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ABSTRACT 
 
In this paper, a global limit state function for load-carrying capacity of structural system is firstly set up, in 
which the margin of safety is the difference between the limit base shear of structural system and the total 
horizontal seismic action. To probabilistically assess the global seismic capacity of structure, a new point 
estimation method (PEM) for analyzing statistical moments of complex random function is put forward, and 
then it is combined with deterministic finite element analysis to produce the so-called “random pushover 
analysis (RPA)”. On the basis of the above new methodologies, a semi-analytical approach which integrates the 
improved point estimation method, pushover analysis and first order reliability method (FORM) is developed to 
analyze the nonlinear seismic reliability of structure as a global system. By applying the proposed approach in 
R.C. frame structure, the changing rules of the global seismic reliability of the structure with the coefficient of 
variation of the total seismic action and correlation coefficient of storey-level seismic forces are derived. It is 
demonstrated by a numerical example that the newly developed method in this paper is simple, practical and 
efficient compared with MCS, and that it has the same accuracy as MCS. 
 
KEYWORDS: Global Reliability, Seismic Reliability, Random Pushover Analysis (RPA), Point Estimation 
Method (PEM), First Order Reliability Method (FORM), Semi-Analytical Approach 
 
1. INTODUCTION 
 
As a conventional method in structural system reliability theory (Moses, 1982), the failure mode approach 
(FMA) is difficult to apply in civil engineering practice, since it has many disadvantages: First, the constitutive 
relations of materials are assumed to be perfect rigid-plastic, however, this is not the real case of many civil 
engineering materials, such as concrete, structural steel, soil, etc.; Second, it is hardly to identify the significant 
failure modes and determine their corresponding failure mode equations of large-scale and complex structures, 
because the number of possible failure modes of realistic complexity can be extremely large; Third, the 
correlation between failure modes is another important problem not easy to deal with; Forth, the overall failure 
probability of structural systems cannot be evaluated accurately even though the dominant failure modes and 
limit state equations are known a prior. 
On the other hand, a new trend in which structural systems reliability is approximately calculated by using 
global limit states based on nonlinear structural analysis techniques recently has been increasingly of interest in 
many different communities. This novel approach encompass the following items: (1) the integrated nonlinear 
analysis methods of structural systems considering real constitutive relations of materials, e.g., first order 
inelastic analysis, second order inelastic analysis, etc., are utilized to search for the dominant modes of failure; 
(2) the statistics of structural global load-carrying capacity are obtained by Monte Carlo simulations; (3) the 
probability density function (PDF) of the global load-carrying capacity is fitted by its first few moments; (4) a 
global limit state equation is set up, which comprises the global load-carrying capacity and structural load 
effects; (5) the classic structural component reliability theory, such as first order reliability method (FORM), is 
applied in the global limit state equation, the system reliability is then obtained approximately. This approach 



The 14th World Conference on Earthquake Engineering 
October 12-17, 2008, Beijing, China 
 
 
has two advantages: first, it can directly bypass the difficulties in searching the significant modes of failure in 
FMA; second, it can consider the real constitutive relations of structural materials. Therefore, it is a practical 
and efficient approximate method to solve the systems reliability problems of structures. In this paper, we call 
this approach as global reliability theory of structures. 
To the author’s knowledge, Gorman and Moses (1979) perhaps are the first researchers who presented the idea 
of directly computing the system reliability by structural system resistance. Grigoriu (1983) proposed a control 
variable approach to approximate the reliability of complex problems from estimators developed for the 
distribution of the control variable. Nowak and Zhou (1988, 1990) developed a numerical integration method to 
calculate the first few moments of complex random function, and then applied the approach in system reliability 
of highway bridges. Sigursdon et al. (1994) proposed a probabilistic collapse analysis method to assess the 
system reliability of jacket platforms. Zhao and Ono (1998) developed a failure mode independent performance 
function using load factor obtained by limit analysis, and then used response surface approach to approximate 
the performance function and FORM to evaluate the system failure probability of ductile frames. Onoufriou and 
Forbes (2001) reviewed and critically examined the recent developments in system reliability methods for fixed 
steel offshore platforms. Moreover, they paid special attentions to pushover analysis, simplified models and 
“component-based approach”. Ou et al. (2001) developed a probabilistic pushover analysis to approximately 
evaluate the system reliability of buildings by randomizing both the capacity spectrum and demand spectrum. 
Ou et al. (2003) also established a global limit state function considering the limit base shear of the whole 
structure based on limit analysis to evaluate the system reliability of existing fixed jacket platforms. Li and 
Cheng (2004) employed pushover analysis together with Monte Carlo simulation to check the probability 
distribution types that the global resistance of steel and R.C. frames satisfies with K-S testing. Li et al. (2002, 
2004, 2006) presented a reliability-based integrated design (RID) methodology of steel frames based on 
nonlinear structural analysis, and gave a system-level RID format like as the LRFD formulations of structural 
members to directly checks the structural system limit states and the corresponding system reliability. To 
compute the system reliability, they proposed a semi-analytical simulation method to assess the reliability of 
structural systems, which combines variance-reduction techniques including systematic sampling and antithetic 
variates simulations to obtain the moments of system resistance, the procedure of fitting the PDF of system 
resistance by exponential polynomial method (EPM), and first order reliability method (FORM). They have 
succeeded in applying their methodology in advanced design of steel portal frames with tapered members in 
industrial buildings and plane steel frames in high-rise buildings. 
The theory of global reliability provides a practical and operational means of moving from member design level 
toward system design level for reliability-based probability design of structures, and bridges the gap between the 
two design levels. Moreover, the main ideas of this theory are consistent with those of performance-based 
design theory now prevailing in the community of earthquake engineering. Therefore, it has a broader prospect 
of applications. However, the research on global reliability theory of structures is still insufficient, and has not 
been paid much attention to. Furthermore, there is a little study on the global seismic reliability of structural 
systems, and nearly all the existing research employed Monte Carlo simulation to get the moments of system 
resistance. Since the probability of failure of structures due to strong earthquakes is usually very small, the 
number of nonlinear finite element analysis required by MCS is usually around 105-107, and so the 
computational cost may be prohibitively large. 
In this paper, a global limit state function for global seismic reliability of structures is provided, which is the 
difference of the limit base shear of structural system minus the total horizontal seismic action. A new 
semi-analytical approach combing point estimation method (PEM), pushover analysis with FORM is developed 
for analyzing the global seismic reliability of structures. The developed methodology is applied in R.C. frame 
structures considering the nonlinear effects. The applied method is also compared with MCS. A numerical 
example demonstrates that the approach put forward by this paper can significantly reduce the number of finite 
element simulations, and has the same accuracy as that of MCS. 
 
2. GLOBAL LOAD-CARRYING CAPACITY LIMIT STATE FUNCTION OF STRUCTURAL 
SYSTEM AND A NEW SEMI-ANALYTICAL METHOD FOR SEISMIC RELIABILITY ANALYSIS 
 
2.1. Global Load-Carrying Capacity Limit State Function of Structural Systems 
In Chinese seismic design code of buildings (GB50011-2001), the base shear method is a prevailing approach to 
obtain the seismic action for low to medium-rise buildings. In this paper, we take the limit base shear of 
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structure as the global seismic capacity of structural system, and take the total horizontal seismic action as the 
seismic demand of structures. Based on these considerations, we propose the following global seismic capacity 
limit state function for structural systems: 

 ( , )S E S Eg V F V F= −  (2.1) 
where VS = limit base shear of structures, FE = the total horizontal seismic action of structures in the base. They 
are all random variables, so we can use static reliability theory to conduct the analysis of seismic reliability, 
which is a dynamic reliability problem in nature. 
The formulation of Eq. (2.1) is the same as the performance function of structural members in the format, in 
other words, the limit base shear VS and the total horizontal seismic action FE correspond with the resistance and 
load effect of structural members, respectively. Therefore, the classical component reliability methods such as 
FORM and SORM (Ditlevsen and Madsen, 1996) can be used to approximately compute the system reliability 
of structures. 
There is another advantage in applying Eq. (2.1) in seismic reliability analysis: the real constitutive relations of 
structural materials and nonlinear effects of structural systems can be considered through the limit base shear VS. 
As such, although Eq. (2.1) is linear in the format, the approach based on this formulation is a nonlinear 
reliability analysis method in nature. 
There are two causes for Eq. (2.1) just to include one load effect, i.e. seismic action. One reason is that both the 
mean value and the variability in the seismic intensity are much larger than those of the live loads and wind load, 
so the randomness in the live loads and wind load should not be considered, and their characteristic values are 
taken, when analyzing the seismic reliability of structures. Therefore, only one single random load, i.e., seismic 
action, is included in Eq. (2.1). The second reason is that, when the total horizontal seismic action is computed, 
the equivalent total gravity load has included the combination effects of dead loads, live loads and wind load, so 
the total horizontal seismic action FE is equivalent to the comprehensive load effect. 
 
2.2. The Limit Base Shear of Structures 
The limit base shear of structures VS depends on not only the limit load-carrying capacity of structural members, 
but also the constitutive relations of materials, the correlation relationships among structural members, the 
correlation relationships between member resistance and loads, load path, system redundancy, structural types, 
loading cases of structures, etc. Due to the complexity of the problem, the traditional limit load analysis method 
is not suitable to the limit base shear analysis of structures. Instead, we take pushover analysis as the basic tool 
to evaluate the limit base shear of structures. Pushover analysis is an incremental static elastoplastic analysis 
method under the increasing monotonic load. The advantage of applying pushover analysis in system reliability 
evaluation is that it can trace the developing sequences of plastic hinges and so identify the significant failure 
modes. Actually, it is an extension of the incremental load approach proposed by Moses (1982) in system 
reliability theory of structures. 
Much research has proven that the global load-carrying capacity of structures can be approximately modeled by 
log-normal distribution. Therefore, in this paper, the limit base shear of structures is also assumed to satisfy 
log-normal distribution: 
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in which 
SVμ  and 

SVδ  are mean value and COV of SV  respectively. 
 
2.3. Equivalent Static Random Seismic Action 
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Based on response spectrum of single-degree-of-freedom (SDOF) oscillator, the equivalent static random 
seismic action can be described as 

 ( , )m
E

AF GD T GD
g

α β ξ= =  (2.5) 

where, G  is the equivalent total gravity load, D  is an appending factor considering the modeling uncertainty 

from, ( , )mA T
g

α β ξ=  is the earthquake effect coefficient, g  is the gravity acceleration, mA  is the peak 

ground acceleration (PGA), ( , )Tβ ξ  is the dynamic amplification factor, in which T and ξ  are the vibration 
period and damping ratio of the oscillator respectively. 
Ou et al. (1994) has proven that the random seismic action under deterministic earthquake intensity satisfies 
type I extreme value distribution. When the seismic intensity I takes J, the CDF of FE is 

 { }( | ) exp exp[ ( )]
EFF f I J f uα= = − − −  (2.6) 

where the distribution parameters take the forms of 

 
6

J JF FV
πα
μ

=  (2.7) 

 (1 0.45 )
J JF Fu Vμ= −  (2.8) 

where 
JFμ  and 

JFV  are the mean value and COV of FE under the jth intensity respectively. Based on the 

research of Ou et al. (1994, 1995), 0.75
JF JKFμ = , in which JKF  is the characteristic value of the horizontal 

seismic action under the jth intensity, 0.73
JFV = . Put the above results in Eqs. (2.7) and (2.8), we can obtain 

the final results: 2.34 / JKFα = , 0.5 JKu F= . 
 
2.4. A New Semi-Analytical Method for Global Seismic Reliability Analysis of Structures 
From the above statements we can come to the conclusion that the central problem of applying Eq. (2.1) in 
analysis of global seismic reliability is how to get the moment information of limit base shear VS, since the 
probability model and distribution parameters of random seismic action FE have been certain. Most of the 
available research generally makes use of Monte Carlo simulation combined with pushover analysis to obtain 
the samples and then the estimators of statistical moments. To reduce the variance of simulation, many 
techniques have been introduced, such as importance sampling, systematic sampling, antithetic variates, etc. 
Unfortunately, the computation cost of these random simulation approaches based on MCS is still extremely 
large. In next section, we will propose a random pushover analysis approach based on point estimation method 
(PEM), which can significantly reduce the number of nonlinear finite element analysis while keeping the same 
accuracy as MCS. 
After obtaining the statistical moments of VS by numerical analysis techniques, the approximate analytical 
method such as FORM/SORM can then be applied to solve Eq. (2.1). For this purpose, we suggest herein a new 
semi-analytical method as follows: 
(1) Obtaining the statistical moments of limit base shear VS by using random pushover analysis based on point 
estimation method; 
(2) Fitting the PDF of VS according to its statistical moments. If the probability model of VS can be decided a 
prior, then this step can be omitted; 
(3) Using FORM and/or SORM to solve Eq. (2.1). 
 
3. RANDOM PUSHOVER ANALYSIS BASED ON POINT ESTIMATION METHOD AND ITS 
APPLICATIONS IN PROBABILISTIC ANALYSIS OF STRUCTURAL LIMIT BASE SHEAR 
 
3.1. Characteristics and Difficulties of Probabilistic Analysis of Structural Limit Base shear 
Since there are randomness and uncertainties in many factors influencing structural limit base shear VS, we 
should make use of probability theory to analyze and compute the statistical moments of VS. Put all factors 
influencing VS together into a basic random vector 1 2[ , , , ]T

nX X X=X , then VS can be generally denoted as 
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an implicit and nonlinear function of X: 

 1 2( ) ( , , , )S nV h h X X X= =X  (3.1) 
There exist the following characteristics and difficulties in probabilistic analysis of limit base shear of structures: 
(1) Multiple scales. The factors influencing VS can be classified as five scales, i.e. material scale, section scale, 
member scale, sub-structure scale and structural system scale. The random information propagates across the 
above scales from bottom to top, so as to make the analysis of uncertainty propagation very difficult. (2) 
Nonlinearity. The limit base shear of structures is a nonlinear function of the above influencing factors in nature, 
especially in the case that the structure goes into the severe damage or even collapse. (3) Correlation. There may 
be correlating relations to some degree between the factors in the same scale, or between the factors across the 
different scales. (4) Highly implicitness. The limit base shear is usually determined by numerical analysis 
techniques, such as FEM. Therefore, the limit base shear is a highly implicit function of basic random variables, 
generally takes the form of a black box. 
Due to the above difficulties, the conventional methods for analysis of uncertainty propagation, such as 
mean-value first order second moment (MVFOSM) method and Monte Carlo simulation, have the 
disadvantages of low accuracy or too much computational cost. Therefore, we should look for some approaches 
whose accuracy and efficiency can all be accepted by engineering community, among which the point 
estimation method is such an approach. 
 
3.2. Point Estimation Method Based on Nataf transformation 
Point estimation method (PEM) was proposed by Rosenblueth (1975) to approximate the lower-order moments 
of functions of random variables. It is a special case of numerical quadrature based on orthogonal polynomials. 
For normal variables, it corresponds to Gauss-Hermite quadrature. While the point estimate method is popular 
in practice, it has many detractors. Numerous modifications or improvements have been made for the original 
PEM. However, the early developments of PEM are all undertaken in the original space of random variables, 
requiring the higher order moments of random variables without considering the distribution information. To 
overcome these shortcomings, Zhao and Ono (2000) introduced a new point estimation method based on 
Rosenblatt transformation in which the numerical quadrature is completed in standard normal space. 
Unfortunately, Rosenblatt transformation cannot deal with the case of random variables with given marginal 
distributions and correlation information. In this paper, we introduce Nataf transformation (Liu and Der 
Kiureghian, 1986) into Zhao-Ono point estimation method. 
The forward Nataf transformation NT can be denoted by 

 1 1
0: [ ( )]NT − −= Xu L Φ F x  (3.2) 

where, x  and u  are the realizations of n dependent non-normal random variables X  and independent 
standard normal random variables U , respectively; 1()−Φ  represents the column vector composed of all 
inverse functions of standard normal random variables; ( )XF x  is the column vector comprised of CDFs of 
random variables ( 1, , )iX i n= ; 0L  is the lower triangle matrix of Choleski decomposition of correlation 

coefficients matrix 0R  of dependent normal random vector 1[ ( )]−= XY Φ F x , i.e. 0 0 0
T=R L L ; the 

relationships between the elements 0,ijρ  of 0R  and the elements ijρ  of R , the correlation coefficients 
matrix of X , are 

 0,ij ij ijFρ ρ=  (3.3) 

where, the coefficient ijF  is function of correlation coefficient ijρ  and marginal distributions ( )
iX iF x  and 

( )
jX jF x  of random variables iX  and jX . In general, 1ijF ≥ . Liu and Der Kiureghian (1986) gave the 

practical formula for computing coefficient ijF  corresponding to different probability distributions. 

The inverse Nataf transformation 1
NT − can be denoted by 

 1 1
0: [ ( )]NT − −= Xx F Φ L u  (3.4) 

where, 1( )− ⋅XF  represents the column vector composed of all inverse functions of random 
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variables ( 1, , )iX i n= ; ( )⋅Φ  denotes the column vector comprised of all CDFs of standard normal random 
variables. 
The computation of the first two moments of random function ( )h X  is undertaken in the standard normal 
space by using the inverse Nataf transformation, 

 1( ) ( ) ( ) ( )h N nh f d h T dμ ϕ−⎡ ⎤= = ⎣ ⎦∫ ∫Xx x x u u u  (3.5a) 

 [ ] { }222 1( ) ( ) ( ) ( )h Z N Z nh f d h T dσ μ μ ϕ−⎡ ⎤= − = −⎣ ⎦∫ ∫Xx x x u u u  (3.5b) 

where, hμ  and hσ  are mean value and standard deviation of random variable h  respectively; ( )fX x  is the 
joint PDF of random vector X ; ( )nϕ u  is the joint PDF of n-dimension standard normal random variables. 
For single-variable function ( )h X , Nataf transformation reduces to iso-probability 
transformation 1[ ( )]Xx F u−= Φ , and then Eq. (3.5) can be approximated by using Gauss-Hermite numerical 
quadrature in standard normal space: 

 { }1

1

[ ( )]
m

h j X j
j

P h F uμ −

=

≈ Φ∑  (3.6a) 

 { } 22 1

1
[ ( )]

m

h j X j h
j

P h F uσ μ−

=

⎡ ⎤≈ Φ −⎣ ⎦∑  (3.6b) 

where, ( 1, , )ju j m=  are estimation points; jP  are corresponding weights; m  is the number of 
estimation points. 
The abscissas jx  and weights jw  of Gauss-Hermite quadrature with weight function 2exp( )u−  are listed in 
Table 3.1. 
 

Table 3.1 Abscissas and weights for Gauss-Hermite integration 
Order ( m ) Abscissas ( jx ) Weights ( jw ) Order ( m ) Abscissas ( jx ) Weights ( jw ) 

1 0 1.7724538509 0 0.9453087205
2 ±0.707106781 0.8862269255 ±2.020182871 0.0199532421

0 1.1816359006
5 

±0.958572465 0.39361932323 
±1.224744871 0.2954089752 ±2.350604974 0.0045300100
±1.650680124 0.0813128354 ±1.335849074 0.15706732034 
±0.524647623 0.8049140900

6 
±0.436077412 0.7246295952

0 0.8102646176 ±2.930637420 0.0001996041
±2.651961357 0.0009717812 ±1.981656757 0.0170779830
±1.673551629 0.0545155828 ±1.157193712 0.2078023258

7 

±0.816287883 0.4256072526

8 

±0.381186990 0.6611470126
 
The estimating points ju  and weights jP  in Eq. (3.6) can be obtained according to Table 3.1: 

 2 , j
j j j

w
u x P

π
= =  (3.7) 

For a function of random variables ( )h X , it is approximated by a non-product function proposed by Zhao and 
Ono (2000): 

 
1

( ) ( ) ( )
n

i
i

h h H H H
=

′≈ = − +∑ μ μX X  (3.8) 

in which, 
 1( ) ( , , , , )i nH h h μ μ μ= =μ μ  (3.9) 
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 1
1 2 1 1( ) ( ) ( , , , , , , , )i N i i i i i nH h T H H u u u u u uμ μ μ μ μ

−
− +⎡ ⎤= = =⎣ ⎦u u  (3.10) 

where μ  represents the vector in which all the random variables take their mean values; iu  represents the 
vector in which only iu  is a random variable, while other variables take the corresponding transformed values 
of their mean values in standard normal space; ( )ju j iμ ≠  is the jth element of the transformed vector μu  

who corresponds the vector μ  in standard normal space u ; 1( ) [ ( )]NH h T −=u u  is the formulation of random 
function ( )h x  in standard normal space based on Nataf transformation. 
Note that we have introduced Nataf transformation into Eq. (3.8), so it is different from that proposed by Zhao 
and Ono, although their forms are the same. 
Based on Eq. (3.8), the first two moment of multi-variable random function ( )h X  can be estimated by 

 
1

( )
n

h i
i

H Hμ μ
=

≈ − +∑ μ μ  (3.11a) 

 2 2

1

n

h i
i

σ σ
=

≈∑  (3.11b) 

where iμ  and iσ  are mean value and standard deviation of iH  by using point-estimation of single-variable 
function. 
 
3.3. Application of Point-Estimation Based Random Pushover Analysis in Statistical Moments Computation 
of Structural Limit Base shear 
The nature of point estimation method is that it is a kind of deterministic sampling in standard normal space 
according to Table 3.1 and Eq. (3.7), whose total sampling number is m n× , in which m  is the order of 
numerical quadrature, and n  is the number of basic random variables. Compared with the huge sampling 
number of Monte Carlo simulation, obviously the sampling number of point estimation method reduces 
dramatically. On the other hand, from the viewpoints of experimental design, point estimation method belongs 
to a kind of deterministic experimental design. 
Since point estimation method makes use of deterministic sampling or experimental design techniques, we can 
combine this method with deterministic finite element analysis, herein the pushover analysis, to compute the 
statistical moments of limit base shear of structures. We call this combination of pushover analysis with point 
estimation method as “random pushover analysis (RPA)”, the detailed implementation steps are as follows: 
(1) Building the finite element model of structure; 
(2) Determining the probability distribution types and their distribution parameters of basic random variables 
X  that influence the limit base shear SV  of structures; 
(3) Generating structural samples by sampling of the basic random variables X  according to Table 3.1 and Eq. 
(3.7); 
(4) Conducting pushover analysis for each structural sample to derive its base shear-top displacement curve, 
from which the limit base shear is obtained; 
(5) Computing the statistical moments of limit base shear SV  according to Eqs. (3.8) to (3.11). 
 
4. Application of the methodology to a R.C. frame building 
 
4.1. Basic Data of the Structure 
The analyzed structure shown in Figure 1 is a three-bay and six-storey reinforced concrete frame building, the 
sizes of beams and columns are listed in Table 4.1. The uniformly distributed load on the top floor is 16.6 KN/m, 
the loads on other floors are all 20.06 KN/m. 
 
4.2. Probability Models and Statistical Parameters of Basic Random Variables 
According to the research of Ou et al. (1994, 1995), the random horizontal seismic forces acting on structural 
floors computed by base shear method all satisfy Type-I extreme value distribution. The statistical parameters of 
storey-level seismic forces according to Eqs. (2.7) and (2.8) are listed in Table 4.2. Ou et al. (1995) assumed that 
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the storey-level seismic forces were perfect correlation. In order to investigate the effects of the variation of total 
horizontal seismic action and correlation relation of storey-level seismic forces on the limit base shear of 
structures, this paper assumes the variation of total horizontal seismic action changes from 0.1 to 1.0; while the 
correlation coefficient of storey-level seismic forces changes from 0 to 0.9. The randomness considered in 
structural resistance includes yielding strength fc of concrete, yielding strength fy, elasticity modulus E and the 
second stiffness factor α of steel, their probability models and distribution parameters are also listed in Table 
4.2. 
 

 
 

Figure 1 Three-bay and six-storey R.C. frame 
 

Table 4.1 Sizes of structural members 

Members Height (mm) Width (mm) Strength Grade
of Concrete 

Steel Grade 
of rebar 

Steel Grade 
of hoops 

Interior Columns 500 500 C30 HRB335 HPB235 
Exterior Columns 500 500 C30 HRB335 HPB235 

Main Beams 600 300 C30 HRB335 HPB235 
Side Beams 500 200 C30 HRB335 HPB235 

 
Table 5.2 Statistics and probability types of basic random variables 

RVs Mean value Std COV Types Correlation 
coefficient 

fc (N/mm2) 14.3 2.86 0.2 
fy (N/mm2) 363 72.6 0.2 
E (N/mm2) 2×105 0.4×105 0.2 

Log-normal 

α 0.05 0.001 0.2 normal 

0.3 

F1 (KN) 33.513 3.351~33.513 0.1~1.0
F2 (KN) 58.379 5.838~58.379 0.1~1.0
F3 (KN) 80.345 8.035~80.345 0.1~1.0
F4 (KN) 98.292 9.829~98.292 0.1~1.0
F5 (KN) 111.170 11.117~111.170 0.1~1.0
F6 (KN) 91.721 9.172~91.721 0.1~1.0

Type-I  
largest 0.0~0.9 

 
4.3. Probabilistic Analysis of Limit Base shear of the Structure 
By applying the random pushover analysis based on Nataf transformation proposed in this paper in probabilistic 
analysis of limit base shear of the R.C. frame, the changing rules of mean value and standard deviation of limit 
base shear with COV of total horizontal seismic action and correlation coefficient of storey-level seismic forces, 
as shown in Figures 2 and 3. 
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(a) Mean value of limit base shear (b) Std of limit base shear 

Figure 2 Changing of mean value and standard deviation of limit base shear with COV of seismic action 
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(a) Mean value of limit base shear (b) Std of limit base shear 

Figure 3 Changing of mean value and standard deviation of limit base shear with correlation coefficient of 
storey-level seismic forces 

 
From Figure 2 it is evident that the mean value and standard deviation of limit base shear tend to be large with 
the increasing of COV of total horizontal seismic action. This result is predictable since the pushover results of 
structures depend on the loading cases and lateral load patterns. Obviously, the more is the randomness in the 
total seismic action, the more are the statistics of limit base shear. 
From Figure 3 we can see that the mean value and standard deviation of limit base shear do not necessarily 
increase with the correlation coefficient of storey-level seismic forces. When correlation coefficient 0.6ρ > , the 
mean value of limit base shear becomes smaller; while when 0.7ρ > , the standard deviation becomes smaller. 
If we assume the storey-level seismic forces are all perfect correlated, then the conservative results will be 
obtained. In other words, the storey-level seismic forces are not perfect correlated in nature, since the 
combinations of dead load, live load and wind loads have been considered when calculating the characteristic 
value of total seismic actions, thus it lead to the partial correlation between storey-level seismic forces. 
 
4.4. Seismic Reliability of Global Load-Carrying Capacity of the Structure 
We herein only analyze the seismic reliability of structures under major earthquakes by means of first order 
reliability method (FORM) based on the established system-level limit state. The first two moments of the total 
horizontal seismic action according to base shear method and Eqs. (2.7) and (2.8) are listed in Table 4.3. 
 

Table 4.3 Statistics of total horizontal seismic action 
Characteristic value (KN) Mean value (KN) Std (KN) COV 

631.224 473.418 236.709 0.5 
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By using the semi-analytical method proposed in this paper, the changing rules of the reliability index of global 
load-carrying capacity of the structure with the COV of total seismic actions and the correlation coefficient of 
storey-level seismic forces, as shown in Tables 4.4 and 4.5 as well as Figures 4 and 5, are obtained. To 
investigate the accuracy and efficiency of the proposed method, Monte Carlo simulations are also conducted 
with simulation number 610N = . The results of MCS are also listed in the corresponding tables and figures.  
 

Table 4.4 Results of global seismic reliability index considering the variations of total seismic action 

iFδ  0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

FORMβ  2.8645 1.9306 1.5394 1.3209 1.1716 1.0667 0.9836 0.9248 0.8537 0.8220

MCSβ  2.8699 1.9335 1.5380 1.3216 1.1729 1.0684 0.9874 0.9300 0.8572 0.8280
 

Table 4.5 Results of global seismic reliability index considering the correlation of storey-level seismic forces 

iFρ  0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

FORMβ  0.9032 0.9695 1.0161 1.0492 1.0704 1.0821 1.0838 1.0741 1.0447 0.9772

MCSβ  0.9003 0.9706 1.0189 1.0493 1.0710 1.0844 1.0824 1.0756 1.0453 0.9774
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Figure 4 Changing of global seismic reliability index with the COV of seismic action 
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Figure 5 Changing of global seismic reliability index with the correlation coefficient of seismic forces 

 
From Tables 4.4 and 4.5, it is evident that the results by using the method proposed in this paper has nearly the 
same accuracy as that of MCS, while the number of nonlinear finite element analysis in our method is only 50. 
It is shown from Table 4.4 and Figure 4 that the global reliability index tend to become smaller with the 
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increasing of COV of total seismic action, and that the speed of decreasing becomes more rapidly. This 
illustrates that the more the randomness in total seismic action is, the smaller the reliability index is, and hence 
the larger the failure probability is, which makes the structure more unsafe. 
It is shown from Table 4.5 and Figure 5 that the global reliability index tends to become larger with the 
increasing of correlation coefficient of storey-level seismic forces when 0.6ρ < . When 0.6ρ = , the global 
reliability index attains the largest value. Otherwise, when 0.6ρ > , the global reliability index becomes 
smaller. This result shows that not considering the correlations between storey-level seismic forces or assuming 
their perfect correlation will lead to conservative results in any case. 
 
5. CONCLUSIONS 
 
This paper built up a global load-carrying limit state function based on limit base shear, put forward a new 
semi-analytical method to analyze the nonlinear global seismic reliability of structures, which comprises point 
estimation method, pushover analysis and FORM. By applying the proposed methodology in reinforced 
concrete frame buildings, some changing rules of global seismic reliability of the structure with COV of total 
seismic action and correlation coefficient of storey-level seismic forces were obtained. Through the 
comprehensive study in this paper, some conclusions are derived as follows: 
(1) The method of system reliability analysis based on global load-carrying capacity is simple, practical and 
efficient. On the one hand, this method can overcome many difficulties of conventional system reliability 
theory; on the other hand, it can be linked with the current design codes so that the static reliability method can 
solve the difficult dynamic seismic reliability problems. 
(2) Semi-analytical method is a compound approach which combines numerical simulation or integration 
methods, deterministic finite element analysis and approximate analytical reliability methods such as 
FORM/SORM. This method is a practical and efficient approach to conduct the seismic reliability analysis of 
large-scale and complex structures. The practice shows that this method has the same accuracy as MCS. 
(3) Random pushover analysis is a good alternative for probabilistic seismic capacity analysis (PSCA) of 
structures. Meanwhile, it is also an efficient tool of uncertainty propagation structural system. 
(4) The variation of total seismic action and the correlation between the storey-level seismic forces have great 
effect on the limit base shear and the global seismic reliability of structures. 
(5) The methodology proposed in this paper can be extended to probabilistic seismic performance assessment 
and design of structures based on global reliability. 
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