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ABSTRACT : 

The Perfectly Matched Layer (PML) model is a material boundary condition for wave propagation in unbounded
domains. It consists of an absorbing layer of finite width that surrounds the physical domain of interest so that
all outgoing waves are damped out irrespective of their frequency and direction of propagation. The main
feature of the PML is that, before discretization it does not generate reflections at the interface separating the
PML and the physical medium, however a small reflection is always present after discretization. The
satisfactory performance of the PML has resulted in considerable work towards its implementation in several
wave-like problems including elastic wave propagation. In the present work we propose and implement a 
non-convolutional, split-field PML, referred to as the Multi-Axial Perfectly Matched Layer (M-PML). The 
formulation is obtained by generalizing the ‘classical’ PML to a medium in which damping profiles are 
specified in more than one direction. Under the hypothesis of small damping and using an eigenvalue 
sensitivity analysis based on first derivatives, we propose a method to study the stability of the M-PML and
demonstrate that it is related to the ratios of the damping profiles. A general procedure for constructing stable 
M-PML models for elastic media is then obtained. The effectiveness of the M-PML and its advantages relative 
to the classical PML, are demonstrated by constructing stable terminations for both isotropic as well as
anisotropic 2-D media. As a final step in our analysis, we present a quantitative assessment of the accuracy of
the proposed M-PML. 
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1. INTRODUCTION  
 
The Perfectly Matched Layer (PML) model was introduced by Bérenger (1994) as a material boundary condition for 
electromagnetic wave propagation problems in unbounded domains. The main feature of the PML is that, in the case 
of the continuum, it does not generate reflections at the interface separating the absorbing layer and the physical 
medium, however a small reflection is always present after discretization. In its original version (we refer to this 
version as the ‘classical PML’), the field variables of the PML are split in non-physical components so as to make it 
possible to incorporate in the mathematical formulation the desired absorption. Due to the effectiveness of the PML 
in absorbing the radiation exiting the physical domain, the extra memory storage required in order to accommodate 
the increased number of field variables is usually counterbalanced by the savings that are achieved by reducing the 
size of the physical domain. However, there are still some instances for which the performance of the classical PML 
does not meet expectations. In the case of elastic waves in isotropic media, it has been reported (Festa et al., 2005; 
Komatitsch and Martin, 2007) that instabilities appear in long (in time) simulations. In addition, Bécache et al. (2003) 
documented that exponentially growing solutions could appear in some models for anisotropic elastic media. It was 
initially thought (Kuzuoglu and Mittra, 1996) that the source of the dynamical instability of the classical PML could 
be attributed to the fact the constitutive parameters did not satisfy causality, and an alternative causal 
frequency-dependent PML, known as the Convolutional Perfectly Matched Layer (C-PML), was proposed. Later, 
Teixeira and Chew (1999) showed that the original Cartesian PML parameters do indeed satisfy causality and that 
the abovementioned conclusion (regarding causality) was reached base on a technical error related to the 
Kramers-Kronig equations. Subsequently, it was demonstrated (Bécache et al. 2004) that the C-PML for isotropic 
media does not suffer from instabilities. However, Komatitsch and Martin (2007) observed that the C-PML does not 
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solve all the instability problems for PML models for anisotropic media. Despite all the work done on the subject, a 
comprehensive mathematical analysis of the PML is not yet available and the problem of developing a general 
method to construct stable PML terminations remains open. 
 
2. THE M-PML FORMULATION  
 
The elastodynamics problem is defined by Cauchy’s equation of motion and the generalized Hooke’s law:  
ߩ  డమܝడ௧మ ൌ ׏ · ܂        ,܂ ൌ C ׷ ۳ (2.1)
 
where, ܝሺܠ, ,ܠሺ܂ ,is the position vector ܠ ,ሻ is the displacement fieldݐ ,ܠሻ is the stress tensor, ۳ሺݐ ሻݐ ൌ ሺଵ ଶ⁄ ሻሾܝ׏ ൅ሺܝ׏ሻ்ሿ is the strain tensor, ߩሺܠሻ is the mass density and ׏ൌ ሾడ డ௫⁄      డ డ௬        డ డ௭⁄⁄  ሿ. Suppose that the interface 
between the physical domain and the absorbing medium is a plane normal to the ݔ-axis at ݔ ൌ 0. The half-space 
corresponding to ݔ ൏ 0 is the physical domain and the other half space corresponding to ݔ ൐ 0 is the PML 
medium. As stated by Komatitsch and Tromp (2003), the main idea of the classical PML is to construct a new wave 
equation which admits plane-wave solutions of the form ܝ ൌ ܓexpሾെ݅ሺۯ · ܠ െ ሻݐ߱ െ ௫݇௫ߛ ߱⁄ ሿ, where ߛ௫ሺݔሻ ൐ ݅ ,is the polarization vector ۯ ,0 ൌ √െ1, and ߱ is the circular frequency. The vector ܓ ൌ ሾ݇௫ ݇௬ ݇௭ሿ, known as 
the wavevector, gives the direction of propagation of the wave front and the additional factor expሺെߛ௫݇௫ ߱⁄ ሻ  
modulates the amplitude of the wave resulting in waves that decay exponentially in the direction of increasing ݔ. A 
general procedure to derive classical PML formulations for linear wave propagation problems, known as ‘coordinate 
stretching’ (Chew and Weedon, 1994) is based on the following transformation of the spatial variable:  
෤ݔ  ൌ ݔ െ ݅ ௫ߛ ߱⁄  (2.2)
 
Then, transformation (2.2) is used to derive a new operator ܠ׏෤ൌ ሾడ డ௫෤⁄      డ డ௬        డ డ௭⁄⁄ ሿ  where ߲ ⁄෤ݔ߲ ൌ ሺ1 െ݅ ݀௫ ߱⁄ ሻ ߲ ⁄ݔ߲ . The function ݀௫ ൌ ௫ߛ߲ ⁄ݔ߲  is referred to as the damping profile and is specified to introduce 
attenuation. The new operator ܠ׏෤ then replaces ׏ in system (2.1) to obtain the new wave equation. Note that when ݀௫ ൌ 0 the operator ܠ׏෤ reduces to that of the elastic medium. Bérenger’s method then consists of placing the PML 
medium next to the boundary of the physical domain, and to avoid reflections, the damping profile is selected to be 
zero at the interface and smoothly increase across the PML width. The treatment of the “corner regions” (where two 
or three PMLs overlap) is straightforward since its properties are just the superposition of the intersecting PMLs. 
 
In a classical PML, only one damping profile, ݀௫, is specified to be a function of the space variable ݔ, whereas the 
other two profiles (݀௬ and ݀௭) are set equal to zero. We propose to generalize the properties of the classical PML, 
by selecting all three damping profiles to be functions of the ݔ–coordinate. The additional damping profiles ݀௬ and ݀௭ are set to be proportional to ݀௫ as follows (Meza-Fajardo & Papageorgiou, 2008): 
 ݀௫ ൌ ݀௫ሺ௫ሻሺݔሻ,           ݀௬ ൌ ሺ௬݌ ௫⁄ ሻ݀௫ሺ௫ሻሺݔሻ, ݀௭ ൌ ሺ௭݌ ௫⁄ ሻ݀௫ሺ௫ሻሺݔሻ (2.3)
 
and the constants ݌ሺ௬ ௫⁄ ሻ and ݌ሺ௭ ௫⁄ ሻ are referred to as the ratios of the damping profiles. Given that ݀௫ሺ௫ሻሺݔሻ 
vanishes at ݔ ൌ 0, all damping profiles vanish at ݔ ൌ 0 and consequently, the proposed medium, referred to as the 
Multi-Axial Perfectly Matched Layer (M-PML), retains the non-reflection characteristics of a PML. The 
transformations to construct the M-PML equations using the coordinate stretching approach are the following: 
෤ݔ  ൌ ݔ െ ݅ ݔߛ ߱,⁄ ෤ݕ           ൌ ݕ െ ݅ ݀௬ሺ௫ሻݕ ߱⁄ , ݖ̃ ൌ ݖ െ ݅ ݀௭ሺ௫ሻݖ ߱⁄  (2.4)
 
As in the classical PML, for the corner regions the properties of the overlapping layers are simply superimposed. 
 
3. STABILITY ANALYSIS 
 
In this section we perform a stability analysis of the M-PML for isotropic as well as orthotropic elastic media. In 
particular, we study the stability of the solutions of the Partial Differential Equation which governs the motion of the 
M-PML. The stability analysis is performed for M-PML terminations for a 2-D homogeneous elastic orthotropic 
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medium whose axes of symmetry coincide with the ݔ and ݕ axes. The equations governing the (P-SV) wave 
motion can be expressed as the following velocity-stress system: 

ߩ డడ௧ ቂݒ௫ݒ௬ቃ ൌ ቎ డడ௫ ௫ܶ௫ ൅ డడ௬ ௬ܶ௫డడ௫ ௫ܶ௬ ൅ డడ௬ ௬ܶ௬቏,       డడ௧ ቎ ௫ܶ௫௬ܶ௬௫ܶ௬቏ ൌ ൥ܿଵଵ ܿଵଶ 0 0ܿଵଶ ܿଶଶ 0 00 0 ܿଷଷ ܿଷଷ൩
ێێۏ
ێێێ
డ௩ೣడ௫డ௩೤డ௬డ௩೤డ௫డ௩ೣడ௬ۍ ۑۑے

ۑۑۑ
ې
 

(3.1)

 
After applying transformations (2.4) and splitting the velocity and stress fields, the system of equations for the 
M-PML can be obtained. It is furthermore assumed that the mass density ߩ and damping profiles ݀௫ and ݀௬ have 
constant values (in this case we refer to ݀௫ and ݀௬ as ‘damping coefficients’), so as to make Fourier Analysis in 
space tractable. The transformed set of equations may be written as a 10 ൈ 10 system [a detailed derivation may be 
found in Meza-Fajardo and Papageorgiou (2008)] that takes the following form: 
ݐ܃߲߲  ൌ  ܃ۯ

(3.2)

where:  ܃ ൌ ׭ શሺݔ, ,ݕ ሻାஶିஶݐ ݔ൫݅݇௫݌ݔ݁ ൅ ݅݇௬ݕ൯݀ݕ݀ݔ,    Ψ ൌ ቂ ௫ܶ௫ሺ௫ሻ ௬ܶ௬ሺ௫ሻ ௫ܶ௬ሺ௫ሻ ௫ܶ௫ሺ௬ሻ ௬ܶ௬ሺ௬ሻ  ௫ܶ௬ሺ௬ሻ  ݒ௫ሺ௫ሻ  ݒ௬ሺ௫ሻ ݒ௫ሺ௬ሻ   ,௬ሺ௬ሻቃ்ݒ
 

ۯ ൌ ێێۏ
ۍێ െ݀௫۷ଷ ૙ଷଷ ݅݇௫۱ሺ௫ሻ ݅݇௫۱ሺ௫ሻ૙ଷଷ െ݀௬۷ଷ ݅݇௬۱ሺ௬ሻ ݅݇௬۱ሺ௬ሻ݅݇௫۲ሺ௫ሻ ݅݇௫۲ሺ௫ሻ െ݀௫۷ଶ ૙ଶଶ݅݇௬۲ሺ௬ሻ ݅݇௬۲ሺ௬ሻ ૙ଶଶ െ݀௬۷ଶ ۑۑے

(3.3) ,ېۑ

 ૙௡௠ is the ݊ ൈ ݉ zero matrix, ۷௡ is the ݊ ൈ ݊ identiy matrix, and 
  ۲ሺ௫ሻ ൌ ߩ1 ቂ1 0 00 0 1ቃ,     ۲ሺ௬ሻ ൌ ߩ1 ቂ0 0 10 1 0ቃ, ۱ሺ௫ሻ ൌ ൥ܿଵଵ 0ܿଵଶ 00 ܿଷଷ൩, ۱ሺ௬ሻ ൌ ൥ 0 ܿଵଶ0 ܿଶଶܿଷଷ 0 ൩  (3.4)

 
Since the coefficients of matrix ۯ do not depend on the time variable, system (3.2) is a time-invariant or 
autonomous system. We can then apply the classical spectral stability criteria provided by the theory of linear 
dynamical systems [e.g., Hinrichsen and Pritchard, (2005)]. In particular, for the autonomous system (3.2), all 
solutions ܃ሺݐሻ are composed of transients (and thus it is asymptotically stable) if all the eigenvalues ሼߪ௜ሽ of ۯ 
have negative real parts. Since an absorbing layer like the M-PML is designed to dissipate all energy exiting the 
physical domain, asymptotic stability for the M-PML is desired.  
 
In the simple case of the split elastic (i.e., undamped) system, the constant coefficient matrix ۯ௘ (obtained by 
setting ݀௫ and ݀௬ equal to zero in ۯ) has the following set of eigenvalues: 
 

௜௘ߪ ൌ
ەۖۖ
۔ۖۖ
േۓ ௜√ଶඨ൫ܿସ݇௬ଶ ൅ ܿଷ݇௫ଶ൯ ൅ ට൫ܿସ݇௬ଶ ൅ ܿଷ݇௫ଶ൯ଶ െ 4൫ܿଵ݇௫ସ ൅ ܿଶ݇௬ସ ൅ ܿହ݇௫ଶ݇௬ଶ൯,

േ ௜√ଶඨ൫ܿସ݇௬ଶ ൅ ܿଷ݇௫ଶ൯ െ ට൫ܿସ݇௬ଶ ൅ ܿଷ݇௫ଶ൯ଶ െ 4൫ܿଵ݇௫ସ ൅ ܿଶ݇௬ସ ൅ ܿହ݇௫ଶ݇௬ଶ൯,0ሺ଺ሻ ۙۖۖ
ۘۖۖ
ۗ

 
(3.5)

 
where ܿଵ ൌ ܿଷଷܿଵଵ ⁄ଶߩ , ܿଶ ൌ ܿଷଷܿଶଶ ⁄ଶߩ , ܿସ ൌ ሺܿଶଶ ൅ ܿଷଷሻ ⁄ߩ , ܿଷ ൌ ሺܿଵଵ ൅ ܿଷଷሻ ⁄ߩ , ܿହ ൌ ሺܿଵଵܿଶଶ െ ܿଵଶଶ െ 2ܿଵଶܿଷଷሻ ⁄ଶߩ , 
and the exponent in the zero eigenvalue denotes its multiplicity. It is evident from Eq. (3.5) that the real parts of all 
eigenvalues of the elastic system are zero. On the other hand, from the characteristic equation of matrix ۯ of the 
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damped system, two eigenvalues are obtained by inspection: 
ଵߪ  ൌ െ݀௫ ଶߪ ൌ െ݀௬ (3.6)
 
These eigenvalues show that, when damping is introduced, two of the six eigenvalues of the undamped split-field 
system that are equal to zero move to the left half of the complex plane. Regarding the remaining eight eigenvalues 
of matrix ۯ, no closed form expressions could be found, since they are the roots of a polynomial of degree eight. 
However, we recall that in order to characterize the stability of the M-PML system, we need to know only the sign of 
the real part of the eigenvalues. We then perform an eigenvalue sensitivity analysis (Adhikari and Friswell 2001, 
Gallina 2003). If the values of the damping coefficient ݀௫ሺ௫ሻ are small, a simple way to detect the direction of motion 
of the ݅-th eigenvalue is to evaluate its first derivative with respect to ݀௫ሺ௫ሻ when ݀௫ሺ௫ሻ ൌ 0. Because in the undamped 
case all eigenvalues ߪ௜௘ have zero real part, if Reሺ݀ߪ௜ ݀݀௫ሺ௫ሻሻ⁄ ൏ 0 for all ݅ when ݀௫ሺ௫ሻ ൌ 0, a small ݀௫ሺ௫ሻ will induce 
motion of the eigenvalues towards the ‘negative’ half complex plane, causing the system to become asymptotically 
stable.  
 
We derived exact expressions for the ‘eigenderivatives’ by applying implicit differentiation to the characteristic 
equation of matrix ۯ. The derivatives of the ݉-th eigenvalue with respect to ݀௫ሺ௫ሻ (for a horizontal strip) and ݀௬ሺ௬ሻ 
(for a vertical strip) evaluated at the origin are given by (Meza-Fajardo, 2007): 
௠݀݀௫ሺ௫ሻቤௗሺೣೣሻୀ଴ߪ݀  ൌ െ ෩ܦ1 ൛2൫1 ൅ ሺ௬݌ ௫⁄ ሻ൯ሺߪ෤௠௘ ሻସ ൅ ൣܿଷ݊௫ଶ൫1 ൅ ሺ௬݌2 ௫⁄ ሻ൯ ൅ ܿସ݊௬ଶ൫2 ൅ ሺ௬݌ ௫⁄ ሻ൯൧ሺߪ෤௠௘ ሻଶ

൅ 2൫ܿଵ݌ሺ௬ ௫⁄ ሻ݊௫ସ ൅ ܿଶ݊௬ସ൯ ൅ ܿହ݊௫ଶ݊௬ଶ൫1 ൅ ሺ௬݌ ௫⁄ ሻ൯ൟ 

(3.7)

௠݀݀௬ሺ௬ሻอௗ೤ሺ೤ሻୀ଴ߪ݀ ൌ െ ෩ܦ1 ൛2൫1 ൅ ሺ௫݌ ௬⁄ ሻ൯ሺߪ෤௠௘ ሻସ ൅ ൣܿଷ݊௫ଶ൫2 ൅ ሺ௫݌ ௬⁄ ሻ൯ ൅ ܿସ݊௬ଶ൫1 ൅ ሺ௫݌2 ௬⁄ ሻ൯൧ሺߪ෤௠௘ ሻଶ
൅ 2൫ܿଵ݊௫ସ ൅ ܿଶ݌ሺ௫ ௬⁄ ሻ݊௬ସ൯ ൅ ܿହ݊௫ଶ݊௬ଶ൫1 ൅ ሺ௫݌ ௬⁄ ሻ൯ൟ 

(3.8)

with 
෩ܦ  ൌ 4ሺߪ෤௠௘ ሻସ ൅ 3൫ܿଷ݊௫ଶ ൅ ܿସ݊௬ଶ൯ሺߪ෤௠௘ ሻଶ ൅ 2൫ܿଵ݊௫ସ ൅ ܿଶ݊௬ସ ൅ ܿହ݊௫ଶ݊௬ଶ൯ (3.9)
 
where ߪ௠௘ ൌ ෤௠௘ߪ|ܓ| , ݊௫ and ݊௬ are the direction cosines of the wave vector (i.e., ݇௫ ൌ ௫, ݇௬݊|ܓ| ൌ ௠௘ߪ ௬), and݊|ܓ|  is the ݉-th eigenvalue of the undamped system. It becomes clear that the eigenderivatives (3.7) and (3.8) are 
determined by the elastic constants, the direction of propagation, and by the ratios ݌ሺ௬ ௫⁄ ሻ and ݌ሺ௫ ௬⁄ ሻ, respectively. 
In Figure 1 these derivatives have been plotted as a function of the angle of incidence ߠ. Figures (1a) and (1b) 
correspond to the eigenderivatives for the classical PML whereas Figures (1c) and (1d) show the derivatives for the 
M-PML with ݌ሺ௬ ௫⁄ ሻ ൌ ሺ௫݌ ௬⁄ ሻ ൌ 0.1. Clearly, if the ratios of damping coefficients are non-zero, the eigenderivatives 
(3.7) and (3.8) are negative for all directions of propagation, therefore the real part of the eigenvalues ሼߪ௠ሽ is 
negative and consequently the M-PML for isotropic media is asymptotically stable. On the other hand, if the ratios of 
damping coefficients are zero (classical PML), the derivatives (3.7) and (3.8) will be zero for waves propagating 
parallel to either the ݔ-axis, or to the ݕ-axis, as figures (1a) and (1b) show. Consequently, the classical PML 
medium it is not asymptotically stable.  
 

Figure 1. M-PML eigenderivatives for isotropic elastic media. Figures (a) and (b) correspond to the classical PML. Figures (c) 
and (d) correspond to the M-PML with ݌ሺ௬ ௫⁄ ሻ ൌ ሺ௫݌ ௬⁄ ሻ ൌ 0.1 (from Meza-Fajardo & Papageorgiou, 2008). 
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Now we turn our attention to classical PML for more general orthotropic media. In particular, we consider the model 
for zinc reported by Komatitsch and Martin (2007), with elastic constants  ܿଵଵ ൌ 1.65E ൅ 11  N/m2, ܿଶଶ ൌ 
6.20E+10 N/m2, ܿଷଷ ൌ3.96E+10 N/m2, ܿଵଶ ൌ5.00E+10 N/m2. Figures (2a) and (2b) show that eigenderivatives 
corresponding to the qS mode for classical PML model can take positive values. As it can be observed in Figures (2c) 
and (2d), a value of ݌ሺ௫ ௬⁄ ሻ ൌ 0.1 stabilizes the horizontal termination strip. For the vertical termination strip to 
become asymptotically stable, however, ݌ሺ௬ ௫⁄ ሻ ൌ 0.15 seems to be the proper value, as Figure (2c) indicates. 
 

Figure 2. M-PML eigenderivatives for an orthotropic elastic medium (Model for zinc). Figures (a) and (b) correspond to the 
classical PML (c) M-PML with ݌ሺ௬ ௫⁄ ሻ ൌ 0.15. (d) M-PML with ݌ሺ௫ ௬⁄ ሻ ൌ 0.1 (from Meza-Fajardo & Papageorgiou, 2008). 
 
4. NUMERICAL SIMULATIONS 
 
The equations in the physical domain and M-PML terminations were discretized and solved in variational form with 
the Spectral Element Method (SEM). For implementation of the split-field M-PML in the SEM, the staggered 
velocity-stress time scheme proposed by Festa and Vilotte (2005) was adopted. For the simulations, we selected a 
quadratic damping profile of the form ݀௫ሺ௫ሻ ൌ ݀଴ሺݔ ⁄ܪ ሻଶ , ݀௬ሺ௬ሻ ൌ ݀଴ሺݕ ⁄ܪ ሻଶ , where ܪ  is the thickness of the 
absorbing termination strip and the parameter ݀଴ is the maximum value of the damping profile in the strip. The 
source time variation is given by a Ricker wavelet.  
 
If simulations in elastic isotropic media are performed for long time durations, the multiple-zero instability inherent 
in the classical PML often arises and pollutes the solution in the physical domain. It has been reported (Festa et al. 
2005) that implementation of the C-PML eliminates such instability. Here we show that the M-PML is also an 
efficient alternative solution. For demonstration purposes we consider the problem of the propagation of a P-wave in 
an isotropic elongated domain. The rectangular domain is terminated by absorbing layers on its four sides. The 
dimensions and properties of the media and discretization parameters are listed in Table 1. The maximum value of 
the damping profiles is given by ݀଴ ൌ ௣ݒܣ ⁄ܪ  (Festa and Vilotte, 2005), with A ൌ 20. For comparison purposes, 
we performed the simulations with classical PML, M-PML with ݌ሺ௬ ௫⁄ ሻ ൌ ሺ௫݌ ௬⁄ ሻ ൌ 0.1 and C-PML terminations. 
For the latter we adopted the same damping profile and a cut-off frequency of 0.8 Hz.  
 

Table 1. Properties and discretization parameters for simulation in isotropic medium. 
Physical domain dimensions Ricker wavelet parameters 

Length 9 km  Dominant frequency 10 Hz 
Width 0.8 km  Onset time 0.1 s 

Physical domain properties Discretization parameters 
Density 2.5E+12 kg/km3 Polynomial degree 5   
S-wave velocity 2.31 km/s Element side 0.05 km 
P-wave velocity 4 km/s Elements along PML width  8   

Source location Time step 0.0003 s 
From left boundary 0.3 km Total duration 3 s 
From bottom boundary 0.3 km    

 
In Figure 3 snapshots of the results are displayed for different instants of time. The interfaces between the physical 
domain and termination strips are represented by the solid lines. It can be observed that the body waves are well 
absorbed by the three termination strips. At t=2.3 sec the instability of the classical PML is visible. If the simulation 
is performed for longer times, the instability grows and spreads into the physical domain. No instabilities are 
identified in the C-PML and M-PML terminations.  
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(a) 
 

 

(b) 
 

 

(c) 
 

 

(d) 
 

 
Figure 3. Snapshots of the propagation of the velocity magnitude of a P-wave generated by an explosive line source on an 
elongated domain surrounded by classical PML (left), C-PML (center) and M-PML (right) terminations at (a) 0.1 s, (b) 0.5 s, (c) 
1 s, (d) 2.3 s (from Meza-Fajardo, 2008). 
 
With the following numerical experiment we illustrate that it is possible to construct stable M-PMLs for orthotropic 
media as zinc. The configuration of the test is similar to that one presented by Komatitsch and Martin (2007). The 
physical domain is a square surrounded by M-PMLs on its four sides. The source is a concentrated vertical force 
acting at the center of the physical domain. The maximum value of damping ݀଴ adopted for this test is 0.47. Table 2 
provides more details on the properties of the medium. Snapshots of the results of the numerical experiments at 
different times are displayed in Figure 4. It can be observed that both the qP and qS waves are well absorbed by both 
layers, namely, the classical PML and the M-PML with ݌ሺ௬ ௫⁄ ሻ ൌ ሺ௫݌ ௬⁄ ሻ ൌ 0.15. At time instant t=400 ߤs the 
exponential growth is visible in both the vertical and the horizontal Classical PM strips (Figure 4d, upper row). On 
the other hand, no instabilities are detected in the snapshots for the M-PML terminations (Figure 4d, lower row). 
 

Table 2. Properties and discretization parameters for simulation in Zinc. 
Physical domain dimensions Ricker wavelet parameters 

Length 25 cm Dominant frequency 170 kHz 
Width 25 cm Onset time 5.88 ߤs 

Physical domain properties Discretization parameters 
Density 7100 kg/m3 Polynomial degree 5   ܿଵଵ 1.65E+11 N/m2 Element side 0.625 cm ܿଶଶ 6.20E+10 N/ m2 Elements along PML width  10   ܿଷଷ 3.96E+10 N/ m2 Time step 0.04 ߤs ܿଵଶ 5.00E+10 N/ m2 Total duration 400 ߤs 

Source location    
From left boundary 12.5 cm    
From bottom boundary 12.5 cm    

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4. Snapshots of propagation of the velocity magnitude in orthotropic elastic medium, Zinc Model, at (a) t=35 µs, (b) 
t=60 µs, (c) t=85 µs, (d) t=400 ݏߤ. The top and bottom rows correspond to classical PML, and M-PML (with ݌ሺ௬ ௫⁄ ሻ ൌ݌ሺ௫ ௬⁄ ሻ ൌ 0.15) terminations, respectively (from Meza-Fajardo & Papageorgiou, 2008). 
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4. ACCURACY ANALYSIS  
 
In this section the accuracy of the M-PML is studied by means of numerical examples. The problem of the 
propagation of a P-wave on an isotropic elongated domain of the previous section is again considered. In order to 
assess the effect of the PML terminations on the solution, receivers are placed at the same ݔ-coordinate of the 
source and at distances of 0.15, 0.25, 0.35, 0.5, 0.7, 1.0, 2.0, 3.0, 6.0, 7.0, 7.5, 8.0, and 8.5 km from the source in the 
direction of the ݕ-coordinate. For a cylindrical wave, the ݔ-component of the exact solution for velocity at those 
locations is zero, and therefore, the component obtained in the simulation is a measure of the error due to the 
presence of the absorbing layers. The energy reflected due to the absorbing boundaries was then assessed by 
comparing the ݔ-component of the velocity with the ݕ-component in the following manner: 
 ԡ ௫ܸԡฮ ௬ܸฮ ൌ ට׬ ௫ܸଵଶ݀ݐ଴்ට׬ ௬ܸଵଶ݀ݐ଴்

(4.1)

 
Simulations were performed for different values of the ratios ݀଴/ ௗ݂ ൌ 1, 5, 10, 15, 20 and ߣ/ܪ ൌ 0.5, 1, 1.5, 2, 
where ݀଴ is the maximum value of damping, ܪ is the absorbing layer width, and ߣ is the wavelength associated 
to the dominant frequency ௗ݂. 
 

 
 

 
 

 
 

 

 

 
 

 
 

 

 

 

Figure 5. Reflection of energy for an incident P-wave vs. angle of incidence for PML terminations (top row), C-PML 
terminations (middle row) and M-PML terminations (bottom row). 
 
Figure 5 illustrates the reflections obtained in simulations with classical PML, C-PML and M-PML terminations. 
The results clearly show that for a fixed value of H/λ, the C-PML and M-PML give better results (smaller reflections) 
when ݀଴/ ௗ݂ ൐ 1. In general, the reflections due to the C-PML and M-PML appear to be of the same order of 
magnitude. The value ݀଴/ ௗ݂ ൌ 1 seems to provide too little damping in the absorbing layer to efficiently absorb the 
waves and prevent large reflections. The large reflections observed at small incidence angles in the classical PML, 
for values ݀଴/ ௗ݂~ 15 െ 20 are a result of the spurious waves (due to the instability of the PML) which contaminate 
the solution. This is related to the fact that the higher the ratio ݀଴/ ௗ݂, the earlier the instability contaminates the 
solution. It can be also observed that the ratio H/λ has more impact on reducing reflections than the ratio ݀଴/ ௗ݂. The 
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fact that reflection is reduced by increasing the ratio H/λ implies that reflections due to discrete classical PML, 
C-PML and M-PML terminations are frequency-dependent. 
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