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APPROXIMATE  STABILITY  BOUNDS  ON  THE  SEISMIC  FORCE
REDUCTION  FACTOR
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SUMMARY

In the equivalent lateral force and modal analysis procedures advocated by seismic codes, P-∆
effects  are usually taken into account through an amplification factor, which is a function of the
stability coefficient θ (= P/(Kh), in which P = acting gravity load, K = lateral stiffness and h =
storey height). However, this approach cannot identify situations where dynamic instability
governs, resulting in insufficient safety margins. The value of the force reduction factor R is
usually based on the structural type, without allowance for stability effects. However, stability can
impose an upper bound on R, which for elastic-plastic or bilinear structures can be much lower
than the one specified by the codes. Bernal proposed formulas to approximate stability based
strength thresholds of one degree-of-freedom structures. They are quite accurate when used with
the exact value of the spectral acceleration of a given record, but their use as design tools - when
only code spectra are available - has not been tested. Also, they may not be sufficiently simple for
design purposes. This paper proposes simple expressions for estimating stability based upper
bounds for the seismic force reduction factor R of elastic-plastic and bilinear systems, and
compares them with time history results and Bernal’s formulas. These expressions, which are a
reformulation and a modification of Housner’s criterion, are derived from energy considerations.
The proposed formulas are functions of θ only, and are very simple to apply. Their accuracy has
been tested against exact values of the limiting R, as computed by nonlinear dynamic analysis, for
a number of time histories covering relatively wide ranges of frequency distributions and natural
periods. The results of the parametric study show that the proposed expressions yield acceptable
correlation with computed values. However, they may not be conservative. Therefore, a modified
version is proposed for design purposes.

INTRODUCTION

As is known, the gravity load action on the laterally displaced configuration, usually known as the P-∆ effect,
can precipitate collapse in yielding structures due to inordinate increase in the lateral deflections, and hence in
the ductility demand, when the post-yield stiffness, as modified by gravity, is negative. The design strength of
yielding structures, as specified by seismic codes through the force reduction factor R, is based on their expected
ductility supply without taking stability effects into consideration. Therefore, when substantial gravity effects are
present, the strength of the structure may not be sufficient to limit the deflection to an acceptable level. This fact
sets an upper bound on R, which may be lower than specified by the code (e.g. De Stefano & Rutenberg 1999),
particularly for elastic-plastic and bilinear systems with a small secondary slope ratio in their force-displacement
relation.

Following extensive parametric studies on 1-degree of freedom systems, Bernal (1992) proposed statistical
expressions for the minimum base shear coefficient that is required to prevent instability. They were given as
functions of several key system and ground motion parameters. These can easily be converted into upper bound
R factors. However, albeit being quite accurate, their usefulness depends on prior knowledge of the values of the
expected elastic spectral acceleration and record duration, which are not available at the design stage. Their
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applicability as design tools - when only a design spectrum is available - has not been tested. Moreover, they
may not be sufficiently simple for use in routine design procedures.

The purpose of this paper is to review these stability bounds on R, and to compare them with a bound that can be
gleaned from the work of Housner (1960) and of Sun et al (1973). It is shown that this bound may be quite useful
for predicting the limiting value of R for bilinear hysteretic systems. A very simple formula based on this bound,
which usually yields satisfactory predictions, is proposed for design purposes.

STATISTICAL STABILITY BOUNDS

Using an ensemble of 24 ground motion time histories recorded on firm soil Bernal (1992) derived expressions
for the mean spectral ordinates at the onset of instability, or collapse spectral ordinates, of elastic-plastic and of
stiffness-degrading systems. These were given in terms of the stability coefficient θ = P/(Kh), (P = gravity load,
K= elastic stiffness, h = height of pendulum) as shown in Fig.1, T (natural period), PGV (peak ground velocity),
PGD (peak ground displacement) and the effective duration of the record teff  (central 90% of record total
energy). The following expressions for the collapse spectral ordinates Sac (T) of elastic-plastic systems were
presented:

42.1
eff

75.0
ac T/tPGV5S θ= (1)

but need not be taken as larger than:

86.12.0
eff

75.0
ac T/tPGD36S θ= (2)

The limiting value of R, i.e. RL, can then be obtained from:

)T(S/)T(SR acaeL = (3)

in which Sae (T) = elastic spectral acceleration of the record.

Consider now the design situation where Sae is given by a typical code formula, say Sae = PGA/T (T > 0.4sec),
and assume teff = 25 sec.  Substituting these values in Eqns. 1 and 2 leads to:

sec)4.0T(/T)v/a(4.0R 75.042.0
L >θ= (4)

but need not be smaller than:

sec)4.0T(/T)d/v()v/a(15.0R 75.086.0
L >θ= (5)

In which a = PGA, v = PGV and d =PGD. According to Mohraz  (1976) the mean value of v/d (in 1/sec) varies
from 3 for rock sites to 2 for deep alluvial sites. Note that Eqn. 5 may govern for a substantial part of the range.

For design purposes it may be more appropriate to use the mean plus one standard deviation (STD) prediction
for Sac, i.e., to divide Eqns. 4 and 5 through 1.4 (Bernal 1992).

Figure 1: P-∆∆∆∆ effect and its influence on bending moment and force-displacement relation
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ENERGY APPROXIMATIONS

Housner (1960) derived a very simple expression for the minimum value of the yield moment at the onset of
instability M0 as function of the spectral velocity of the record Sv and the height h (Fig. 1). His expression takes
the form:

g/hPSM V0 = (6a)

in  which g = acceleration of gravity.  Since M0 = Hh, where H = base shear, it follows that:

gh/PSH V= (6b)

Noting that P = mg (m = mass of pendulum), H = mSac(T), ω = √(K/m) = circular frequency (without gravity),
and  letting  Sae = ωSv,  it can easily be shown that:

θ= /1R L (7)

This result can also be obtained by comparing the two areas shown in Fig.2a.

Sun et al (1973) studied the free vibration stability of frames with tension-only cross bracing having elastic-
plastic force-displacement relationship. They concluded that the system would oscillate about the zero
displacement position when the spectral displacement Sd does not exceed ∆y/√θ (∆y = yield displacement, Fig.2).
In other words, they arrived at the same ratio for RL as in Eqn. 7, for limiting residual displacements rather than
for avoiding possible collapse.

A somewhat more conservative result is reached when the work demand of a fully developed collapse
mechanism, or the area under the bilinear force-displacement curve, is compared with the area under the elastic
curve (Fig. 2b), namely:

θθ−= /)1(R L (8)

Figure 2a: Derivation of Eqn. 7 Figure 2a: Derivation of Eqn. 8

For a bilinear system with a resulting effective, or net, secondary slope ratio θeff  (Fig. 3) a more lengthy
expression is obtained:

effeffL /)1(1)1(R θθ−θ+θ−= (9)

which, for small values of θ and θeff , can conservatively be approximated as:
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effL /)1(R θθ−= (10)

Figure 3: Derivation of Eqn. 9 for bilinear systems

Finally, for design purposes and for comparison with the design curve based on Eqns. 4 and 5, a more
conservative approximation based on Eqn. 7 is proposed, namely:

θθ−= /)1(R L (11)

COMPARING FORMULAS WITH DYNAMIC RESULTS

In order to obtain meaningful comparisons it is necessary to choose input ground motions that cover a relatively
wide range of earthquakes. A simple and useful parameter for characterising the frequency content of earthquake
ground motions is the ratio a/v, in which a = PGA and v = PGV of the earthquake record. Motions with high a/v
generate significant response in short period structures, whereas those with low a/v generate significant response
in long period ones. If a is expressed in units of g and v in m/sec, then a/v ratios for actual earthquake records
can range from about 0.2 to over 3. Typical intermediate values (which characterise ground motions in the west
coast of Canada and the U.S.) are in the neighbourhood of 1.  For this study six ground motion records have been
chosen, two records in each of the following a/v categories: High, Intermediate and Very low. These records are
listed in Table 1.

Table 1. Characteristics of the selected earthquake records

Earthquake Station Component PGA (g) a/v

Loma Prieta (1989) Santa Cruz 37 N - 122 W 0.409 1.93

Northridge (1994) Santa Monica 34 N -  119 W 0.883 2.11

Imperial Valley (1940) El Centro S00E 0.348 1.04

Kern County (1952) Taft S69E 0.179 1.01

Bucharest (1977) Bucharest S00E 0.205 0.27

Mexico (1985) SCT N90W 0.171 0.28

The results for five percent damping are presented as RL spectra, i.e. RL vs. the natural period T (computed
without P-∆) of the system. Only elastic-plastic models have been studied, since it was shown (e.g. De Stefano &
Rutenberg 1999) that it is the effective secondary slope that affects the response (Fig. 3), and the small change in
the primary slope due to the P-∆ effect has little influence on RL.

 Figure 4 compares RL values (Eqn. 3) based on Eqns. 1 and 2 with their exact counterparts for the El Centro
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record with θ = 0.05 and 0.2.  The straight lines representing Eqn. 11 are also shown. It can be seen that, given
Sae of the record, the agreement of Eqn. 3 with the nonlinear dynamic results is excellent, whereas Eqn. 11 gives
only a rough estimate.
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Figure 4: Comparison of RL spectra from Eqn. 3 with exact results and Eqn. 11: El Centro; θθθθ=0.05, 0.20

Figures 5 and 6 compare Eqns. 4 and 5 (assuming v/d  =3) and 11 with the dynamic values for Loma Prieta, and
Northridge (a/v = 2), and El Centro and Taft (a/v = 1) respectively, for θ = 0.02, 0.05, 0.1 and 0.2. The design
(i.e. mean /1.4) curves for these equations are also shown.  Note that design curve based on Eqns. 4 and 5
leading to RL < 1.0 have no practical meaning. Equation 11 is the horizontal straight line. It can be seen that for
these records the prediction of Eqn. 11 is usually close to the lower bound of RL provided the natural period is
not very low. However, Eqn. 11 cannot predict the increase in RL with T for Loma Prieta and Northridge at low
values of θ. The predictions of Eqns. 4 and 5 are not very satisfactory either, and they tend to exaggerate the
period dependence of RL.
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Figure 5: Comparison of RL spectra from Eqns. 4 & 5, Eqns. (4 & 5) / 1.4 and Eqn. 11 with exact results:
Loma Prieta & Northridge
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Figure 6: Comparison of RL spectra from Eqns. 4 & 5, Eqns. (4 & 5) / 1.4 and Eqn. 11 with exact results:
El Centro & Taft
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Figure 7 makes the same comparisons for the Bucharest and Mexico records.  It is seen that Eqn.4 (assuming a/v
= 0.5, which is high for these two records) can be used as a lower bound prediction for these records provided  θ
is not large, but the mean – STD curves underestimate RL appreciably. Note, however, that Bernal’s formulas
(Eqns. 4 & 5) have not been calibrated for low frequency records, so they should not be expected to predict the
response of such records. It is also seen that Eqn. 11 is not useful for these earthquakes. Note also that when θ ≥
0.1, RL≈ 1 is a realistic lower bound approximation for the Mexico record for most of the period range shown
herein.

It may be recalled that the effective duration of record teff   has been arbitrarily set at 25 sec for all the records
used. Changing this value to be more compatible with the mean expected duration of each a/v group is not likely
to improve the agreement of Eqns. 4 and 5 with the time history results.  For a/v =2 records teff  =25 sec is usually
too long, therefore setting a smaller value would result in much lager RL values for the longer period range and a
smaller increase for the shorter period range. However, teff =25 sec is quite realistic for the a/v =1 records.
Similarly, no improvement in the agreement is expected from using a larger value of v/d for the large a/v
records.
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Figure 7: Comparison of RL spectra from Eqns. 4 & 5, Eqns. (4 & 5) / 1.4 and Eqn. 11 with exact results:
Bucharest & Mexico

SUMMARY AND CONCLUSIONS

Two approximate expressions for estimating the stability based limiting force reduction factor RL for bilinear
one-degree of freedom structures have been checked against time history results for six earthquake records
covering relatively wide ranges of frequency distributions and natural periods. One expression was derived
statistically from an ensemble of 24 time-histories (Bernal 1992), the other is a modification of an energy–based
expression.

Neither of these formulas can adequately predict RL for the realistic ranges of the stability factor θ and natural
period T, as well as for different frequency contents of the input earthquake time-histories. Because of its
simplicity the authors would nevertheless recommend the use of Eqn. 11 for design purposes, provided it is not
used for sites with very low a/v, and for sites with intermediate a/v (=1), provided it is used only when T >
0.5sec. As can be seen from Fig. 5, this recommendation may result in very conservative values of RL for a/v = 2
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sites with θ < 0.05 and T > 1.0sec.

Finally, it should not be overlooked that the sample size used for this study has been very limited, and therefore
the conclusions drawn herein should be treated accordingly.
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