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ABSTRACT :

In the recent years, there has been increasing literatures focusing on the applications of ANNs in structural
damage detection. Some researchers have done fundamental works separately in damage detection based on
Back Propagation networks. However, adequate importance has not been attached to the some defects of BP neural
networks. This paper integrates Bold Driver technology, momentum item, simulated annealing algorithm and
stochastic hill-climbing algorithm to modify the traditional BP neural networks. The new modified BP networks have
several advantages, such as quick convergence, escaping from local minimum and auto-optimizing network
topology. Finally the developed method based on modified BP neural networks will be applied in Runyang Yangzi
suspension bridge. The results show that the method can effectively extract hanger’s damage pattern and
effectively locate the hanger damage.
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1. INTRODUCTION

In the recent years, there has been increasing literatures focusing on the applications of ANNs in structural
damage detection. Among them, Back Propagation networks are the mostly used networks. Some researchers,
e.g. (Wu et al. 1992), (Elkordy et al. 1994), (Pandey 1995), (Hanagud and Luo 1997), (Yun and Bahng 2000),
(Masri et al. 2000), (Lam et al. 2006), have done fundamental works separately.

A Back-Propagation neural network consists of one input layer, one or more hidden layers and one output
layer. Every node in each layer is connected to every node in the adjacent layer. The trained network can serve
as a nonlinear mapping function between the input set and the output set. The training process consists of two
stages, feed-forward and back-propagation. In the feed-forward stage, the current layer output, which is a
nonlinear function of summarized former layer’s output, are multiplied with weights and transferred to the next
layer. In back-propagation stage, the weights of cells are modified according to the error signals to minimize the
target error. Back-propagation learning rules usually adopt the gradient descent arithmetic. The original and
detail description refers to (Rumelhart et al. 1986).

However, there are some drawbacks limits its engineering application, e.g. slow convergence, local minima,
bad extendibility, subjectivity in network architecture. This paper presents a modified BP learning algorithm,
which integrates Bold Driver technology, adding momentum item, simulated annealing algorithm and
stochastic hill-climbing algorithm to overcome the drawbacks of traditional BP networks.

2. MODIFIED BP LEARNING ALGORITHM

The learning algorithm includes two stages, shown in Figure 1. One is the forward calculation process, where
the input data are multiplied by the weights and transferred to the hidden layer cells, then to the output layer
cells. The other is the error Back-Propagation process, where the error is assigned to the cells and the weights
are updated along the inverse route.

Figure 1.  BP calculation process

In the forward process,
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The error of the k-th cell is,
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So the global error energy function can be written as,
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The learning objective can be set as minimizing the global error energy function. For output layer cells, the
differential of energy function with respect to the weights can be deduced as follows.
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Taken,
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According to the gradient descend rule, the increment of weight can be written as,
)()()( nynnw jkkj  （10）

where,   is the learning rate.
Then, the updated weights can be computed,
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For hidden layer cells, similarly, the updated weights can be obtained,
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where,
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In formulae (11) and (12), the learning rate   is a constant value. A small   means slow learning and
inefficient convergence, while a large   means quick learning and possible divergence. So a balance should
be kept between efficiency and convergence. Here adopts the Bold Driver method to dynamically keep   in a
rational area.
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where,  ,   are adjusting coefficient, and 1 , 1 .

There is plateau usually in the error energy surface, where the gradient
w
wE


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 is too small to efficiently

change the weights. A momentum factor  (0< <1) will be introduced into the weight updating formulae to
consider the contribution of the last weights updating.

For hidden cells,
)1()()()(  nwnynnw jiijji  （15）

For output cells,
)1()()()(  nwnynnw kjjkkj  （16）

The weights updating algorithm based on the gradient decent rule is a global learning algorithm, which
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usually encounters the local minimum problem. Using Simulated Annealing algorithm (Ceranic 2001) can help
the learning process to escape from the local minimum by the cell’s stochastic transition. The pseudo codes of
the algorithm are listed in the Figure 2.

Figure 2. Simulated Annealing in BP learning

Figure 3 Stochastic hill-climbing algorithm in topology optimization
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The topology structure of BP networks consist of input layer, hidden layer and output layer, of which input
layer and output layer can be determined by the problem to be solved. While how to fix the numbers of hidden
layers and hidden cells remains a hot potato. Stochastic hill-climbing (Dunn 1998) is a heuristic search
algorithm and is used to find optimal topology structure in this paper. The pseudo codes are listed in Figure 3.

3. DAMAGE LOCATION OF A LONG SPAN SUSPENSION BRIDGE

The Runyang Yangtse River Bridge consists of a suspension bridge and a cable-stayed bridge. The
suspension bridge has a length of 1490m, and a width of 33.9m. The steel box girder is sliding-supported at the
towers. The concrete tower has a height of 210.28m. Figure 4 shows the 3-d FEM model of the suspension
bridge.

1

45

Hanger index

Figure 3.  FEM model of Runyang suspension bridge
Taking the geometrical symmetry of the bridge into account, the 45 hangers at one quarter of the bridge are

selected as damage elements. The damage scenarios are categorized in five groups according to the increasing
damage extent, listed in Table 1.

Table 1.  Damage scenarios

Damage group Numbers of scenario Damage extent（％）
Simulation

method
Dg 1 45 5 E＝0.95E0

Dg 2 45 10 E＝0.90E0

Dg 3 45 15 E＝0.85E0

Dg 4 45 20 E＝0.80E0

Dg 5 45 25 E＝0.75E0

The normalized nature frequency of each damage scenario with respect to the intact bridge can be calculated.
The 1~5 and 6~10 order normalized frequencies of bending mode of damage group Dg1 are plotted in Figure 4
and Figure 5. It’s found that the damage pattern of each frequency is different. If we only focus on the first
order frequency, then the influence of damage extent can be obtained, shown in Figure 6. It is found that
damage extent doesn’t alter the nature of the damage pattern curves and it only changes the amplitude of the
curves in linear proportion.
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Figure 4. damage pattern of 1-5 frequencies

Figure 5. damage pattern of 6-10 frequencies

Figure 6. damage pattern of Dg1~Dg5

So the damage data of Dg1 and Dg5 are integrated as training data set, and damage data of Dg4 and Dg3 are
chosen as validation set and test set separately. The network has 10 input cells and 45 output cells, and hidden
cells are selected by stochastic hill-climbing algorithm. The optimal topology turns out to be one hidden layer
with 17 hidden cells.

Based on the presented learning algorithm, the trained network has memorized the damage pattern about
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hanger location. For the 45 damage scenario in Dg 3, the trained network can output its identification results.
The results, listed in Table 2, shows that the network makes 42 right decision, except for the hanger 8, 15 and
22, and the correct rate of identification is 93.3%.

Table 2. Identification results for Dg3
Location 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
results √ √ √ √ √ √ √ × √ √ √ √ √ √ ×

Location 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
results √ √ √ √ √ √ × √ √ √ √ √ √ √ √

Location 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
results √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

4. CONCLUSIONS

A modified BP learning algorithm, integrated with Bold Driver technology, momentum item, simulated
annealing algorithm and stochastic hill-climbing algorithm, is presented. And the application in the hanger’s
damage location of a suspension bridge proves that the method can effectively extract hanger’s damage pattern
and effectively locate the hanger damage.
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