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ABSTRACT : 

This paper aims to show the significance of vibration properties in the evaluation of the sliding displacement of
the structures such as retaining wall and soil slope. For the update of earthquake resistant design regarding the
post-earthquake performance of structures, the evaluation of the sliding displacement during earthquake is
important. In the seismic coefficient method widely used in earthquake resistant designs for various types of
structures, only the margin for the failure of structure, but not the degree of damage or the deformation to 
performance of the structures is taken into consideration. The rigid mass-slider model originally proposed by 
Newmark is sometimes employed for the purpose, which makes it possible to calculate the sliding displacement
of rigid mass on the frictional floor. In the framework of this method, the structure is modeled as a rigid mass and 
its natural frequency is disregarded. In the reality, however, the sliding displacement depends on the flexibility
and natural frequency of structure. The evaluation method we introduce in this study employs a mathematical
vibration-sliding model which consists of the mass, spring with dashpot, and slider to take account of the
vibration properties of structure. A series of shaking table tests on a physical vibration-sliding model were
conducted to verify the evaluation method. A good agreement was found between the sliding behaviors observed 
with the physical model and those calculated with the mathematical model. 

KEYWORDS: Retaining structures, soil slope, spring-mass model, vibration, sliding, spectrum 

 
1. INTRODUCTION  
 
In the earthquake resistant design of retaining structure and soil slope, a performance-based method is lately 
preferably employed instead of the conventional seismic coefficient method. In the performance-based design, a 
certain degree of performance of the structure must be guaranteed even after the application of the earthquake 
with assumed intensity. In order to conduct the earthquake resistant design satisfactorily, the degree of the
damage to the structure must be estimated quantitatively; the sliding displacement is a primary important factor as 
an index of the damage intensity for retaining structures and soil slopes. And the rigid mass-slider model 
originally proposed by Newmark (1965, 1974) is sometimes employed for the purpose, which makes it possible
to calculate the sliding displacement of rigid mass on the frictional floor. In the framework of the method, the
structure is modeled as a rigid mass and its natural frequency is disregarded. In the evaluation of sliding
displacement, the effect of natural frequency must be evaluated adequately, as the response spectrum has been 
employed in order to evaluate impulse forces during earthquake. In this study, first, the vibration-sliding behavior 
calculated with the mathematical model is analyzed, and the significant of the structural vibration properties on 
the vibration-sliding behavior is presented. Next, the vibration-sliding behaviors observed in a series of shaking 
table tests are discussed, and the mechanism of the vibration-sliding behavior is investigated. Finally, the validity 
of the mathematical model is discussed in a comparison between the observed and the calculated behaviors. 
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Figure 1 Mathematical Vibration-sliding model                   Figure 2 Ratio of mass γ 
 

 
 
2. MATHEMATICAL VIBRATION-SLIDING MODEL  
 
2.1 Outline of Mathematical Vibration-Sliding model 
 
The mathematical vibration-sliding model with double-degree of freedom is presented in Figure 1. The model 
consists of two masses, spring with dashpot, and frictional slider. Thus, the model is an inversed pendulum with 
a pedestal, and a frictional slider; the masses of pendulum and pedestal are mp and md, respectively. The ratio of 
two masses of pendulum and pedestal is designated with the mass ratio γ (0≦γ≦1) which is varied according to 
the mechanical properties of the structure considered. In the case of γ=1 the model becomes a inversed pendulum
of single-degree, as shown Figure 2 (d). In the case of γ=0, all the mass concentrates on the pedestal, and the 
model becomes equivalent to the rigid-sliding model without an inversed pendulum. The model is subjected to
the constant thrust T corresponding to the inclination of sliding surface and/or earth pressures in ordinary
condition with a certain margin against sliding, and is shaken with a base motion. The base motion and the
relative displacements of the pendulum and pedestal are ub, up and ud respectively. The vibration property is 
designated with two masses mp and md, spring constant k, and damping constant h. The slider possesses the 
frictional resistance Rf which can be evaluated with the Coulomnb’s friction law as a function of the base
roughness or artificially provided shear resistance. The sliding occurs in the slider, when the base shear force Fb
reaches the frictional resistance Rf. The slider slides in the direction of the thrust T during the base shaking. 
The mathematical vibration-sliding model in the case of γ=0 where the natural frequency is assumed to be 
infinity, becomes equivalent to the rigid model proposed by Newmark(1965); the mode was applied to the 
analysis of sliding deformation of fill embankment during earthquakes. On the other hand, Sawada et al. (1998) 
showed the possibility of modification of Newmark’s method based on their study by means of Finite Element
Method for the elasto-plastic continuum, and analyzed the permanent deformation of the fill embankment. 
In this study the clear slip surface is defined on the structure base or through a soil mass, and its sliding
displacement is analyzed. The equations of motion in the mathematical vibration-sliding model, and the 
conditional equations for sliding and non-sliding cases are expressed in the above boxed area. Where, the 
suffixes of p, d, and s correspond to pendulum, pedestal, and spring, respectively. As the equations of motion are
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Figure 3 Time history of the vibration-sliding model under sinusoidal wave 

(a) Vibration-sliding model (γ=1)，(b)Rigid-sliding model (γ=0) 
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Figure 4 Effect of Natural Frequency                 Figure 5 Sliding Response Spectrum 

 
nonlinear simultaneous equations in time-domain, the equations were discretized, and the vibration-sliding
behavior was calculated by the direct integration method. 
 
2.2 Effect of Natural Frequency in Mathematical Vibration-Sliding model 
 
The comparison of response time histories of the inversed pendulum model (γ=1) and of the rigid-sliding model 
(γ=0) under the fundamental condition is shown in Figure 3. The base acceleration, base shear force, absolute 
acceleration, and relative displacement of mass are shown from bottom to top on the figure face. In the top graph 
of the Figure 3(a), the sliding displacement in slider is indicated by a red line. Close examination of the figures
tells that the sliding displacement occurs and accumulates when the base shear force reaches the frictional
resistance in response to the base motion in both the mathematical vibration-sliding model and the rigid-sliding 
model. It can be seen that the accumulated sliding displacement of the inversed pendulum model is more than 5
times that of the rigid-sliding model. 
The time history of the vibration-sliding behavior of the model during the sinusoidal base shaking of ten cycles is 
shown in Figure 4. The figure is explained with the ratio of the structural natural frequency to base shaking
frequency, ωo/ωb. The calculated value of the rigid-sliding model of γ=0 is also presented in Figure 4. The amount 
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of sliding displacement tends to become large around the frequency ratio ωo/ωb of unity, which corresponds to the 
condition of the resonance of vibration behavior. When the model becomes slightly harder than the frequency 
ratio ωo/ωb of unity, it can be seen that the amount of sliding displacement tends to become maximal. On the 
other hand, if the model becomes flexible and the natural frequency is one-half of the base shaking frequency, 
around ωo/ωb=1/2, the sliding displacement becomes negligibly small. It is interesting that the amount of sliding 
displacement is underestimated if the rigid-sliding model where the model’s vibration properties is not taken into 
consideration. The calculated sliding displacement plotted against the ration of the structural natural frequency to 
the base shaking frequency, ωo/ωb with parameters such as damping constant h is shown in Figure 5. It can be 
seen that the response sliding displacement becomes a maximum value in range from ωo/ωb=1.5 to 2.0. In the 
figure the sliding displacement calculated with the rigid-sliding model of γ=0 is also presented by a horizontal 
broken line on right hand side, the value is fairly small compared with the maximum value calculated with the
vibration-sliding model. The sliding displacement asymptotes to the value calculated with the rigid-sliding model 
(γ=0), if the model becomes harder and the frequency ratio ωo/ωb becomes larger in the right-hand side of the 
figure. 
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Figure 6 Physical Vibration-Sliding Model            Figure 7 Set up of Physical model with Sloping Table 

 
 
3. PHYSICAL VIBRATION-SLIDING MODEL 
 
3.1 Outline of Physical Vibration-Sliding model 
A physical vibration-sliding model which was developed according to the mechanical properties of the
mathematical vibration-sliding model is shown in Figure 6. The physical model was 210 mm in length, 165 mm
in height, and 180 mm in width, and was made of stainless steel and aluminum alloys. The physical model 
fundamentally forms the inversed pendulum system with a mass supported with arms and springs on a base plate 
as shown the figure. The photograph shows the physical model equipped with two stainless steel weights of 1.5 
kg, which corresponds to the mass of pendulum in the inversed pendulum. The base plate was 1.52 kg in weight.
The natural frequency of the physical model could be varied by changing the number of the weights or the 
stiffness and/or angle of the springs. In order to evaluate the vibration properties, the natural frequency ωo and 
damping constant h were measured by analyzing the time history of acceleration of the weight under free 
vibration condition with the base plate fixed. 
 
3.1.1 Sloping table 
The setup of the physical vibration-sliding model and a sloping table on a shaking table is shown in Figure 7. The 
physical model is put on the sloping table and subjected to the base shaking. Therefore, when the sloping table is 
subjected to the base shaking, the physical model is vibrated and slid under the application of a constant 
horizontal thrust. The sloping table made of steel was 1500 mm in length and 250 mm in width, and is coated by 
lacquer, and was connected rigidly with bolts to the shaking table. A resin plate was laid on the slide table surface 
to ensure a constant coefficient of friction in the bottom of the model. As the frictional properties depended on a 
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subtle condition of dust and humidity on the sloping table surface, the surface was wiped lightly by soft and dry
cloth just before each of the shaking tests conducted. The coefficient of friction was measured in the tests
preliminary conducted under static condition with variable slope angle, in order to find the fundamental sliding
properties between the slide table and the physical model. 
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Figure 8 Time histories of observed results with base shear force and inertial force 
(a) flexible model f0/fb=0.82, (b) resonant model f0/fb=1.00, (c) hard model f0/fb=1.58 

 
 
3.2 Experimental Condition 
 
Single weight of 1.48kg was fixed to the top of the physical model. Two sets of springs used have a free length of 
65 mm, maximum length of 61.3mm and spring constant of 0.581N/mm. A free vibration behavior of the 
physical model under this condition was observed; as a result, it was found that the natural frequency fo was 
1.9Hz through Fourier analysis, and the damping constant h was 0.03 by using logarithmic decay method. The 
total mass of the physical model m was 3.16kg, and the mass ratio was γ=0.52. The coefficient of static friction 
between the sloping table surface and the bottom of the physical model was about 0.2 in the static tests conducted 
preliminary. The angle of the slide table was set to be θ=9 degrees, so that the thrust to the model was equivalent 
to T= 0.16 mg. 
Three test series were conducted with different sinusoidal base shakings, where the amplitude was 50, 65 or
80Gal. In each of the test series, the frequency of the sinusoidal base shaking fb was parametrically varied from
0.6 to 2.5Hz. 
In the observation of the vibration-sliding behavior of the physical model, four accelerometers with the frequency 
range of measurement of 0-46Hz, and a laser system of displacement gauge with the resolution of ±0.5mm were
employed. The installation positions of the sensors are shown in Figure 7; accelerometers were placed on the 
centers of shaking table and slide table, on the surface of base plate and the top of the weight. The laser system of 
displacement gauge is fixed rigidly with bolts to the upper sloping table for the measurement of relative 
displacement of the physical model to the sloping table. The time interval of the measurement was 0.01 second; 
data sampling frequency was 100Hz. 
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Figure 9 Relationship between Base shear force                 Figure 10 Sliding Response Spectrum 
and Inertial force in sliding case 
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4. EXPERIMENTAL RESULTS 
 
The typical time histories observed for 5 cycles of the sinusoidal base shaking application are shown in Figure 8.
In Figuer 8 (a), (b) and (c), acceleration amplitude were common as 65Gal; however the base shaking frequency 
were different. Figure 8 (a) was for a flexible model where the frequency ratio fo/fb was less than unity, Figure 8
(b) was for a model under resonant condition where fo/fb was equal to unity, and Figure8(c) was for a hard model 
where fo/fb was greater than unity. The acceleration of the slide table and the shaking table, the inertial force, the 
base shear force, and the sliding displacement are plotted against time from bottom to top in the figures. The 
inertial force was calculated from acceleration of shaking table and the weight of the physical model. The base 
shear force was calculated from the inertial force, acceleration of the weight and the base plate where the slope 
angle of the sloping table was taken into consideration. When the base shear force and inertial force indicate 
positive values in the figure, the physical model is subjected to forces with downward direction in Figure 7. 
From the comparison of the figures, the accumulated sliding displacement was largest for the relatively hard 
model of the three models. The sliding displacement of the hard model was over eight times as large as that of
flexible model. A vertical dotted red line was drawn for the peak of the inertial force in Figure 8. In the hard 
model with the largest sliding displacement, the inertial force and the base shear force reach a peak at almost the 
same time; the difference between phase angles is practically zero between the inertial force and the base shear
force, on the other hand the phase angle difference is perceptible for the resonant model and the flexible model. It
should be noted that in the flexible model the phase angle difference is about 180 degrees and the sliding and
inertial force are opposite in direction as shown in Figure 8(a). As explained above, the sliding displacement is 
remarkably dependent on the flexibility of the model, and the phase angle difference between inertial force and 
base shear force plays an important role in the sliding behavior. 
The relationships between the base shear force and the inertial force in the physical model and the mathematical 
model during sliding vibration are shown in Figure 9. The behaviors of the flexible model, the resonant model 
and the hard model conditions are presented by black, red and blue lines, respectively. The counterclockwise
ellipsoidal loops can be seen due to the energy loss as a result of frictional sliding of the model. The blue loop 
with the largest length for the hard condition has a positive slope and the loop tapered toward upper right. This 
means that the base shear force and the inertial force are same in the direction, and the inertial force contributes 
more in the sliding behavior. The red loop for the resonant model indicates a positive gradient; however, the 
enclosed area of the red loop is greater than that of the blue loop, due to the greater phase angle difference as 
shown in Figure 8. The black loop for the flexible model has negative slope. This means that the phase angle 
difference between the base shear force and the inertial force was about 180 degrees, and during the sliding the 
inertial force is opposite to the sliding win direction. Therefore, the sliding displacement of the flexible model is 
rather small compared with other two models. 
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The loops calculated with the mathematical model are shown in Figure 9 (b). In the figure, the loops at cyclic 
steady condition are drawn. The loops were calculated with a coefficient of static friction µs=0.27, and a
coefficient of dynamic friction µd=0.20. A good agreement of the loops between the calculated and measured 
behaviors can be seen. 
The observed residual sliding displacement of the physical vibration-sliding model is plotted against the ratio of 
the natural frequency to the base shaking frequency f0/fb, for the application of sinusoidal base shaking of 10
cycles in Figure 10. In the figure, the three cases with different base shaking acceleration amplitudes are plotted. 
The residual sliding displacements calculated with the mathematical vibration-sliding model are also shown in the 
figure with lines. In the calculations the parameters were determined from the test conditions of the three series of
shaking table tests on the physical model. The resonant condition for f0/fb = 1.0 is expressed by a vertically broken 
line in the figure. 
It cane bee seen that the amount of the residual sliding displacement depends significantly on the frequency ratio 
f0/fb. In the figure, the left-hand side and right-hand side of the resonant condition correspond to the relatively 
flexible condition (flexible model) and relatively hard condition (hard model), respectively. As explained above, 
it can be said that the hard model is generally subjected to larger residual sliding displacement compared with the 
flexible model in dependent of the intensity of the base shaking. The good agreement can be recognized between 
the physical model and the mathematical model. 
 
 
5. APPLICATION TO PRACTICAL PROBLEMS 
 
As shown in the previous sections, the flexibility or rigidity of the structure has significant effect on the 
vibration-sliding behavior of the structure, and the residual sliding displacement of the structure through base
shaking vibration is much dependent on the relationship of its natural frequency with the frequency properties of 
the base shaking. And the mathematical vibration-sliding model is able to predict the vibration-sliding behavior 
of structure and to calculate the amount of residual sliding displacement of the structure. Then the application of 
the mathematical vibration-sliding model to practical earthquake engineering problems may be useful to estimate 
the structural damage associated with sliding during shaking, which is needed for rational performance based
design. In this section two examples of the application of the mathematical vibration-sliding model are presented; 
a land slide and a quay wall in port area are selected. 
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Figure 11 Sliding Soil Mass                   Figure 12 Gravity Type Quay Wall 

 
5.1 Application to soil slope 
Sliding of soil mass is shown in Figure 11 with gravity force and shear resistance. The sliding soil mass is M, the
gravity force is W=Mg and the slope angle of the sliding surface is α. In this problem the soil mass is subjected to 
the thrust T as a function of the slope angle α. The natural frequency and damping ratio of the soil mass can be
evaluated from through the measurement of microtremor and/or elastic wave exploration. The shear resistance
can be evaluated from shear strength of the soil in a conventional manner. 
 
5.2 Application to Gravity Type Quay Wall 
The section of a typical gravity type quay wall with caisson is shown in Figure 12; the caisson is subjected to the 
gravity forces and some external forces, and figures present the ordinary and seismic conditions. The mass of 
caisson is M, the angle of the frictional resistance on the bottom of the caisson is φµ, and the buoyancy to the 
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caisson is Fv. For the mathematical model, the frictional resistance force and the thrust are shown as
Rf=(Mg-Fv)tanφµ and T=(Pe-Pw), respectively, therefore the application to the mathematical vibration-sliding 
model becomes possible. The dynamic water pressure and the dynamic earth pressure during an earthquake can
be calculated as the additional mass corresponding to the inertial force. For the evaluation of the natural
frequency of caisson, the microtremor measurement will be utilized. Kohama, et al. (2002) conducted a series of 
microtremor measurement on the gravity type quay walls in the port and harbor areas in Japan, and found a close
relationship between the natural frequency of the caisson and its size and shape. 
 
 
6. CONCLUDING REMARKS 
 
Mathematical and physical vibration-sliding models both were devised with mass, spring, dashpot and slider to 
take account of the effect of vibration properties of structures on the sliding amount during earthquake vibration.
The vibration-sliding behavior calculated with the mathematical model was closely examined. And the 
vibration-sliding behavior observed in shaking table tests on the physical model was comparatively examined
with the calculated vibration-sliding behavior. The findings in this study are summarized as follows: 
 
-- The significance of vibration properties in the sliding response of structure during shaking was demonstrated 
with the mathematical vibration-sliding model subjected to sinusoidal base shaking motion. In the case of the 
model with single degree of freedom, the resonant vibration behavior led to dominant sliding displacement. When
the natural frequency of structure was about 1.5 times the frequency of base shaking (fo/fb=1.5), the amount of 
sliding displacement attained maximal. 
-- The comparison of the vibration-sliding model with the rigid-sliding model proposed by Newmark where 
calculated sliding displacement was rather small, the vibration-sliding mathematical model is effective for the 
simplified evaluation of the sliding displacement with taking account of the vibration properties of structure. 
-- In the vibration-sliding behavior observed in some series of shaking table tests on the physical model, the 
significant effect of the vibration properties on the residual sliding displacement was recognized. The phase angle 
difference between inertial force and base shear force depends strongly on the frequency ratio fo/fb; in the case of 
hard model with fo/fb>1 inertial force becomes larger during sliding, and contributes the residual sliding 
displacement. The mechanism sliding during shaking can be explained by means of the mathematical model. 
-- The applicability of the mathematical vibration-sliding model was verified with the observed behavior. Good
agreement between the observed behavior and calculated behavior was recognized both in the relationship of base 
shear force with inertial force and in the variation of residual sliding displacement as a function of amplitude and 
frequency of sinusoidal base shaking. 
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