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ABSTRACT : 

In the most widely used model for analyses of piles under lateral loads, the discrete Winkler model, the pile is 
modeled as beam elements and the soil is represented by disconnected, concentrated springs normal to the pile 
axis. The literature shows that for dynamic analyses of piles, the soil stiffness and damping properties can be
adequately included through lumped springs and dashpots, whereas no lumped masses are added to represent 
the soil inertia effects. The objective of this paper is to present a simple model to represent the soil that includes 
its inertial effects and to investigate their importance on the dynamic response of single piles. 
 
The proposed methodology is based on a lumped model consistent with the Winkler proposition.  The 
parameters of the discrete model were obtained by approximating the continuous (plane strain) model 
developed by Novak. In the proposed approach, the pile-soil interaction is accounted for by three frequency 
independent elements: a spring with stiffness ka, a mass ma, and a dashpot with coefficient ca. The 
spring-mass-dashpot coefficients representing the soil are defined by simple equations. The proposed model 
was used to demonstrate that a lumped soil mass is not required for small/medium soil Poisson’s ratios. 
However, consideration of the soil mass was found to be important for soil deposits with high Poisson’s ratios
(e.g., undrained loading of saturated soils where ν = 0.5).  For the case of saturated soils the inertia 
contribution due to the soil lumped masses is of the same order of the pile mass. 

KEYWORDS: Pile dynamic stiffness, pile dynamic lateral response, pile horizontal vibration, 
Winkler models. 

 
1. INTRODUCTION  
 
Piles are an extensively used foundation system typically employed to support structures placed over soft soil 
layers or where shallow foundations are not appropriate because they do not provide the required capacity or 
may experience excessive settlements or deformations. Pile foundations have to be designed to support not only 
gravity loads, but also lateral loads due to earthquakes, wind, and vehicle impact loads, among others. This 
paper will focus specifically on the response of piles to dynamic lateral loads where it is often required to 
perform dynamic analysis of the pile for transverse (lateral) vibrations. 
 
There are three major approaches to perform dynamic analysis of piles (Poulos and Davis 1980; Fleming et al., 
1992): 
 
1) The Elastic Continuum approach, in which the soil is represented as a homogeneous elastic semi-space. The 
advantage of this approach is that it automatically includes the radiation of energy to infinity, known as radiation 
damping, through the complex expression of the pile impedance function.  
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The drawbacks are that it is only applicable to viscoelastic materials, the nonlinear behavior can only be 
accounted for by changing the elastic modulus of the full space (it does not allow for localized plastification), 
and the boundary conditions are limited to soil deposits with homogeneous layers.  
 
2) The Finite Element (FE) approach in which a finite soil domain is discretized with FE elements and 
approximate boundary conditions are imposed. The Boundary Element and Finite Difference Methods can be 
also considered in this category. Due to the cost of the specialized software, the time consuming model 
generation and solution, the FE approach is usually only used for large projects. 
 
3) The Winkler model, also known as Beam on Elastic Foundation, Beam on Winkler Foundation, and 
subgrade-reaction approach. This model was originally proposed by Winkler in 1867, and it considers that the 
deflection (y) at any point of the soil in contact with the pile is linearly related to the contact pressure (p) at that 
point. Although it is criticized because of the lack of continuity of the soil model due to the fact that the 
displacements at a point of a soil are not influenced by stresses and forces at other points, this approach has 
been widely employed in foundation engineering practice (e.g., Poulos and Davis, 1980; El Naggar and Novak, 
1996; Wang et al., 1998; Mostafa and El Naggar, 2002). Some of the advantages of this approach are: 1) it is 
simple to implement; 2) it permits fast problem modeling and solution computation; 3) it can take into account 
the variation of soil stiffness with depth and the layering of the soil profile; 4) it has the ability to simulate 
nonlinearity (through p-y curves), and hysteretic degradation of the soil by changing the modulus of
subgrade-reaction, 5) There is a large body of knowledge associated to the method (e.g., there are many
empirical correlations to determine the modulus of subgrade-reaction, etc). 
 
To implement the beam on elastic foundation model for the case of dynamic loads, the soil stiffness and
damping contributions are represented by a series of unconnected lumped springs and dashpots distributed 
along the pile length. Usually no lumped mass representing the soil inertia is considered. It was also proposed 
to use a dynamic stiffness (Novak, 1974), but its implementation is difficult because the expressions for the
dynamic stiffness are complex and frequency dependent. This approach can only be implemented in the 
frequency domain analysis, and because it is based on the superposition principle, it cannot be applied to 
analyze nonlinear cases. 
 
The objective of this work is to find simple, frequency independent expressions to represent the pile-soil 
interaction through a lumped model, consistent with the Winkler hypothesis, formed by a spring with stiffness 
ka, a dashpot with coefficient ca and a mass ma. The model parameters are obtained by approximating the 
continuous, plane strain model developed by Novak (1974). The simple, independent expressions derived in 
this paper allowed one to study the effect of soil properties and its inertial contributions to the pile-soil 
interaction problem. The model with lumped soil masses is used to parametrically study the importance of the 
soil inertial effects.   
 
 
2. NOVAK’S DYNAMIC STIFFNESS OF SOILS  
 
Novak (1974) presented an approximate analytical expression for the dynamic stiffness of piles based on linear 
elasticity. Novak (1974) assumed that the soil is composed of a set of independent, infinitesimally thin 
horizontal layers in plane strain state that extend laterally to infinity and experience small displacements. The 
soil layers are considered homogeneous, isotropic, and linear-elastic. The pile is assumed to be vertical, 
cylindrical and moving as a rigid body (a hypothesis that is consistent with the Navier-Bernoulli beam theory). 
The massless rigid circular disc that represents the pile cross section is considered to experience a harmonic 
vibration. No separation is allowed between the rigid cylinder and the soil medium.  
 
This approach was later extended by Novak and his coworkers (Novak and Abloul-Ella, 1978; Novak et al. 
1978) to viscoelastic materials with frequency independent material damping (also called hysteretic damping). 
The damping is considered by means of the Complex Shear Modulus G* = G + i G’ = G (1 + i D) , where the 
parameter D, known as the loss factor, is defined in terms of the loss angle δ: 
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where D is the loss factor; G and G’ are, respectively, the real and imaginary part of the shear modulus. 
 
The complex horizontal stiffness of the soil associated with a unit length of the cylinder, ku, (or the dynamic 
soil reaction per unit length of pile to a unit horizontal harmonic displacement of the rigid disc) is given by the
following equation: 
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in which Kn is the modified Bessel function of the second kind of order n, ao is a dimensionless frequency = 
ωro/VS, ω is the vibration frequency in rad/s, ro is the pile radius, Vs is the shear wave velocity of the soil; ao

* = 
ao i / √ (1+ i D) ; bo

*=  ao
* /η ; η = √ (2 (1-ν)/(1-2ν)); and ν is the Poisson’s ratio of the soil. 

 
The three dimensional nature of the pile-soil system under horizontal vibrations can now be simplified to a 
planar model, using beam elements to represent the pile and linear springs with a dynamic stiffness ku to 
represent the soil, as shown schematically in Figure 1(a).   

 

 
Figure 1 Two dynamic pile-soil models 

 
 
3. PROPOSED LUMPED MASS MODEL  
 
Consider a single degree of freedom (SDOF) system consisting of a rigid body with mass M constrained to 
move along one axis, and attached to a fixed support by a spring of stiffness K and a dashpot of constant C. By 
definition, the dynamic stiffness or impedance Kd(ω) is the amplitude of the harmonic force of frequency ω,
F(t)= Kd(ω) eiωt, that must be applied to the SDOF system to obtain a unit steady state harmonic displacement 
of frequency ω, X(t) =1 eiωt. It is straightforward to show that the dynamic stiffness of the SDOF system is: 
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 ( ) 2Kd K M i Cω ω ω= − +  (3.1) 

By grouping the real part and the imaginary part, Novak’s soil dynamic stiffness ku (Eqn. 2.2) can be rewritten
as follows: 
 
 ( ) ( ) ( ){ }, , Real , , Imag , ,o o oku G f a D G f a D i f a Dπ ν π ν ν   = = +     (3.2) 

In the proposed model, the Novak complex stiffness, ku, is approximated as a quadratic polynomial in ao.  In this 
way, ku is equivalent to the dynamic stiffness of a SDOF system (Eqn. 3.1). This is done by introducing the 
following approximations in the real and imaginary parts of the complex function f(ao,ν,D): 
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Comparing ku in Eqn. 3.3 with the dynamic stiffness of a SDOF system given by Eqn. 3.1, one can obtain the 
stiffness coefficient ka, the lumped mass ma, and the lumped viscous damper coefficient ca (representing the 
radiation damping):   
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The coefficients defined by the simple expressions in Eqn. 3.4 constitute an approximation to Novak’s model. 
Note that the coefficients are defined per unit of pile length and are frequency independent. The proposed 
lumped mass model is shown schematically in Figure 1(b). 
 
 
4. DETERMINATION OF COEFFICIENTS OF THE LUMPED MODEL 
 
The coefficients αk, αm, and αc in Eqn. 3.3 were determined by a least square approximation of the Novak’s 
dynamic stiffness function f(ao,ν, D) defined by Eqn. 2.3. The curve fitting was done for a loss factor D = 0 and 
for different soil Poisson’s ratios ν, in order to obtain an adequate approximation of the function for a range of
the dimensionless frequency ao from 0 to 3. The coefficients αk and αm were obtained from the real part of 
f(ao,ν, D), while the coefficient αc is established from the imaginary part of f(ao,ν, D). An example of such 
curve fitting for ν = 0.5 is presented in Figure 2. Table 1 and Figure 3 present the variation of the regression 
coefficients for soil Poisson’s ratios ν, ranging, in a descendent order, from 0.5 to 0. It is evident from this 
figure that the coefficient αm, and hence the lumped mass ma, can have significant values for high Poisson’s 
ratios. For ν near 0.5 (i.e., saturated soils under undrained loading) αm tends to 1, and the resulting ma will have 
a value of the same order as the pile mass (if the soil density is considered to be of the same magnitude than the 
pile material). This situation may have a significant impact on the pile-soil system response, i.e., location of the 
peaks in a frequency response analysis. Therefore the effect of the soil mass should be accounted for in these 
cases. 
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Figure 2 Example of the proposed curve fitting for the real and the imaginary parts of f(ao,ν, D) for ν = 0.5 
 

Figure 3 Variation of the regression coefficients with Poisson’s ratio from 0.5 to 0.0. 
 

Table 1 Values of the regression coefficients for Poisson’s ratio from 0.5 to 0.0. 
ν αk αm αc 

0.50 1.721 0.965 4.107 
0.49 1.611 0.682 4.389 
0.48 1.463 0.457 4.338 
0.47 1.399 0.322 4.209 
0.46 1.369 0.235 4.066 
0.45 1.354 0.177 3.929 
0.40 1.327 0.051 3.425 
0.30 1.307 - 2.941 
0.20 1.294 - 2.712 
0.10 1.261 - 2.579
0.00 1.230 - 2.491

 
 
5. VERIFICATION AND VALIDATION OF THE LUMPED MODEL 
 
A brief description of the model verification and validation is presented in this section. For more details the 
reader may consult Pacheco-Crosetti (2007). 
 
As described in Section 3, the proposed lumped-mass model is based on using approximate polynomial 
functions that are frequency independent.  The first verification undertaken was to assess the accuracy of the 
approximate polynomial functions. This was done by comparing these polynomial functions with Novak’s 
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original formulation.  Comparisons presented in Pacheco-Crossetti (2007) in terms of the coefficient of 
determination R2 and the coefficient of variation showed that the proposed polynomial approximations yielded
very accurate estimates.  Another more detailed verification was performed, in which the dynamic response of 
a pile-soil system obtained using Novak’s model and the proposed lumped model were compared. The 
particular response quantity compared was the dynamic flexibility (or frequency response function) of the pile 
head. This verification involved using a wide range of soil and pile properties. The results presented by
Pacheco-Crossetti (2007) showed a very good agreement between the results of the two models.  
 
These two tests lead to the conclusion that the proposed lumped mass model is a very good approximation of 
Novak’s dynamic stiffness. The proposed simpler model can be reliably used to account for the effect of the 
stiffness and inertia of the soil surrounding the pile and the radiation of energy on the lateral vibrations of the 
structure. 
 
In addition to the tests described before, three additional tasks were carried out to further validate the proposed 
lumped mass model: 
 
First the damping and the stiffness coefficients of the approximate model were compared to values found in the 
literature and obtained with other methods. In particular, the damping coefficient ca was compared to the one 
proposed by Berger et al. (1977), as reported by Wang et al. (1998), and by Gazetas and Dobry (1984). Figure 4
presents the ratio between the proposed coefficient ca and the coefficient cB from Berger et al. It is evident that 
both models predict similar radiation damping coefficients for all Poisson’s ratio values.  
 

Figure 4 Ratio between damping coefficients ca and cB for different Poisson’s ratios 
 

The stiffness coefficient ka was compared to the parameter kh proposed by Klar et al. (2004) for buried pipes, 
consisting in two times the coefficient of subgrade reaction for beams resting on isotropic elastic medium 
presented by Vesić (1961). Figure 5 shows the ratio between the coefficients ka and kh, as a function of the soil 
modulus of elasticity for different pile modulus of elasticity and for a soil Poisson’s ratio equal to 0.3. It can be 
appreciated from this figure that the proposed model predicts a higher stiffness than Vesić’s model. 
 
Next a comparison with the experimental results of pile head dynamic stiffness presented by De Napoli (2006)
was carried out. Figure 6 shows the real component of the dynamic stiffness obtained with the proposed model 
and the experimental results by De Napoli (2006). The prediction shown was done using a simple model that 
did not attempt to capture layering and detailed stiffness variations with depth. As can be seen there is a 
reasonable agreement between the two sets of results, particularly given that the results by De Napoli (2006)
involved impact load tests on full-scale large diameter drilled shafts installed in a natural loess deposit. More 
details of this study can be found in Pacheco-Crossetti (2007). 
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Figure 5 Ratio ka/kh for different moduli of elasticity of the soil and the pile, and Poisson’s ratio ν = 0.3 
 

Figure 6 Experimental vs numerical pile dynamic stiffness, real component 
 
Finally a comparison of the response obtained by 3D FE models and the proposed model was undertaken. Once 
again, the results presented in Pacheco-Crossetti (2007) showed reasonable agreement between the two 
approaches. 
 
 
6. CONCLUSIONS  
 
A simplified lumped model for the analysis of piles in lateral vibration, consistent with the Winkler hypothesis, 
was obtained by performing a regression analysis of the complex dynamic stiffness of the continuous (plane 
strain) model developed by Novak. The proposed lumped model has been proven to be a reliable approximation
to the frequency dependent formulation of Novak. 
 
In the proposed approach, the pile-soil interaction is taken into account through three frequency independent 
elements: a spring with stiffness ka, a lumped mass with value ma, and a dashpot with coefficient ca. The 
spring-mass-dashpot coefficients ka, ma, and ca that represent the soil can be obtained by means of simple 
equations. These equations include three parameters αk, αm, and αc that depend on the soil Poisson’s ratio.
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The proposed lumped model was used to demonstrate that it is not necessary to include lumped soil masses for 
soils with low or medium values of the Poisson’s ratio (ν ≤ 0.3). However, accounting for the soil mass is 
important for high Poisson’s ratios, as it occurs in saturated soils under undrained loading. For ν = 0.5, the soil 
mass contribution is of the same order than the pile mass. 
 
The model presented has the following advantages: 1) The coefficients ka, ma, and ca are obtained by the simple 
independent expressions; 2) The coefficients are frequency independent, allowing the user to perform analyses
in the time domain; 3) The model is easy to program in the user’s sofware, and it can also be used with general 
purpose FEM software, since the frequency independent concentrated spring-mass-dashpot elements are
available in most commercial analysis packages; 4) The model could be extended to perform nonlinear dynamic
analysis of pile-soil systems, by replacing the spring constant ka by a nonlinear static soil response, such as the 
one provided by the p-y method; 5) Having independent expressions for the stiffness coefficient (ka), the 
dashpot coefficient (ca), and the mass (ma), instead of a complex variable equation for the dynamic stiffness, 
permits to perform sensitivity analyses, i.e. to evaluate the impact of the variation of each coefficient in the
system response; 6) The time required for pre-processing, running the analysis, and post-processing is orders of 
magnitude smaller than the one required by more refined methods (such as a 3D FEM); and 7) A simple model 
is more prone to be adopted by the professional community, and may even be used to introduce pile dynamics 
and soil-structure interaction problems at the undergraduate level. 
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