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Abstract 
In the numerical modelling of flexural behaviour of masonry buildings by means of macroelement models, it is important to 
account for the limited compressive strength and the proper energy dissipation of the material. The macroelement model 
currently implemented in the TREMURI computer program is featured by a bi-linear compressive behaviour with limited 
strength, capable of accounting for toe-crushing during cyclic loads, and no tension strength. In addition, in the constitutive 
relationship, the secant unloading-reloading branch allows for energy dissipation, together with stiffness degradation. From 
the numerical simulation of experimental tests, an underestimation of the dissipated energy during cyclic loads was noticed. 
In order to better capture the energy dissipation, in this work an improved model is proposed. In addition to the assumption 
of limited compressive strength and no tension behaviour, the improved model is characterized by an unloading branch with 
slope equal to the initial stiffness, thus allowing an increased energy dissipation and the ability of modelling displacement 
accumulation. The new macroelement model is then implemented in the TREMURI program. In order to validate the 
model, comparisons with distributed nonlinear spring models implementing the same constitutive relationship and 
simulations of experimental tests on masonry piers are performed. 
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1. Introduction 
The high seismic vulnerability of existing masonry buildings, evident from past and recent earthquakes, has led 
to the necessity of modelling approaches suitable for static and dynamic analysis of both masonry walls and 
buildings. Different approaches have been proposed in the past, ranging from the micromodelling techniques 
(e.g. [1]), in which a refined discretization of units, mortar and interfaces by nonlinear finite elements is 
proposed, to equivalent continuum models (e.g. [2, 3]), in which masonry is idealized as an equivalent 
homogenized material, derived from the mechanical properties of the components. Discrete and/or rigid element 
approaches (e.g. [4, 5]) can be considered as alternatives to the previously mentioned finite element models. All 
these models are characterized by a high computational burden which limits their applicability to simple 
structures. For this reason, simplified models, based on storey mechanism (e.g. [6]) or limit analysis (e.g. [7]), 
have been proposed and used, although they can be adopted only under restrictive hypotheses. 

 A good compromise between accuracy of results and computational burden consists in the so-called 
macroelement approach (e.g. [8]), usually implemented in an equivalent-frame model of the building. In 
particular, a single macroelement is used to model the response of a masonry element (pier or spandrel beam). 
The in-plane behaviour of an entire masonry wall can then be modelled assembling macroelements, using 
equivalent frame techniques (e.g. [9, 10]). Among these macroelement models, the model proposed in [11] is 
particularly suitable for the analysis of buildings and it has been implemented in the TREMURI [12] computer 
program for the nonlinear analysis of masonry buildings. This model includes, in particular, a nonlinear 
degrading law for rocking damage, which allows to take into account the effect of limited compressive strength 
(toe-crushing). 

 The aim of this paper is to propose an improved version of the macroelement model presented in [11] in 
order to better account for energy dissipation in in-plane flexural failure modes of masonry walls; the model can 
thus be able to better simulate the experimental cyclic response of masonry panels. 

2. Macroelement model of masonry walls 
The basic ideas of the 2-node macroelement model proposed in [11] are illustrated in Fig. 1. The panel is ideally 
subdivided into three parts: a central body, where only shear deformations are possible, and two interfaces, 
where the external degrees of freedom are located, which can have relative axial displacements and rotations 
with respect to those of the extremities of the central body. The two interfaces can be considered infinitely rigid 
in shear and have a negligible thickness. Their axial deformations are due to a system of distributed zero-length 
springs. 

 These assumptions simplify the macroelement kinematics and compatibility relations allow to obtain a 
reduction of the actual degrees of freedom of the model. Since the central part is considered as a rigid body with 
only shear deformation capability, under small displacement hypotheses, the axial displacements and rotations of 
the ends can be considered equal to the centroid ones (we, φe), whereas the transversal displacements of the 
central body ends must be equal to the corresponding nodal displacements (ui, uj). Therefore, the macroelement 
kinematics can be described by means of eight degrees of freedom, six nodal displacement components (ui, wi, 
φ i, uj, wj, φ j) and two internal components (we, φe). No distributed transversal actions are considered and so the 
internal shear force is constant along the element axis (Vi = Vj = V). A no tension model has been attributed to 
zero-length springs at the interfaces, with a bilinear degrading constitutive model in compression. 

 The next section describes the axial and flexural behaviour of the improved macroelement model. The 
shear damage model is not described here since it is equal to the one proposed in [11]. 
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Fig. 1 – Kinematics of the macroelement [1] 

3. Improved macroelement model for flexural failure modes 
As in the original model [1], the axial and flexural behaviour of the two extremity joints is studied separately. 
The static and kinematic variables involved in the joint model are the element forces N and M for the considered 
node and the relative displacement components w and φ. The relations between such variables are directly 
derived from the constitutive model. In particular, if the whole cross section is compressed, no cracking occurs 
and the problem is uncoupled, with linear relations linking N and M with w and φ respectively: 
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where l is the wall length, t is the wall thickness, k = 2E/h is the spring axial stiffness for surface unit, E is the 
compressive Young modulus of masonry, h is the wall height, w is the relative axial displacement (w = wi – we 
at node i and w = we – wj at node j) and φ is the relative rotation (φ = φ i– φe at node i and φ = φe – φ j at node j). 

 The cracking condition can be expressed in terms of kinematic variables (Fig. 2): 
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Fig. 2 – Kinematic variables at node i interface [1] 

 As shown in [11], the axial force and moment, accounting for cracking, can be calculated as the elastic 
contribution corrected with the contributions due to cracking. For node i interface, these relations can be written 
in matrix form as: 
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where Ni
* and Mi

* are the inelastic corrections due to cross section cracking and can be calculated as described 
in [11]. Similar constitutive equations can be derived for the interface joint at node j. 

 Masonry compressive strength is usually high with respect to the vertical stress due to static vertical loads. 
Nevertheless, experimental tests (e.g. [13, 14, 15]) showed that in-plane rocking is often characterized by toe-
crushing phenomena at the base of masonry piers, causing the limitation of the ultimate bending moment and 
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some stiffness degradation in the following cycles. In order to include such effects into the nonlinear 
macroelement model, in [11] a phenomenological bilinear constitutive model with stiffness degradation 
(illustrated in the left part of Fig. 3) was assigned to the interface joint springs. When the displacement threshold 
dy is exceeded, the compressive stress in the springs is limited at the value fm and the stiffness is degraded to the 
secant value at the maximum displacement attained during previous load history (dmax). Whereas this model 
provides a good simulation of the experimentally observed strength of masonry walls, it provides a significant 
underestimation of the energy dissipated during load cycles. Moreover, this model is not able to account for 
residual displacement and consequently for damage accumulation in previous load history. 

 In this work, an improved model is introduced, characterized by a limited compressive strength fm and 
unloading stiffness equal to the elastic one (illustrated in the right part of Fig. 3). The increased hysteresis of the 
constitutive law allows an increased energy dissipation; furthermore, this model is able to account for residual 
displacements after unloading and so it can reproduce damage accumulation due to displacement accumulation 
during load history. Furthermore, this ability of modelling residual displacements makes the improved model 
particularly suitable for capturing also the soil crushing during cyclic loads. 
 

  
Fig. 3 – Original constitutive model, with no tensile and limited compressive strength and compressive stiffness 
degradation, for interface joint springs [11] (left) and improved constitutive model, with no tensile and limited 
compressive strength, residual displacement and increased energy dissipation, for interface joint springs (right) 

 The local compression displacement ductility can be defined as: 

yd
dmax=µ  (4) 

with dy = fm/k. 

 Similarly to what done in [11], the nonlinear correction associated with toe-crushing is performed 
introducing two damage variables for each cross section edge: the ductility demand in the external compressed 
spring at the current load step (μ’) and the ratio of the length of the portion of the cross section involved in 
crushing nonlinearity (i.e. the plasticized portion of the section) and the length of the whole section, at the 
current load step (ζ’). The two variables can be calculated as: 
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 In addition to the values of these two variables at the current load step, also the maximum values of these 
variables reached during the load history up to the current load step (μ and ζ, respectively) need to be introduced. 
These variables represent the damage cumulated during previous load history. The nonlinear corrections to N 
and M depend on all the four crushing damage variables μ, μ’, ζ and ζ’. 

 Fig. 4 shows an example of the displacement and the corresponding vertical stress distributions (thick 
black lines) in case the load is increased monotonically (e.g. imposing a constant displacement of the centre of 
the section w and monotonically increasing the rotation φ) until a portion of the section reaches the yield 
displacement dy without cracking of the section (case (a)). It can be noticed that, when the displacement exceeds 
the yield displacement dy, the vertical stress is constant and equal to the compressive strength fm. The current 
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ductility demand μ’ and the current normalized length of the plasticized portion ζ’ coincide with the maximum 
values reached during load history (μ and ζ). Furthermore, Fig. 4 shows the displacement and vertical stress 
distributions (thick black lines) in case, starting from a condition in which crushing of a portion of the section 
with length ζl was attained, the vertical displacement is maintained fixed and the rotation is reduced, i.e. the 
displacement of the right edge reduces while remaining positive (i.e. right edge remains compressed). It should 
be noticed that, when reducing the displacement of the right edge, two different stress distributions can be 
obtained depending on the amount of reduction of displacement. If the reduction is not sufficient to reach the 
zero vertical stress, the whole section still remains compressed (case (b)), whereas, if the zero vertical stress is 
attained in the right edge, the stress profile over the section is characterized by a zone of zero stress (case (c)). 

 

  
(a) (b) (c) 

Fig. 4 – Displacement and stress distributions along the cross section in case the nonlinear compressive 
behaviour is activated: loading (a) and unloading in the case the vertical stress at the right edge is greater (b) or 
equal (c) to zero (no cracking) 

 In both the cases of loading (case (a)) and unloading with stress different from zero in the whole section 
(case (b)), the correction factors of N and M accounting for toe-crushing can be obtained simply considering the 
additional area present in the stress profile when a linear elastic behaviour is assumed with respect to the actual 
nonlinear stress distribution (multiplying it times the thickness of the section t). In particular, for both the cases 
(a) and (b), the correction factors N** and M** can be calculated as: 
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 In the case a portion of the section (of length a) is characterized by zero stress (case (c)), the correction 
factors are represented by the area of the trapezoid between the elastic stress profile (dashed black line) and the 
actual one (thick black line). In order to determine this area, the length a characterized by zero stress can be 
calculated using similitude of triangles. The correction factors N** and M** can be finally obtained as: 
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 In a generic load step, the section can be cracked, i.e. the displacement of one edge can be negative. In this 
case, with reference to the edge where cracking is developing, two situations can be distinguished: 

1) the cracked length (lC) is lower than the plasticized length (ζl), lC ≤ ζl; 
2) the cracked length (lC) is higher than the plasticized length (ζl), lC > ζl. 

 Fig. 5 shows the displacement and vertical stress distributions (thick black lines) in case the cracked 
length is lower than the plasticized one. Since both the edges come into play in the nonlinear correction, in order 
to distinguish the contribution of the two sides, the subscripts R and L, referring to right and left edge 
respectively, have been introduced. The correction factors N** and M** are due to the area indicated by the red 
shading. The contributions to the correction factors N** and M** due to the right part of this area can be 
calculated using Eq. (6) or (7). In order to calculate the contributions due to the left part of the area, the cracked 
length lC,L has to be calculated as a function of the vertical displacement w and the rotation φ. 

 

Fig. 5 – Displacement and stress distributions along the cross section in case of nonlinear compressive behaviour 
with cracked section and cracked length lower than the plasticized length 

 The length aL indicated in Fig. 5 can then be obtained using similar triangles, whereas the correction 
factors N** due to the left area can be obtained as summation/subtraction of areas of triangles: 
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 Similarly, the correction factors M** due to the left area is obtained as the product of N** times the 
corresponding eccentricity eL: 

Lii eNM **** =  (9) 

 In the case the length of the cracked zone is greater than the plasticized length, the correction factors N** 
and M** are only due to the right part of the shaded area of Fig. 5 and they can be obtained using Eq. (6) or (7). 
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 Finally, the values of N and M accounting for nonlinearities due to both cracking and toe-crushing can be 
obtained as: 

***
iii NNktlwN −−=  

***3

12
1

iii MMktlM −−= ϕ  
(10) 

where Ni
* and Mi

* are the correction factors due to cracking and Ni
** and Mi

** are the correction factors due to 
toe-crushing. The same procedure is obviously valid also for node j. 

 At each load step, the current values of each of the two damage variables at each corner of the 
macroelement can be lower or greater than the maximum values. When the current value is greater than the 
maximum one, the corresponding damage variable has to be updated, because a new condition of nonlinearity 
has been attained. Finally, the improved macroelement model was implemented in the TREMURI computer 
program [12] for the nonlinear analysis of masonry buildings. 

 After the theoretical development of the improved macroelement, the responses obtained by means of the 
current and the improved model were compared. In order to do this, a calcium-silicate wall of length 2 m, height 
4.4 m and thickness 0.1 m with double fixed static scheme was considered. The material properties were 
assumed equal to the ones determined in the first phase of an experimental campaign recently performed at 
EUCENTRE in Pavia (Italy) on calcium-silicate brick walls [17]: in particular, the elastic modulus and the 
compressive strength are equal to 2300 MPa and 5.6 MPa respectively. The wall is subjected to an imposed 
constant axial load (500 kN) and an increasing cyclic horizontal top displacement up to a value of 0.018 m. Fig. 
6 shows the vertical displacement of the top of the wall (left) and the moment (right) versus the macroelement 
rotation, obtained by means of the current (black lines) and the improved (red lines) macroelement model. By 
comparing the moment obtained by means of the two models, it is evident how the improved model allows an 
increased energy dissipation maintaining the same strength. By looking at the vertical displacement, it can be 
noticed that the accumulation of vertical displacement is higher with the improved model, meaning that the 
improved model is able of better capturing damage accumulation; if the simulation had been performed at 
constant vertical displacement, this would have resulted in a higher reduction of axial load with the increase of 
rotation with respect to the current model. 
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Fig. 6 – Comparison between the current (black lines) and improved (red lines) macroelement model, in terms of 
vertical displacement vs. rotation (left) and moment vs. rotation (right) at constant axial load 

4. Validation of the improved macroelement model 
In order to validate the improved macroelement model, an equivalent spring model was developed. Spring 
models have often been used to model macroelement sections with nonlinear behaviour (e.g. [16]): in this model 
the length of the interface corresponding to the lower part of the macroelement was discretized into a certain 
number of portions. The behaviour of each portion is represented by a nonlinear spring with the same 
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constitutive rule already used for the macroelement (Fig. 3 - right). At each load step the stress of each spring 
was determined according to the constitutive rule and the nonlinear N and M were calculated integrating the 
nonlinear stresses over the section. The advantage of the improved macroelement model with respect to the 
spring model is the reduced amount of variables on which the nonlinear behaviour depends. This allows a 
reduced computational burden, especially when applied to the analysis of buildings, characterized by a high 
number of elements. In order to validate the improved macroelement model, the behaviour of a calcium-silicate 
wall of length 2 m, height 2.2 m, thickness 0.1 m, material properties equal to the ones of the previous example 
and subjected to a constant vertical displacement (0.015 m downwards) and an increasing cyclic rotation up to a 
value of 4x10-3 rad was simulated by means of both the improved macroelement and the spring model. For the 
sake of simplicity, only the lower part of the macroelement (i.e. one single interface) was considered. As an 
example, Fig. 7 presents the axial load (left) and the moment (right) versus the imposed rotation, obtained by 
means of the spring model. When comparing the results obtained by means of the spring model to the ones 
obtained by means of the improved macroelement model, it can be noticed that no difference is evident, thus 
confirming the ability of the developed model of simulating the nonlinear behaviour. 
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Fig. 7 – Axial load (left) and moment (right) vs. rotation obtained with the spring model 

5. Simulation of experimental tests 
In order to show the ability of the improved macroelement model to reproduce the experimental behaviour of 
masonry walls, the simulation of different experimental tests was performed. In particular, the improved 
macroelement was used to simulate in-plane quasi static cyclic tests performed on full-scale masonry piers. 

5.1 ESECMaSE calcium-silicate in-plane tests 
The first test campaign considered in the simulation work is the one performed at EUCENTRE in Pavia (Italy) in 
the framework of the project “Enhanced Safety and Efficient Construction of Masonry Structures in Europe” - 
ESECMaSE [18]. Walls made of blocks of different typologies were tested; however, in this simulation work 
only the tests on calcium-silicate walls were considered. Morevover, only test CS 05 was simulated since it was 
the only one showing a clear flexural failure. In particular, wall CS 05 remained undamaged with only some 
tension cracks in the joints up to a top displacement of 35 mm. When this displacement was exceeded, the 
specimen suddenly failed in shear with the development of a diagonal crack in the mortar bedjoints and in the 
units. Before this displacement, the force-displacement curves were characterized by S-shaped cycles with low 
energy dissipation, typical of a rocking behaviour. The left part of Fig. 8 shows the specimen at the end of the 
test, whereas the right part shows the comparison among the base shear vs. top displacement curves obtained 
from the experimental test and the numerical simulations by means of TREMURI, using the current and the new 
constitutive relationship. With respect to the current macroelement model, a significant increase of the dissipated 
energy is evident when using the new constitutive law. 
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Fig. 8 – Specimen CS 05 at the end of the test (left) and comparison among the base shear vs. top displacement 
curves obtained from experimental test and numerical simulation with the current (centre) and the new (right) 
TREMURI constitutive model for wall CS 05 

5.2 EUCENTRE calcium-silicate in-plane tests 
The second experimental campaign considered in the simulation work is the one recently performed at 
EUCENTRE in Pavia (Italy) on calcium-silicate brick masonry [17]. The large experimental campaign included 
three in-plane quasi-static cyclic shear-compression tests on full scale calcium-silicate unreinforced masonry 
walls with different combinations of vertical compression, boundary conditions and slenderness ratios. Only 
specimen EC_COMP_1 and EC_COMP_2 have been considered in the simulation work, since these were the 
only walls showing a rocking behaviour. In particular, wall EC_COMP_1 was characterized by a rocking 
behaviour with cracks opening at the edges, without visible damage in the masonry panel. A migration of the 
horizontal cracks at the bottom was observed: in particular, these cracks were located at the interface up to a drift 
of 0.6%, above the first brick layer up to a drift of 1.5% and above the second brick layer during the last cycle 
with a drift of 2%. At the end of the test the failure mechanism was characterized by toe-crushing at the top and 
bottom of the wall with expulsion of brick and mortar. It should be noted that a pure rocking behaviour can be 
observed only in terms of cracking pattern and not in terms of hysteresis curve (Fig. 9). Specimen EC_COMP_2 
showed a pure rocking behaviour with cracks opening at the edges, without visible damage in the masonry panel. 
It should be noticed that, due to the significant difference of in plane and out-of-plane slenderness of the wall, 
the reinforced concrete beam at the top of the specimen started to rotate after 0.15% drift. Consequently, the end 
of the test was reached for out-of-plane failure of the wall at a drift equal to 0.25%. 

 For specimens EC_COMP_1 and EC_COMP_2 the simulation was performed with three different sets of 
values of shear strength mechanical properties (i.e. cohesion c and friction coefficient μ), since it was evident 
that a single set of values was not sufficient to reproduce the experimental behaviour in all the cycles of the tests. 
Only the results using the set of parameters used to reproduce flexural behavior are considered in this paper, 
since they are the only ones affected by the flexural model. 

 Fig. 9 and Fig. 10 shows the specimen (left) and the comparison among the base shear vs. top 
displacement curves obtained from the experimental test and the numerical simulations by means of TREMURI 
using the current (centre) and the new (right) constitutive relationship for specimen EC_COMP_1 and 
EC_COMP_2 respectively. As regards wall EC_COMP_1, it can be noticed that, with the selected parameters, it 
is possible to capture the strength corresponding to the first plateau, although it is not possible to model the 
following increase of strength and the energy dissipation is underestimated. Furthermore, it is possible to notice 
an increment of the dissipated energy when using the new constitutive law with respect to the current one. On 
the contrary, in the case of wall EC_COMP_2, no difference between the new and the current constitutive law 
can be appreciated and the energy dissipation is significantly lower than the experimental one. 
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Fig. 9 – Wall EC_COMP_1: view of the specimen (left) and comparison among the base shear vs. top 
displacement curves obtained from experimental tests and numerical simulation with the current (centre) and the 
new (right) TREMURI constitutive model 
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Fig. 10 – Wall EC_COMP_2: view of the specimen (left) and comparison among the base shear vs. top 
displacement curves obtained from experimental tests and numerical simulation with the current (centre) and the 
new (right) TREMURI constitutive model 

 A parametric study on the influence of the compressive strength on the dissipated energy predicted by the 
new constitutive model was performed with reference to wall EC_COMP_1. The value of compressive strength 
was progressively reduced starting from 6.3 MPa, i.e. the value used in the simulation of experimental tests 
(equal to the value obtained from the material characterization tests of the experimental campaign described in 
[17]): the sequence of values used is 6.3 MPa, 6.0 MPa, 5.8 MPa and 5.6 MPa. A further reduction of 
compressive strength was not possible since the results started to show meaningless behaviours, probably related 
to the failure of the whole section of the wall. The results of this parametric study are reported in Fig. 11. 
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Fig. 11 – Comparison among the base shear vs. top displacement curves obtained from experimental tests and 
numerical simulation with the new TREMURI constitutive model for EC_COMP_1 wall, using different values 
of compressive strength 
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 It can be noticed that, reducing the compressive strength, the energy dissipation significantly increases and 
the shear strength remains unchanged. In particular, the best prediction in terms of energy dissipation can be 
obtained with the lowest value of fm, i.e. 5.6 MPa, although it was not still possible to capture the hysteretic 
behavior at the last cycles. In this case, it seems that, in order to better predict the energy dissipation, a value 
equal to the 90% of the nominal compressive strength needs to be used. This achievement needs to be checked 
extending this parametric study to other experimental tests. 

6. Conclusions 
In this work, a new constitutive law for flexural behaviour of masonry panels was proposed and implemented in 
the macroelement model proposed in [11], in order to better capture the energy dissipation observed in 
experimental tests on some masonry typologies, such as the calcium-silicate masonry. This law is characterized, 
as the one proposed in [11], by zero tensile strength and by an elasto-plastic behaviour in compression. 
Differently from [11], the unloading stiffness is now equal to the initial stiffness, thus having the possibility of 
modelling accumulation of displacement during a general loading history. The new constitutive law was then 
implemented in the software TREMURI [12] for the nonlinear analysis of masonry buildings. The new 
macroelement model was validated by comparing the results of a virtual test with the ones obtained using a 
spring model with the same constitutive law. Finally, the simulation of different experimental tests on calcium-
silicate walls was performed with both the current and the new constitutive law. 

 This work allows to investigate the ability of the new model of capturing the energy dissipation observed 
in the experimental tests. The simulation indicated that the new law is actually predicting an increased energy 
dissipation with respect to the one of the macroelement model proposed in [11], but this is still quite low 
compared to the experimental one. Therefore, there is still an amount of energy dissipation which cannot be 
captured by numerical models, probably due the difficulty of obtaining a pure flexural behavior in the considered 
experimental tests. A parametric study on the influence of the value of compressive strength on the amount of 
dissipated energy showed that this difference could be possibly reduced using a certain percentage (e.g. 90%) of 
the nominal value of compressive strength. 

 Finally, the ability of the new developed constitutive law of modelling both the displacement 
accumulation under cyclic loads and the absence of tensile strength, makes the model suitable to model the 
behaviour of the soil. Future developments of this work could thus consist in developing a foundation 
macroelement able of reproducing the interaction of soil and masonry structure, as done for example in [19] with 
reference to soil-pile-structure interaction in the seismic design of bridges. 
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