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Abstract 

The seismic analysis and design of secondary attachments to buildings or industrial facilities is a topic of broad engineering 

interest, increasingly attracting the attention of researchers and practitioners. Examples of secondary systems include 

suspended ceilings and non-structural walls, piping systems and antennas, storage tanks, electrical transformers and glass 

façades. Although not part of the load bearing structure, their significance stems from the survivability requirement in the 

aftermath of a seismic event and their vast contribution to the overall construction costs. Nevertheless, past earthquakes have 

demonstrated that current methods for the seismic analysis and design of secondary structures lack the necessary rigor and 

robustness, resulting in expensive and often unreliable solutions. Secondary systems can be highly sensitive to accelerations 

and inter-story drifts, and their seismic performance is influenced by the primary-secondary dynamic interaction. In many 

situations however, the mass of the secondary system may be much lower than the mass of the floor at which it is connected 

and therefore a cascade approach is admissible. If the secondary system can be realistically modeled as a single-degree-of-

freedom (SDoF) system, then the floor response spectra could be a powerful tool for quantifying its seismic response.  

In this study, the performance of light secondary systems is examined in presence of uncertainties in the seismic input. 

A set of principal axes of ground shaking is initially identified and an ensemble of bi-directional time series is generated. The 

response of a set of SDoF secondary oscillators (i.e. linear, Bouc-Wen, sliding and rocking) attached to a representative 

primary structure is then investigated and their design spectra are established. As demonstrated with Monte Carlo simulations 

for the selected case study, the angle of seismic incidence causes the highest variations in the engineering demand parameters 

for the sliding oscillators, while the elasto-plastic oscillator with the Bouc-Wen model experiences the least variations. 

Furthermore, investigations at different elevations show higher variations in the sliding and linear oscillators, depending on the 

seismic input. As expected, the viscous damping ratio is found to significantly influence the response of secondary systems 

vibrating close to the fundamental frequency of the primary structure. Moreover, the peak response of sliding oscillators is 

shown to be a smooth function of the sliding friction coefficient, while the rocking spectra, due to the strong nonlinear 

dynamics of the rocking blocks, are characterized by large values of the coefficient of variations. 
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1. Introduction 

The response analysis of secondary attachments and content, such as fittings, piping and equipment, plays a critical 

role in the seismic assessment of buildings structures. As a matter of fact, such building components are termed 

“secondary” simply because they are not part of the “primary” load-bearing system. Despite their name, however, 

their significance is far from being marginal, as their monetary value typically exceeds the cost of the bare structure, 

while their failure may result in tremendous losses, in terms of repair costs, interruption of services, as well as injuries 

and even deaths [1, 2]. Secondary systems can be connected to the primary structure in multiple attachment points 

(e.g. fire staircases), or quite often just at a single location (e.g. tanks and antennas on the rooftop). In the latter case, 

mailto:S.Kasinos@Lboro.ac.uk
mailto:A.Palmeri@Lboro.ac.uk
mailto:Dynamics.Structures@Gmail.com
mailto:M.Lombardo@Lboro.ac.uk


16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

2 

floor spectra represent a powerful tool to quantify their expected performance under design earthquake scenarios. This 

approach is only tenable under the “light” secondary system approximation [3] in which: (i) the mass of the secondary 

is significantly less than the mass of the floor at which it is connected, meaning that the feedback action on the 

primary structure is negligible; (ii) its dynamics can be approximated with a single-degree-of-freedom (SDoF) 

oscillator model, which can be either linear or nonlinear. Furthermore, depending on the level of the seismic input and 

the characteristics of the building structure, a linear or nonlinear model can be adopted for the primary structure. 

In the context of probabilistic performance-based earthquake engineering (PBEE), uncertainty characterizing 

the performance of structures must be adequately quantified. In particular, the uncertainty in the ground motion often 

exceeds the one associated with the structure [4]. Hazard models capable of capturing characteristics encountered in 

transient seismic signals are thus of interest. The use of recorded seismic accelerograms is accompanied with a main 

shortcoming, i.e. they represent only a single realization of the probabilistic hazard. To circumvent this, the use of 

scaled recorded motions has been proposed, but concerns have been raised, as they may render unphysical 

characteristics [4]. More recently, several techniques have been put forward for the generation of artificial ground 

motions, whose characteristics aim to match the ones of target accelerograms, including various wavelet-based 

methods (e.g. [5] and [6]) as well as the ones evolved from the filtered white noise process [7, 8]. As an example of 

the latter, a model proposed by Rezaeian and Der Kiureghian [9, 10] is particularly appealing, encompassing 

completely separable temporal and spectral non-stationarities. The model has been further extended to multi-

component simulation [11] based on the work of Penzien and Watabe [12], who identified a set of principal axes 

along which the orthogonal components of a ground motion can be considered as statistically uncorrelated.  

Structures subjected to the simultaneous components of ground acceleration may exhibit unfavourable 

demands in numerous angles of attack. Accordingly, given an engineering demand parameter (EDP), the critical 

angle governing the response of a primary system may be estimated by combining the contributions of the ground 

motion components [13]. This becomes particularly cumbersome in the case of secondary systems, as the critical 

angle of seismic incidence is an implicit function of the secondary system’s angle relative to the primary, its 

mechanical properties and the EDP used for response assessment [14].  

To the author’s best knowledge no studies have been reported in the literature where the response of secondary 

systems is investigated in presence of uncertainties in a multi-dimensional ground motion model. Prompted by the 

significance and relative fragility of secondary systems, the authors have recently investigated the propagation of 

uncertainty from the modal properties of the primary structure to the seismic performance of secondary oscillators 

[15]. In this paper, the effect of uncertainties in a bi-directional seismic input to the response of light secondary 

subsystems is examined. More specifically, a set of principal axes is first identified for a near-field and a far-field 

earthquake record. The stochastic model originally established in [9] is then adopted and a number of bi-directional 

signals are synthetically generated via Monte Carlo simulations with the same non-stationary characteristics as the 

parent accelerograms. This ensemble is then used for various angles of incidence for the major principal direction of 

the seismic input, with linear dynamic analyses carried out on a primary structure attached to a set of linear and 

nonlinear (Bouc-Wen, sliding, rocking) secondary SDoF oscillators. The design floor spectra are finally established, 

and the effects of the key parameters are analyzed and discussed. 

 

2. Governing Equations 

2.1 Principal axes 

Let us consider the case of a ground motion record defined through a pair of horizontal orthogonal components. 

The correlation coefficient over the total duration of motion can then be expressed as: 

 

𝜌𝑎1(𝑡)𝑎2(𝑡) =
∫ 𝑎1(𝑡)𝑎2(𝑡) d𝑡
𝑡𝑛
𝑡0

√∫ 𝑎1(𝑡)
2 d𝑡

𝑡𝑛
𝑡0

 ∫ 𝑎2(𝑡)
2 d𝑡

𝑡𝑛
𝑡0

 , (1) 

where 𝑡0, 𝑡𝑛 are the initial and final time instants and 𝑎1(𝑡), 𝑎2(𝑡) the associated acceleration time series, 

respectively [11]. Following the work of Penzien and Watabe [12], a set of principal axes 𝜂 and 𝜉 exists (see 
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Figure 1, left) along which the components are statistically uncorrelated. Accordingly, introducing the rotation 

angle 𝛿 in the range 0° to 90° and adopting the following orthogonal transformation:  

 
𝒂𝑝(𝛿, 𝑡)  = 𝐑(𝛿) ⋅ 𝒂(𝑡) , (2) 

one can derive an angle 𝛿̂ where the components are principal, such that 𝜌𝑎1,𝑝(𝛿̂,𝑡),𝑎2,𝑝(𝛿̂,𝑡) = 0, where 𝒂(𝑡) and 

𝒂𝑝(𝛿, 𝑡) are arrays listing the “as-recorded” and “rotated” acceleration time series of the horizontal components, 

respectively, and 𝐑(𝛿) is a rotation matrix defined as:  

 
𝒂𝑝(𝛿, 𝑡) = [

𝑎1,𝑝(𝛿, 𝑡)

𝑎2,𝑝(𝛿, 𝑡)
] , 𝐑(𝛿) = [

cos(𝛿) sin(𝛿)

−sin(𝛿) cos(𝛿)
] , 𝒂(𝑡) = [

𝑎1(𝑡)

𝑎2(𝑡)
] . (3) 

2.2 Stochastic ground motion model 

Given the statistically independent principal components of the target accelerogram 𝒂𝑝(𝛿̂, 𝑡), a stochastic ground 

motion model can then be used to simulate bi-directional time series with temporal and spectral nonstationarities. 

Adopting the formulation proposed by Rezaeian and Der Kiureghian [9, 11] the continuous form of a Gaussian 

ground acceleration process is defined by: 

 𝑥𝑟(𝑡) = 𝑞(𝑡, 𝜿𝑟) {
1

𝜎ℎ𝑟(𝑡)
∫ ℎ[𝑡 − 𝜏, 𝝀𝑟(𝜏)]𝑤𝑟(𝜏) dt
𝑡

−∞
} , 𝑟 = 1, 2  , (4) 

in which 𝑥𝑟(𝑡) is the acceleration process of the rth component; 𝑞(𝑡, 𝜿𝑟) is a deterministic time-modulating 

function, depending on a set of parameters 𝜿𝑟 that defines its intensity and shape; 𝑤𝑟(𝜏) is a Gaussian white-

noise process; ℎ[𝑡 − 𝜏, 𝝀𝑟(𝜏)] is the impulse-response function (IRF) of a filter with parameters 𝝀𝑟(𝜏) 

accounting for the spectral nonstationarity; 𝜎ℎ𝑟
2 (𝑡) = ∫ ℎ2[𝑡 − 𝜏, 𝝀𝑟(𝜏)]

𝑡

−∞
dt is the variance of the integral 

process. The term in the curly brackets therefore represents a filtered white-noise process of unit variance and 

𝑞(𝑡, 𝜿𝑟) is equal to the standard deviation of the process, fully defining the temporal nonstationarity.  

A piecewise modulating function is adopted:  

 

𝑞(𝑡, 𝜿) =

{
 
 

 
 𝜎max (

𝑡 − 𝑇0
𝑇1 − 𝑇0

)
2

if  𝑇0 < 𝑡 ≤ 𝑇1

𝜎max if  𝑇1 < 𝑡 < 𝑇2
𝜎max exp[−𝛾1(𝑡 − 𝑇2)

𝛾2] if  𝑇2 ≤ 𝑡
0 otherwise

 (5) 

Fig. 1 - Rotation of orthogonal horizontal components (left), and structural frame model (right) 
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with the parameter set 𝜿 = (𝑇0,  𝑇1,  𝑇2, 𝜎max, 𝛾1, 𝛾2) to be identified, satisfying 𝑇0 < 𝑇1 ≤ 𝑇2 and 𝜎max, 𝛾1, 𝛾2 > 0. 

Accordingly, 𝑇0 represents the initiation time of the process, while 𝑇1,  𝑇2 denote the start and end of the strong-

motion phase, with maximum standard deviation 𝜎max, and 𝛾1, 𝛾2 are parameters controlling the decaying amplitude.  

The filter IRF is chosen as:  

 

ℎ[𝑡 − 𝜏, 𝝀(𝜏)] =

{
 

 
𝜔𝑓(𝜏)

√1 − 𝜁𝑓
2(𝜏)

exp[−𝜁𝑓(𝜏)𝜔𝑓(𝜏)(𝑡 − 𝜏)]sin [𝜔𝑓(𝜏)√1 − 𝜁𝑓
2(𝜏)(𝑡 − 𝜏)] if  𝜏 ≤ 𝑡

0 otherwise

 (6) 

corresponding to the pseudo-acceleration response of a linear SDoF oscillator where the parameter set 𝝀(𝜏) =

(𝜔𝑓(𝜏), 𝜁𝑓(𝜏)) lists the time-varying frequency and damping ratio. Herein, based on [10], a linear function is 

adopted for the frequency and a piece-wise function for the damping: 

where 𝜔0 and 𝜔𝑛 are the initial and final filter frequencies (𝜔0 > 𝜔𝑛), 𝑡𝑛 is the duration of motion, and 𝜁1, … , 𝜁𝑛 

are damping coefficients to be identified for the target motion.  

Denoting 𝑡𝑖 , 𝑖 = 0,1, …𝑛 as distinct time instants with time step 𝛥𝑡 and letting 𝑘 = int(𝑡/𝛥𝑡) for 0 < 𝑡 ≤
𝑡𝑛, the discretized form of the stochastic model in Eq. (4) reads:   

 𝑥̂𝑟(𝑡) = 𝑞(𝑡, 𝜿𝑟) ∑ {𝑠𝑖(𝑡, 𝝀𝑟(𝑡𝑖))𝑣𝑖,𝑟},
𝑘
𝑖=1 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑟 = 1, 2  , (8) 

in which 𝑣𝑖,𝑟 are standard normal random variables used to define the white-noise process and 𝑠𝑖(𝑡, 𝝀𝑟(𝑡𝑖)) are 

deterministic basis functions, where: 

 
𝑠𝑖(𝑡, 𝝀𝑟(𝑡𝑖)) =

ℎ[𝑡 − 𝑡𝑖 , 𝝀𝑟(𝑡𝑖)]

√∑ ℎ2[𝑡 − 𝑡𝑗 , 𝝀𝑟(𝑡𝑗)]
𝑘
𝑗=1

, 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑖 = 1, . . . , 𝑘, 𝑟 = 1, 2  ,
 (9) 

Once the model parameters are identified, the random variables 𝑣𝑖,𝑟, and the basis functions 𝑠𝑖(𝑡, 𝝀𝑟(𝑡𝑖)) are 

used to generate realisations of the processes in Eq. (8).  

Given the simulated process, a critically damped high pass filter is adopted adjusting the low frequency 

content of the model, to ensure zero residual displacement and velocity. The corrected acceleration record 𝑦̈𝑟(𝑡) 
is finally obtained as the response of: 

 𝑦̈𝑟(𝑡) + 2𝜔𝑐𝑦̇𝑟(𝑡) + 𝜔𝑐
2𝑦𝑟(𝑡) = 𝑥̂𝑟(𝑡), 𝑟 = 1, 2  , (10) 

where 𝜔𝑐 is the filter frequency (𝜔𝑐 ≈ 0.2 − 0.4𝜋 rad/s). 

Notably: (i) the statistically independent processes 𝑤1(𝜏), 𝑤2(𝜏) account for the stochasticity in the model; (ii) 

both temporal and spectral nonstationarities are considered through the parameter sets 𝜿𝑟 and 𝝀(𝜏), respectively. 

2.3 Seismic incidence orientation 

Response assessment of structures subjected to bi-directional seismic action requires determination of the critical 

angle of seismic incidence. Accordingly, let us define 𝜑 as the counter clockwise angle in the range 0° to 180° 
between the reference axes of the structure (𝑥 and 𝑦 in Figure 1, left) and the principal axes (𝜂, ξ) of the seismic 

input. Utilizing the transformation: 

 𝒖̈𝑔(𝜑, 𝑡)  = 𝐑(𝜑) ⋅ 𝒂𝑦(𝑡) , (11) 

 
𝜔𝑓(𝜏) = 𝜔0 − (𝜔0 − 𝜔𝑛)

𝜏

𝑡𝑛
; 𝜁𝑓(𝜏) = {

𝜁1 if  0 ≤ 𝜏 ≤ 𝑡1
⋮ ⋮
𝜁𝑛 if  𝑡𝑛−1 < 𝜏 ≤ 𝑡𝑛

 (7) 
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a set of horizontal ground acceleration 𝒖̈𝑔(𝜑, 𝑡) is obtained along the structural axes, where 𝒂𝑦(𝑡) collects the 

filtered processes of the two components (see Eq. (10)), such that: 

 
𝒂𝑦(𝑡)  = [

𝑦̈1(𝑡)

𝑦̈2(𝑡)
] ; 𝒖̈𝑔(𝜑, 𝑡) = [

𝑢̈𝑔,1(𝜑, 𝑡)

𝑢̈𝑔,2(𝜑, 𝑡)
]  . (12) 

2.4 Linear Primary System 

Let’s consider the case of a deterministic primary-secondary system. If the secondary one is assumed to be “light” [3], 

i.e. its mass 𝑚𝑆 is much less than the mass of the primary 𝑀𝑃 (𝑚𝑆 ≪ 𝑀𝑃), a cascade-type approach is admissible. 

Accordingly, the two systems are decoupled and sequentially analysed. Initially, the seismic response of the primary 

system is determined neglecting the feedback of the secondary, with the response of the latter successively being 

evaluated at the points of attachment (i.e. no primary-secondary interaction is taken into account). 

The seismic motion of a multi-degree-of-freedom (MDoF) primary system within the linear-elastic range 

is governed by:  

 𝐌 ⋅ 𝒖̈(𝜑, 𝑡) + 𝐂 ⋅ 𝒖̇(𝜑, 𝑡) + 𝐊 ⋅ 𝒖(𝜑, 𝑡) = −𝐌 ⋅ 𝝉 ⋅ 𝒖̈𝑔(𝜑, 𝑡) , (13) 

where 𝐌, 𝐂 and 𝐊 are matrices of mass, equivalent viscous damping and elastic stiffness, respectively; 𝒖(𝜑, t) is 

the array collecting the degrees of freedom (DoFs) of the system; 𝝉 is a vector of seismic incidence.  

The equations of motion can be projected to the modal space, reducing the size of the dynamic problem 

from 𝑚1 (system’s DoFs) to 𝑚2 ≤ 𝑚1 (the number of modes retained within the analysis). This requires solving 

the real-valued eigenproblem: 

 𝐌 ⋅ 𝚽 ⋅ 𝛀𝟐 = 𝚱 ⋅ 𝚽 , (14) 

where 𝚽 = [𝛟1⋯𝛟𝑚2
] is the normalized modal matrix (i.e. 𝚽⊤ ⋅ 𝐌 ⋅ 𝚽 = 𝐈𝑚2

), 𝐈𝑚2
 being the identity matrix 

of size m; and 𝛀 = diag{𝜔1⋯𝜔𝑚2
} the diagonal spectral matrix. Accordingly, the dynamic response can be 

expressed as the sum of modal contributions: 

 𝒖(𝜑, t) = 𝚽 ⋅ 𝒒(𝜑, 𝑡), (15) 

where 𝒒(𝜑, t) = {𝑞1(𝜑, 𝑡)⋯𝑞𝑚2
(𝜑, 𝑡)}⊤ is the array collecting the modal coordinates, ruled by the equation of 

motion in the modal space: 

 𝒒̈(𝜑, t) + 2ζ 𝛀 ⋅ 𝒒̇(𝜑, t) + 𝛀𝟐 ⋅ 𝒒(𝜑, t) = 𝐩 ⋅ 𝒖̈𝑔(𝜑, 𝑡)  , (16) 

in which ζ is the viscous damping ratio of the primary structure and: 

 𝐩 = −𝚽⊤ ⋅ 𝐌 ⋅ 𝝉 . (17) 

2.5 Secondary oscillators 

2.5.1 Linear and nonlinear Bouc-Wen restoring force 

The equation of motion of a linear SDoF secondary system is expressed as: 

 𝑢̈𝑆(𝜑, 𝑡) + 2ζ𝑆𝜔𝑆 𝑢̇𝑆(𝜑, 𝑡) + 𝑓𝑅(𝜑, 𝑡) = −𝑢̈𝑃,𝑖
(a)(𝜑, 𝑡) , (18) 

where 𝜔𝑆 and ζ𝑆 are the associated natural vibration frequency and damping ratio, respectively, while 

𝑢̈𝑃,𝑖
(a)(𝜑, 𝑡) = 𝑢̈𝑃,𝑖(𝜑, 𝑡) + 𝑢̈𝑔,𝑖(𝜑, 𝑡) is the unidirectional absolute acceleration response of the primary structure 

at the position of attachment. For a linear system, the restoring force is 𝑓𝑅(𝜑, 𝑡) = 𝜔𝑆
2 𝑢𝑆(𝜑, 𝑡); alternatively if 

the subsystem is considered nonlinear 𝑓𝑅(𝜑, 𝑡) becomes an implicit function of the deformation. Adopting the 

well-known Bouc-Wen model [16, 17], 𝑓𝑅(𝜑, 𝑡) can then be posed in the form:  

 𝑓𝑅(𝜑, 𝑡) = 𝜓 𝜔𝑆
2𝑢(𝜑, 𝑡) + (1 − 𝜓)𝜀 𝑧(𝜑, 𝑡) , (19) 
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where 𝜓 is the ratio of post-yield to pre-yield stiffness (setting 𝜓 = 0 corresponds to an elastic-perfectly plastic 

case while 𝜓 = 1 leads to the linear one); 𝜀 = 𝑓𝑦/𝑚 is a measure of the ground acceleration required for the 

system to yield; 𝑧(𝜑, 𝑡) is a dimensionless hysteretic variable, ruled by: 

 
𝑧̇(𝑡) =

 𝜔𝑆
2

𝜀
{1 − |𝑧|𝑛(𝛽 + 𝛾 sgn[𝑢̇(𝜑, 𝑡) 𝑧(𝜑, 𝑡)])} 𝑢̇(𝜑, 𝑡) , (20) 

in which 𝛽, 𝛾, 𝑛 are dimensionless parameters controlling the shape of the hysteresis model and sgn(. ) is the 

signum function.  

2.5.2 Sliding block 

The case of a rigid-perfectly plastic SDoF system can be considered as the limiting case (𝜔𝑆 → +∞ and 𝑛 →
+∞) of the above restoring force, where the equation of motion becomes: 

 
𝑢̈𝑆(𝜑, t) =  {

−𝑢̈𝑃,𝑖
(a)(𝜑, t) − 𝜇𝑆 𝑔 sgn (𝑢̇𝑃,𝑖

(a)(𝜑, t)) if |𝑢̈𝑃,𝑖
(a)(𝜑, t)| > 𝜇𝑠 𝑔

0 otherwise
 (21) 

in which 𝜇𝑆 is the coefficient of sliding friction of the secondary system and 𝑔 is the acceleration due to gravity. 

Notably, the above equation corresponds to a pure slide mode and is the same as Eq. (2) presented in [18]. 

2.5.3 Rocking block 

If the system undergoes pure rocking motion (𝜇𝑆 → ∞), the equation governing the response of a free-standing 

subsystem is then ruled by: 

 
𝜃̈𝑆(𝜑, 𝑡) = −𝑝

2 {sin(𝛼 sgn[𝜃𝑆(𝜑, 𝑡)] − 𝜃𝑆(𝜑, 𝑡)) +
𝑢̈𝑃,𝑖
(a)(𝜑, t)

𝑔
cos(𝛼 sgn[𝜃𝑆(𝜑, 𝑡)] − 𝜃𝑆(𝜑, 𝑡))}  , 

(22) 

and 

 
𝜃̇𝑆
a = 𝑒max 𝜃̇𝑆

b,      𝑒max =
1 + 𝑠 cos (2α)

1 + 𝑠
, (23) 

in which 𝜃𝑆(𝜑, 𝑡) is the rotation response of the block; slenderness angle 𝛼 and the parameter 𝑝 characterize its 

dynamics (e.g. for a rectangular block, 𝑝 = √3𝑔/(4𝑅); furthermore, 𝑝 ≈ 2 rad/s for an electrical transformer), 

along with the coefficient of restitution 𝑒 = 𝑒max, which accounts for the reduction in the angular velocity before 

(𝜃̇𝑆
b) and after (𝜃̇𝑆

a) an impact, when 𝜃𝑆 changes sign (again, for a rectangular block, 𝑒max = 1 − 3 sin
2(𝛼)/2, 𝑅 

being half the block’s diameter and the shape factor is 𝑠 = 3) [19, 20, 21].  

 

3. Application 

In order to assess the seismic response of secondary structures subjected to the simultaneous action of orthogonal 

horizontal components, a representative case study has been numerically investigated. Figure 1 (right), shows a 

MDoF primary system comprising of a 5-storey single-bay moment-resisting frame, being irregular in plan and 

elevation, with position S denoting the attachment point of a light SDoF secondary system of unit mass at top story 

(chosen as representative), modeled as (i) linear, (ii) Bouc-Wen, (iii) sliding and (iv) rocking oscillator. Floors are 

rigid in plane, while the self-weight and super-dead load constitute the mass source of the structure. The 

fundamental period of vibration in the direction of interest 𝑥 and damping ratio are 𝑇P,𝑥 = 0.382𝑠, ζ = 0.05 for the 

primary structure and 𝑇S = 0.9𝑇P,𝑥, ζS = 0.02 for the secondary (cases (i) and (ii)). The number of modal 

coordinates retained in the analysis is 𝑚2 = 5, chosen such that at least 90% of the modal mass participates in the 

seismic motion, a criterion set by current codes of practice [22]. The Bouc-Wen parameters are taken as 𝜓 = 0, 

𝛽 = 𝛾 = 0.5, 𝑛 = 5 representing the case of elastic-perfectly plastic and 𝜀 is chosen as a fraction of the response 

of the equivalent linear oscillator. The friction coefficient is 𝜇𝑆 = 0.2 and the parameters of the rocking oscillator 

are 𝛼 = 0.2rad and 𝑝 = 1rad/s, while the overturning condition is set as 𝜃𝑆(𝜑, 𝑡) = 𝛼. 
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3.1 Identification of ground motion model parameters 

Two recorded accelerograms have been considered, namely El Centro 1940 and Erzincan 1992, chosen as 

representative candidates for different earthquake scenarios and their principal horizontal components have been 

identified by examining the correlation coefficient of their as-recorded associated components (see Eqs. (1) and (2)). 

The parameters of the ground motion model have been obtained based on the procedure described in [10]. In doing so, 

the modulating function parameters 𝜿𝑟 were initially determined, by minimizing the squared difference between the 

expected cumulative energy of the process and the one of the recorded accelerograms. Given the inter-dependence 

between the frequency and damping parameters, 𝜔0(𝜏) and 𝜔𝑛(𝜏) were first identified over constant values of 𝜁𝑓(𝜏), 

by minimizing the mean-square error of the cumulative expected number of zero-level up-crossings of the process and 

the target accelerogram. A set of 20 simulations was then used, over a range of damping values 𝜁𝑓 = 0.1,0.2, … ,1 

and the slope of the cumulative number of negative maxima plus positive minima of the model process was compared 

to that of the target motion. To account for the time-variation in the damping ratio, four-segments were used over the 

total duration of motion. The frequency parameters were then refined according to the damping ratios chosen.  

3.2 Numerical analyses 

A Monte Carlo simulation (MCS) comprising of a series of linear dynamic analyses has been carried out with 𝑛sym =

500 realisations, using the commercial software SAP2000 [23] and the numerical software MATLAB [24], assessing 

the structural response in presence of uncertainties in the seismic input. The primary structure has been excited by the 

2 ground motion records at 12 different angles of seismic incidence per ground motion pair, from 0° to 165° by 

transforming the time series using Eq. (12) and assigning them in the 𝑥 and 𝑦 directions as shown in Figure 1 (left). In 

doing so, the angle of attack of the secondary systems was assumed the same as the one of the primary. 

In a first stage, the stochastic ground motion model is verified by comparing the statistics of the processes to the two 

target motions considered. In a second stage, the response of the secondary subsystems is examined for different 

configurations (i.e. different elevations and angles of attack). In a third stage, the influence of various mechanical 

parameters on the response statistics of the secondary oscillators is investigated and a set of design spectra is 

presented. Various EDPs were considered, namely: the maximum absolute acceleration (max {𝑢̈𝑃,𝑖
(a)(𝜑, 𝑡)}) for the 

linear primary structure; the maximum relative displacement (max{𝑢𝑆(𝜑, 𝑡)}) for the linear, Bouc-Wen and sliding 

secondary oscillators; and the maximum normalized rotation (max {
𝜃𝑆(𝜑,𝑡)

𝛼
}) for the rocking block.   

3.2.1 Simulated motions 

Figure 2 confirms that the correlation coefficient calculated over each pair of components is a smooth function of the 

rotation angle. For the two earthquakes under consideration, 𝜌 = 0 when 𝛿 = 72° and 𝛿 = 37°, respectively, and the 

associated components can be considered as principal. Figure 3 compares the 5% damped elastic response spectra of 

Fig. 2 - Correlation coefficient of orthogonal components. 
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the resulting 500 simulated orthogonal components with the recorded ones. Overall, a satisfactory match is observed 

and thus the simulated motions are exploited to the subsequent stages of the analysis. It is worth mentioning here that 

the discrepancies seen for the case of Imperial Valley (Fig.3, top) are due to the ground motion possessing multiple 

dominant periods. Although out of the scope of this study, this can be accounted for through MDoF filter [10].   

3.2.2 Elevation and angle of seismic incidence 

Following the generation of the simulated ground motions and the evaluation of the seismic response for the 

primary structure at the points of attachment, our analyses proceed with the cascade dynamic analysis of the four 

secondary oscillators under consideration. Figure 4 (top) shows the expected values of the EDPs at top level of 

the MDoF frame as a function of the angle of attack normalized with the respective values of the principal 

direction (i.e. 𝜑 = 0°). Similar trends are seen in the curves for all cases, with the highest EDPs predicted when 

𝜑 = 0°. Highest magnitude reductions are observed at 𝜑 = 90° for the sliding oscillator (50%) while the lowest 

are found for the Bouc-Wen (20-25%). Interestingly, for the case of Erzincan the sliding oscillators show 

reduced sensitivity to the angle of attack of the earthquake, meaning that the latter can be record-dependent. 

Figure 4 (2nd row) illustrates the results at different elevations and constant 𝜑 = 0°, normalized with the 

relevant EDPs at the top level. As expected, in all cases the EDPs increase with the height, due to the dynamic 

amplification caused by the seismic motion of the primary structure, with the sliding and linear oscillators showing 

the highest variations. Furthermore, due to their strong nonlinearities, sliding and rocking blocks show high 

variability between the two earthquakes.  

Plotting the normalized EDPs of the secondary oscillators against the normalized EDP of the primary structure 

at the attachment points (Figure 4, bottom), one can observe that the resulting points tend to lie close to the main 

diagonal line at 45° for the case of the first record, while they are more scattered for the second record (particularly 

the data points for the sliding and the rocking blocks). Notably, although a certain degree of correlation is evident 

between the two EDPs, the variations with the type of nonlinearity and the time-frequency characteristics of the 

seismic input suggest that further investigations are required to understand how the two seismic responses are related. 

Fig. 3 - Comparison between 5% damped elastic response spectra of recorded and simulated orthogonal 

components for Imperial Valley (top) and Erzincan (bottom) earthquakes. 
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3.2.3 Response spectra 

Finally, the effects of various parameters governing the response of the secondary oscillators are presented in 

terms of the associated EDPs evaluated at the top level and for different angles of seismic incidence. Figure 5 

(top) shows the earthquake spectra for the linear oscillator with two levels of viscous damping ratio. Overall, the 

expected EDPs and response variance increase with 𝑇S, and an amplification is seen near the resonant period of 

the primary structure (i.e. 𝑇S = 𝑇P,𝑥 = 0.382s). Increasing the damping ratio ζS from 0.02 to 0.05 causes a 

reduction in the order of 50% for both records. In this case then, an accurate evaluation of the inherent damping 

of the secondary system appears of utmost importance, especially if the risk of resonant motion exists. 

Fig. 4 - Normalized expected EDPs of secondary systems at various angles of attack (top) ,  elevations (middle), 

and correlation between secondary-primary normalized expected EDPs due to the simulated motions of the 1940 

Imperial Valley (left) and 1992 Erzincan (right) earthquakes. 
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Fig. 5 - Spectra of a linear secondary system with ζ𝑆 = 0.02 and ζ𝑆 = 0.05 (top row), Bouc-Wen secondary 

system with 𝜀 = 3.2 and 𝜀 = 4.8 (2nd row), sliding secondary system (3rd row) and rocking secondary system 

with 𝑝 = 1, 2 rad/s and 𝜀𝑟 = 0.5 (bottom row) when subjected to the simulated motions of the 1940 Imperial 

Valley (left) and 1992 Erzincan (right) earthquakes.  
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Figure 5 (2nd row) shows the nonlinear spectra for elastoplastic oscillators with the Bouc-Wen model, 

considering two values of yielding acceleration 𝜀. As expected, the dynamic amplification seen in the linear 

system is significantly reduced at 𝑇S = 𝑇P,𝑥, due to the energy being dissipated in the elastoplastic (frequency-

independend) cycles. Furthermore, increasing 𝜀 shows a reduction of the seismic response for short periods, 

while the EDP increases for longer periods.  

The sliding spectra are presented in the 3rd row of Figure 5. Smooth curves are observed (i.e. no resonant 

peaks are seen), with progressively smaller values of EDP and less response variance when the friction 

coefficient increases. An overall a reduction of about 70% in the EDPs is shown for the two earthquakes.  

Finally, the last row of Figure 5 shows the rocking spectra for two values of the dynamic parameter 𝑝 and 

the two earthquake records. Overall, higher EDPs are predicted for the near-field case of Erzincan. As shown, 

the smaller the slenderness angle 𝛼 and the higher the dynamic parameter 𝑝, the more likely the subsystem is to 

overturn and the higher the variance of the seismic response. In particular, reducing the dynamic parameter p 

from 2 to 1 rad/s can reduce the expected value of the EDP, 𝜃max/𝛼, up to about 80%. It therefore appears that, 

given a design earthquake scenario, the choice of the dynamic parameter in conjunction with the slenderness 

may be critical on the seismic response of secondary rocking systems. 

 

4. Conclusions 

The stochastic seismic response of light secondary subsystems was investigated in presence of uncertainties in 

simultaneous bi-directional ground motions. First, a set of principal axes has been identified for a near-field and 

a far-field earthquake record. An ensemble of bi-directional time series was then generated and the response of 

various secondary structures modeled either as linear or nonlinear SDoF oscillators (i.e. linear, Bouc-Wen, 

sliding and rocking) was quantified for various configurations (different elevations and angles of attack). The 

design spectra were then established, allowing the quantification of the seismic performance for various 

subsystems under the selected design scenarios. The following conclusions can be drawn:  

(1) The angle of seismic incidence was shown to cause the highest variations in the EDP of the sliding 

oscillator (about 50%) and it least affected the Bouc-Wen oscillator (about 20-25%). Furthermore, 

investigation on the response of subsystems at different elevations showed higher variations in the EDPs 

for the case of sliding and linear oscillators, respectively for the far-field and near-field record. Thus, 

independently of the degree of nonlinearity shown by the secondary oscillator, an accurate modeling of 

the seismic dynamics of both primary and secondary system is of key importance. 

(2) The value of the viscous damping ratio significantly affects the peak response statistics of linear secondary 

systems vibrating close to the fundamental frequency of the primary structure. Indeed, increasing ζS from 

0.02 to 0.05 resulted in a reduction in the response by about 50% for both earthquakes (close to the 40% 

reduction in the peak of the harmonic amplification factor, 𝐷S ≅ 1/𝜁S).  

(3) Peak response statistics of the sliding oscillator were found to be smooth functions of the sliding friction 

coefficient 𝜇𝑠. For instance, increasing 𝜇𝑠 from 0.1 to 0.6 resulted in about 70% reduction in the expected 

value of the EDP. 

(4) Reducing the slenderness angle and increasing the dynamic parameter was shown to exacerbate the 

tendency of the rocking oscillator to overturn. Interestingly, in comparison to other types of secondary 

oscillators, the strong nonlinearity of rocking block means that its seismic performance in terms of EPD is 

characterized by the highest value of coefficient of variation. 

Future extensions of this work will include: (1) consideration of uncertainty in the structure in conjunction 

with uncertainty in the ground motion model and (2) investigation of other building types as well as further 

ground motion records. This will allow the development of an efficient framework for the stochastic response 

analysis of secondary structures.  

 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

12 

References 

[1] Taghavi S, Miranda E (2003): Response assessment of nonstructural building elements. Technical Report PEER 

2003/05, Pacific Earthquake Engineering Research, Berkeley, USA. 

[2] Villaverde R (2009): Fundamental concepts of earthquake engineering, Boca Raton, Fla, London. 

[3] Muscolino G, Palmeri A (2007): An earthquake response spectrum method for linear light secondary substructures. 

ISET Journal of Earthquake Technology, 44, 193-211. 

[4] FIB (2012): Probabilistic performance-based seismic design. Technical Report Bulletin 68, International Federation           

for Structural Concrete, Lausanne, Switzerland. 

[5] Giaralis A, Spanos P D (2009): Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode 

application (EC8). Soil Dynamics and Earthquake Engineering, 29, 219-235. 

[6] Cecini D, Palmeri A (2015): Spectrum-compatible accelerograms with harmonic wavelets. Computers and 

Structures, 147, 26-35. 

[7] Kanai K (1957): Semi-empirical formula for the seismic characteristics of the ground. Technical Report 35, 

University of Tokyo, Earthquake Research Institute. 

[8] Tajimi H (1960): A statistical method of determining the maximum response of a building structure during an 

earthquake. Proceedings of the 2nd World Conference on Earthquake Engineering, Tokyo and Kyoto. 

[9] Rezaeian S, Der Kiureghian A (2008): A stochastic ground motion model with separable temporal and spectral  

nonstationarities. Earthquake Engineering & Structural Dynamics, 37, 1565-1584. 
[10] Rezaeian S, Der Kiureghian A (2010): Stochastic modeling and simulation of ground motions for performance-

based earthquake engineering. Technical Report PEER 2010/02, Pacific Earthquake Engineering Research, 

Berkeley, USA. 

[11] Rezaeian S, Der Kiureghian A (2012): Simulation of orthogonal horizontal ground motion components for specified 

earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, 41, 335-353. 

[12] Penzien J, Watabe M (1975): Characteristics of 3-dimensional earthquake ground motions. Earthquake Engineering 

& Structural Dynamics, 3, 365-373. 

[13] Menun C, Der Kiureghian A (1998): A replacement for the 30%, 40% and SRSS rules for multicomponent seismic 

analysis. Earthquake Spectra, 14, 153-163. 

[14] Rigato A B, Medina R A (2007): Influence of angle of incidence on seismic demands for inelastic single-storey 

structures subjected to bi-directional ground motions. Engineering Structures, 29, 2593-2601. 

[15] Kasinos S, Palmeri A, Lombardo M (2015): Performance-based seismic analysis of light SDoF secondary 

substructures. 12th International Conference on the Applications of Statistics and Probability in Civil Engineering, 

Vancouver, Canada. 

[16] Wen Y. K (1980): Equivalent linearization for hysteretic systems under random excitation. Journal of Applied 

Mechanics, 47, 150-154. 

[17] Ma F, Zhang H, Bockstedte A, Foliente G. C, Paevere P (2004): Parameter analysis of the differential model of 

hysteresis. Journal of Applied Mechanics, 71, 342-349. 

[18] Shenton H. W, Jones N. P (1991): Base excitation of rigid bodies I: Formulation. Journal of Engineering 

Mechanics, 117, 2286-2306. 

[19] Yim C. S, Chopra A. K, Penzien J (1980): Rocking response of rigid blocks to earthquakes. Earthquake 

Engineering & Structural Dynamics, 8, 565-587. 

[20] Zhang J, Makris N (2001): Rocking response of free-standing blocks under cycloidal pulses. Journal of 

Engineering Mechanics, 127, 473-483. 

[21] Palmeri A, Makris N (2008): Response analysis of rigid structures rocking on viscoelastic foundation. Earthquake 

Engineering & Structural Dynamics, 37, 1039-1063. 

[22] European Committee for Standardisation (2004): Eurocode 8, Design of structures for earthquake resistance. 

[23] Computers and Structures (2007): SAP2000, Release 15.2.1, Berkeley. 

[24] The MathWorks, Inc (2013): MATLAB, Release 8.2, Natick, Massachusetts, United States. 

 


