodology for the case of
uncertain damage to each component of each property.  For example, company management may wish to
investigate recovery strategies, before detailed engineering inspections of each property are done, by using only
the earthquake magnitude and location or the ground motion at each site. In this case, a probability distribution
for the damage is calculated based on a detailed fragility analysis that treats each property as an assemblage of
components.  Because of the uncertainties involved, the optimal strategy is now to choose the actions which will
maximize the expected asset value of the properties. This methodology may also be used to calculate the
expected lifetime earthquake losses for each property. Then the possibility of optimal seismic upgrading of each
property can be investigated, either during the recovery process or as a mitigation action prior to an earthquake.
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Figure 1:     Possible Solutions for x(t)


