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ABSTRACT : 

An evolution equation for the Cauchy stress tensor is proposed to take elastic, viscous and plastic characteristics of 
complex fluids simultaneously into account. In particular, hypoplasticity is incorporated to account for the plastic 
features. The stress model is applied to investigate time-dependent flows of an elasto-visco-plastic fluid between two 
infinite parallel plates driven by the oscillating motions of the plate to study the cyclic responses and the model 
performance. Numerical simulations show that while different degrees of elastic and viscous effects can be captured 
by varying the model parameters, plastic deformation plays a significant role in the velocity distribution, and can be 
simulated appropriately by use of hypoplasticity. The stress model is capable of accounting for the combined elastic, 
viscous and plastic features of complex materials in transient motions, and applications may be found in geomorphic 
fluid motions like soil liquefaction or debris flows induced by seismic activities. 
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1. INTRODUCTION  
 

Materials are classified into different kinds according to their responses to external excitations (force, 
temperature difference, etc.), e.g. solids are traditionally defined as materials which can sustain shear stress, 
whilst fluids are those which deforms continuously under an applied shear stress [1,2]. Since the external 
excitation may be maintained either in a very short or a very long period of time, the material responses of a 
specific material can have a dramatic change regarding the duration of the external excitation. As a result, the 
above traditional classification is not strictly accurate and should be supplemented by considering the effects of 
the Deborah number from the macroscopic point of view, which is defined as the ratio of the material 
characteristic time scale divided by the characteristic time scale of the external excitation. Materials behave like 
solids when the Deborah number is high, whilst they are similar to fluids when the Deborah number is low. 
From this perspective, every material “flows” essentially, and bears elastic, viscous and plastic features 
simultaneously. However, under most external excitations only one or two characteristics are obviously visible 
and dominant, the rest, in comparison with the dominant features, can simply be neglected. The constitutive 
equation for the Cauchy stress tensor should thus be constructed to account for elastic, viscous and plastic 
features simultaneously in the very beginning, and can be further simplified for simpler situations when some 
characteristics are not significant.  
 
Recently, based on the works of non-Newtonian fluids and rheology, an unified evolution equation for the 
Cauchy stress tensor of elasto-visco-plastic fluids is proposed in the 
 

  1 2
,    1 2 np ,

   
          

 
t I T T T T D D N D        

 

with the definitions  T T, ,


     
Δ

A A LA AL A A L A AL   known as the upper-convected and 
lower-convected time derivatives, respectively, for a tensor-valued variable A. In Eqn. 1.1 the quantity p is the 
pressure, which is not defined conventionally, I the second-rank identity tensor, T the extra stress tensor, L the 
velocity gradient, D the symmetric part of L and N an unspecified non-linear, tensor-valued function. N is 
ascribed the effects of plasticity, hypoplasticity and hypoelasticity [3]. The superscript T denotes transposition. 
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1 2
     , , , , ,      and n are scalar coefficients; they are in general non-constant and may depend on the scalar 

invariants of the state of the material. In particular, 
1 2

  , ,    and ε are recognized as relaxation time, viscosity, 
retardation time and a dissipative and turbulence parameter, respectively, provided that 1  .  denotes the 
material time derivative of  . By assigning different values to 

1 2
     , , , , , ,       N and n, various models in 

the field of non-Newtonian fluids such as the Oldroyd-B model, the Maxwell-A and -B models, the 
Johnson-Segelman model, the Criminale-Erickson-Filbey model, the Reiner-Rivlin and the Bingham models 
can be reproduced [3]. 
 
Apparently, all the parameters in Eqn. 1.1 should be so constrained that the model is thermodynamically 
consistent, i.e., during a physical-realizable process the quantity, namely the entropy production, should be 
non-negative, while the balance and constitutive equations are satisfied simultaneously. Such an analysis has 
been performed and the results show that while the scalar parameters are related to the Helmholtz free energy 
and are determined once the free energy is prescribed, the unspecific tensor-valued function N plays an 
interesting role in the model: different plastic characteristics can enter the model via its prescription [3]. This 
result is in particular significant, since the thermodynamic foundation of hypoplasticity, a well-known class of 
constitutive relations for granular and porous materials, has been established rationally. The model was 
subsequently employed to study the normal stress effects in the context of a viscometric flow, and a 
time-dependent flow between two infinite parallel plates driven by a sudden motion of the plate, to estimate its 
performance and limitations [4]. Results show that the transient behavior of the fluid from its start-up to steady 
state can appropriately be indexed by varying the model parameters. In particular, different spectra of relaxation 
and retardation, the transmission of the shear and the emerging non-Newtonian characteristics can be accounted 
for by the model. These findings suggest a possible applicability of the present stress model in the fields of 
geomorphic fluid motions like soils movements and granular/debris flows. 
 
In the present study, the stress model is applied to study the cyclic responses of a confined elasto-visco-plastic 
fluid driven by an externally oscillating excitation, to simulate the behavior of a granular material under cyclic 
loading, e.g. the transient responses of the soils between two parallel plates induced by an oscillating seismic 
activity. To this end, the governing equation, boundary conditions and the discussions on the numerical results 
of the considered problem are provided in Sect. 2. The paper is summarized in Sect. 3. For convenience, the 
balance equations of elasto-visco-plastic fluids in isothermal motions for mass, linear momentum and angular 
momentum are given respectively by 
 

0                       Tdiv , div , ,      v 0 v t b 0 t t      
 
where   is the density, v the velocity and b the specific body force. In the formulations the fluid is not 
considered micropolar or Cosserat-type, so that the balance of angular momentum reduces to its simplest form, 
namely the symmetry of the Cauchy stress tensor, which is fulfilled automatically by the stress model Eqn. 1.1, 
provided that N is symmetric. In addition, for isothermal flows the balance of internal energy is not relevant 
and is omitted for simplicity. 
 
 
2. UNSTEADY FLOW BETWEEN TWO PARALLEL PLATES  
 
Consider an incompressible, isothermal elasto-visco-plastic fluid between two parallel plates with the 
prescribed configuration and the coordinate system shown in Figure 1. Initially, both the fluid and the two 
plates are stationary. At a prescribed time, the lower plate starts to oscillate with a specific frequency ω and 

amplitude V0, which triggers the motion of the fluid through the shear stress between the lower plate and the 
fluid immediately above it. 
 
Since the flow is triggered by the relative motion between the fluid and the plate, it is plausible to assume that 
parallel flow prevails, namely, 

(1.2) 
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Figure 1. Sketch of an unsteady flow between two parallel plates driven by the oscillating motion of the lower 
plate and the coordinate system 
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hold, where u(y) is the velocity component in the x-direction. From this perspective, it is reasonable to assume 
that the extra stress tensor T takes the form 
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Substituting Eqns. 2.1 and 2.2 into Eqn. 1.22 gives rise to the balance of linear momentum in the reduced forms 
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which are the balances of linear momentum in the x- and y-directions, respectively. Eqn. 2.32 indicates that the 
combination of –p + Tyy constructs a “hydrostatic” linear profile; the pressure p is thus determined once Tyy and 
its boundary values are prescribed. Eqn. 2.31 emerges as a time-dependent PDE for the velocity profile u(y,t), 
provided that Txy can be expressed as a function of u(y,t). We should discuss it later on. Moreover, it is noted 
that with the parallel flow assumption the balance of mass Eqn. 1.21 is automatically fulfilled. 
 
To obtain an implicit expression of the extra stress tensor component Txy from (1), the tensor-valued function N 
needs be prescribed. It has been demonstrated that the effects of plastic deformation and the transient behavior 
of materials can better be indexed when a hypoplastic expression is assigned to N [4]. In the present study we 
follow the same approach, and N is thus given by [5,6] 
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where C1,2 are again model parameters, which can depend on the state of the motion. Eqn. 2.4 is the commom 
hypoplastic expression [6,7,8], which is essentially a non-linear incremental expression for the stress-stretching 
relation with two distinct features: (i) distinction between loading and unloading of the material is 
automatically accomplished; and (ii) elastic/inelastic deformations need not a priori be distinguished, and 
hence information about yield surface and plastic potential is no longer necessary. In view of the parallel flow 
assumption Eqn. 2.11 and the extra stress tensor components Eqn. 2.2, the components of N take the forms 
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in which Nxy = Nyx to fulfill the symmetry of the Cauchy stress tensor. 
 
Identifying the components of N by using Eqn. 2.4 and substituting the results into Eqn. 1.1 with the definition 
Eqn. 2.2 yields the constitutive expressions of the components of the extra stress tensor in the implicit forms 
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The governing equation for the velocity distribution u(y,t) can be obtained in principle by substituting the 
constitutive relations Eqn. 2.6 into the balance equation Eqn. 2.31, resulting in a time-dependent, nonlinear 
second-order partial differential equation, subjected to the traditional non-slip boundary conditions on the upper 
and lower plates given by 
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respectively. The emerging two-point initial and boundary value problem should be solved numerically for 
variations of the model parameters. However, for numerical simplicity we let the balance and constitutive 
equations be expressed separately. 
 
Nondimensionalization. Defining the dimensionless parameters according to 
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and substituting Eqn. 2.8 into Eqns. 2.31, 2.6 and 2.7 gives rise to the dimensionless balance equation and the 
associated boundary conditions in the forms 
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where 0

h h / V , and the components of the dimensionless extra stress tensor are given by 
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While the dimensionless parameters β1 and β3 are respectively used to account for the effects of relaxation and 
retardation (effects of elasticity), the parameter β2 is for the viscous effect and β4 and β5 are for the hypoplastic 
effects. Eqns. 2.9 and 2.10 define the dimensionless governing equation and the boundary conditions for the 
considered problem, and should be solved to obtain the profiles of  u y ,t  for variations of the parameters 
β1-5. However, increasing the value of β3 counteracts the effects caused by increasing β1 for the considered 
problem. To reduce such an influence, β3 is kept to be a constant, namely 1.0, in all the calculations. In addition, 
variation of ξ affects only the weights of the upper- and lower-convective derivatives of T and has no 
significant influence on the results. It is chosen to be 0.5 through the calculations. Moreover, h  indicates the 
influences of the upper stationary solid boundary; it should be so chosen that the influences of the boundary 
layer can be taken into account. For convenience, it is chosen to be 0.5 in the numerical simulations (this will 
be discussed later). 
 
Numerical method. The emerging two-point IBV problem Eqns. 2.9 and 2.10 are solved numerically by using 
finite difference method. In particular, we discretize the space domain by using the central-difference scheme, 
while the time domains for u and T  are discretized by using the first-order backward and forward difference 
approximations, respectively. The solutions of  u y ,t  are obtained by using explicit method [9]: for better 
numerical convergence and stability 610 t  should be fulfilled in associated with the y -domain 
diecretized into 103 equal-spacings in most cases. 
 
Numerical results. Typical calculated results for the velocity distribution  u y ,t  are shown in Figures 2-5, in 
which the solid curves are the results from the present model, while the dotted curves are calculated from the 
formula 
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where

2
/ .   Eqn. 2.11 is the analytical solution of Newtonian fluid in complex form and can be derived 

from [10]. Figure 2(a) illustrates the typical profiles of  u y ,t  for the time domain 0t   to t   

increased by 6/  for clarity, in which the orders of magnitude of the parameters are the same and are given 
by β1 = β2=β4=β5=0.1. It is seen that due to the combined elastic, viscous and plastic effects, the shear generated 
on the oscillating plate can better be transmitted toward the stationary plate in the present model. The phase lag 
is relatively insignificant in comparison with the results from Newtonian fluid. To show the influences of the 
upper stationary boundary, calculations have also been made for variations of h ; the results are displayed in 
Figure 2(b), in which the profiles of  u y ,t  at 2t /  for 0 5  1 0h . , . , and   are plotted. When h  is 
greater than the boundary layer thickness, the upper solid boundary has no influence on the velocity profile. On 
the contrary, when h  is smaller than the boundary layer thickness, the upper solid boundary will enhance the 
decay of the flow, and such an influence is more visible in the Newtonian model than in the present model. This 
implies that the transmission of the shear is more efficient in the present model when the combined elastic, 
viscous and plastic characteristics of the material are account for. Similarly, the phase lag in the present model 
is relatively insignificant in comparison with the Newtonian fluid, regardless the value of h . 
 
Figure 3(a) illustrates the calculated profiles of  u y ,t at different time slices for the limiting case in which the 
elastic effect is dominant, and the values of the parameters are given by β1=0.5 and β2=β4=β5=0.1. In such a 
situation the relaxation time increases, and the fluid needs a longer time to adjust itself to the variation of the 
external excitation, which is relevant in the more convex velocity profiles above the oscillating boundary when 
compared with Figure 2(a). Increasing the value of β1 tends to enhance the elastic effects of the fluid, as shown 
in Figure 3(b), in which a time series of the velocity profiles at the middle of the channel for various values of  

(2.11) 
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Figure 2. (a) Calculated velocity profiles at different time slices t  [0, π/6, π/3, π/2, 2π/3, 5π/6, π], (b) velocity 
profiles at 2t /  for different values of 0 5  1 0h . , .  and  . In (a)-(b): β1=β2=β4=β5=0.1, solid: present 
model; dotted: Newtonian fluid 
 

 

 

 
Figure 3. (a) Calculated velocity profiles at different time slices t  [0, π/6, π/3, π/2, 2π/3, 5π/6, π] and  

β1=0.5, (b) time series of the velocity profiles at 0 25y .  (the middle of the channel) and β1=0.1, 0.5, 1.0. In 
(a)-(b): β2=β4=β5=0.1, solid: present model; dotted: Newtonian fluid 
 
β1 versus t  is plotted. When the value of β1 is small, the phase lag is mainly due to the combined elastic, 
viscous and hypoplastic effects, and is relatively insignificant, while the amplitude preserves a certain amount 
of its boundary value V0. On the contrary, when β1 is large, the elastic effect increases: the most part of the 
energy supplied by the oscillating boundary is preserved in the fluids immediately above the solid boundary, 
resulting in a smaller velocity amplitude at the middle of the channel. The phase lag, as a result, becomes larger 
at the middle of the channel. 
 
Figure 4(a) shows the calculated results of the velocity profiles when the viscous effect is dominant: the values 
of the parameters are given by β2=0.5 and β1=β4=β5=0.1. It is seen that the obtained velocity profiles are fairly 
straight across the channel, for the shear is more efficiently transmitted by the larger viscous effects. Such a 
tendency is also manifest in Figure 4(b), in which again a time series of the velocity profiles at the middle of 
the channel is plotted for variations of β2. When β2 is small, the viscous effect is not significant and the energy 
supplied by the oscillating boundary is mainly preserved in the fluids immediately above the oscillating 
boundary by the combined elastic and hypoplastic effects, resulting in a smaller amplitude and larger phase lag 
of the velocity profile at the middle of the channel. However, when the value of β2 is high, the adhesion 
between different layers of the fluids and the boundary enhances correspondingly, such that the fluid can adjust  
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Figure 4. (a) Calculated velocity profiles at different time slices t  [0, π/6, π/3, π/2, 2π/3, 5π/6, π] and  

β2=0.25, (b) time series of the velocity profiles at 0 25y .  (the middle of the channel) and β2=0.05, 0.1, 0.5. 
In (a)-(b): β1=β4=β5=0.1, solid: present model; dotted: Newtonian fluid 
 

 

 

 
Figure 5. (a) Calculated velocity profiles at different time slices t  [0, π/6, π/3, π/2, 2π/3, 5π/6, π] and  

β4=β5=0.25, (b) time series of the velocity profiles at 0 25y .  (the middle of the channel) and β4=β5= 0, 0.1, 
0.25. In (a)-(b): β1=β2= 0.1, solid: present model; dotted: Newtonian fluid 
 
itself to the variation of the external excitation in a faster way, resulting in larger amplitude and smaller phase 
lag of the velocity profiles at the middle of the channel. 
 
Calculations for the velocity profiles in which the hypoplastic effect is dominant have also been performed and 
are shown in Figure 5(a), in which the parameters are given by β1=β2=0.1 and β4=β5=0.25. When hypoplastic 
effect is significant, plastic deformation occurs in the region immediately above the solid boundary. At the time 
slices at which the oscillating boundary changes its state of motion (e.g. at 0t   and t  , the oscillating 
plate changes its motion direction), the fluid immediately above the boundary moves with the same direction of 
the boundary due to the viscous effect. However, fluids above this layer hold the previous motion direction due 
to the plastic deformation. These give rise to the more convex velocity profiles near the oscillating boundary, 
when compared with Figure 3(a). Such a tendency is also relevant in the time series of the velocity profiles at 
the middle of the channel for variations of the values of β4 and β5, as shown in Figure 5(b). When β4 and β5 
increase, plastic deformation above the oscillating boundary becomes stronger (and hence the velocity profiles 
there become sharper), resulting in larger amplitude of the velocity profiles at the center of the channel. 
However, due to the plastic deformation the phase lag only increases slightly, when compared with Figure 3(b). 
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3. CONCLUDING REMARKS  
 
The main conclusions are summarized in the following: 
 

- For unsteady parallel flows the shear generated on the oscillating boundary can better be transmitted 
toward the fluids when the elastic, viscous and plastic features of the fluids are taken into account for 
simultaneously. The penetration of the influence of the moving boundary is enhanced significantly in the 
present model than in the Newtonian model. Such an influence can be recognized by higher values of the 
boundary layer thickness. 
 
- When elastic effect increases, the fluid needs a longer time to adjust itself to the variation of the 
oscillating boundary. The most part of the shear energy is preserved in the region near the moving 
boundary. These give rise to the convex velocity profiles near the oscillating plate, and the velocity profiles 
with smaller amplitude and larger phase lag in the upper part of the flow field. 
 
- As viscosity increases, the adhesion between different layers of fluids and the solid boundary increases 
correspondingly. As a result, the shear can be transmitted most efficiently, and fairly ”straight” velocity 
profiles across the flow field are obtained. Since the viscous effect is dominant, the fluid can response to 
the variation of the external excitation (here the oscillating plate) in a faster way, resulting smaller phase 
lag of the velocity profiles. 
 
- By higher hypoplastic effect, plastic deformation occurring near the oscillating boundary is enhanced. 
This yields more convex velocity profiles near the oscillating plate in comparison with those from the 
cases of higher elastic effects, and are in particular visible when the oscillating boundary suddenly changes 
it motion direction. The amplitude of the velocity profiles in the upper part of the flow field increases as 
the hypoplastic effect increases; however, the phase lag only increases slightly due to the enhanced plastic 
deformation near the oscillating plate. 
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