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Abstract 

Typical recorded acceleration traces of seismic ground motions (GMs) exhibit a time-varying frequency composition, 

however, all GM properties currently considered in earthquake engineering to quantify the structural damage potential of 

GMs do not explicitly characterize the time-evolving trends of GM frequency content. Indeed, the intensity measures (IMs) 

and record selection criteria adopted in the context of performance-based earthquake engineering (PBEE) do not account for 

the non-stationary frequency content of GMs in a straightforward manner. In this regard, this paper considers a novel scalar 

quantity termed alpha, “a”, defined by the average slope (angle) of the wavelet-based mean instantaneous period (MIP) to 

characterize the temporal evolution of the mean frequency content of recorded GMs. Specifically, the MIP is the time-varying 

first-order average along the frequency or, equivalently, along the period axis of the wavelet-based GM spectrogram (squared 

magnitude of the GM wavelet transform) treated as a GM energy distribution on the time-frequency/period plane. 

Consequently, a captures the rate by which the mean frequency content of GMs changes in time. Linear regression analyses 

are undertaken involving a dataset of 684 GMs from 30 seismic events of Magnitude 6.5<M<8 and distance to rupture plane 

20km<Rrup<120km to quantify statistical/empirical correlation trends between a and well-established GM properties, namely 

the peak ground acceleration (PGA), peak ground velocity (PGV), and the mean Fourier-based frequency (Tm), oftentimes 

used as intensity measures (IMs) and record selection criteria in PBEE. Further, regression analyses are undertaken to probe 

into the relationships between a and important seismological and local site characteristics, namely M, Rrup, and the shear wave 

velocity Vs30. It is found that no significant correlation exist between a and M, Rrup, or PGA. However, it was established 

that a is well-correlated with the average frequency content of GMs as captured by Tm and by PGV: the lower the average 

frequency content, the larger the value of a tends to be, that is, the faster the time evolution (transition) of the average 

frequency content is from higher to lower frequencies. Further, the reported numerical data indicate that the level of the above 

correlation depends on the intensity of GMs in terms of PGA (conditional on PGA): a is larger for fixed Tm as PGA increases 

and a increases faster as Tm increases for larger PGA values. Moreover, GMs recorded on softer soils are more likely to have 

larger a conditional on PGA, a phenomenon that is attributed to the fact that soft soils under strong seismic shaking exhibit 

strong non-linear behavior that enriches the low frequency content of free field recorded GMs. Lastly, the influence of a in 

predicting the peak inelastic structural response is assessed within the PBEE framework through a standard sufficiency 

statistical test on PGA and PGV, treated as non-structure specific IMs in conducting incremental dynamic analysis (IDA) for 

a hysteretic oscillator with strength and stiffness degradation representing a benchmark 12-storey reinforce concrete frame 

exposed to the above set of 684 GMs. The considered statistical tests demonstrate that the non-stationary average frequency 

content of GMs as captured by a influences the peak inelastic structural response at collapse. Overall, the herein furnished 

results establish the validity and usefulness of a in characterizing the evolutionary frequency content of GMs and suggests 

that a should be considered as a record selection criterion in undertaking IDA using PGA and PGV as IMs.  
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1. Introduction 

Typical field recorded acceleration time-histories of earthquake induced strong ground motions (GMs) exhibit 

time-evolving amplitude and frequency content due to the dispersion of different types of propagating seismic 

waves arriving at the recording station at different time instants. Several researchers considered various joint time-

frequency signal analysis tools, including the wavelet transform, to capture the time-evolving characteristics of 

the frequency content of GMs [1-4]. Further, such tools have been used for GM classification associated with near-

fault signatures such as forward-directivity pulses [5] and for stochastic simulation of GMs using non-stationary 

stochastic models [4,6]. More importantly, it has been argued that the time-evolving frequency content of GMs 

influences the hysteretic response of seismically excited yielding structures. This issue has been studied from the 

structural dynamics and from the damage detection perspectives by means of analytical stochastic dynamics 

techniques (e.g. [7]), signal analysis tools used in a deterministic manner [1-3], and simulation-based studies 

considering stochastic models to represent the non-stationary features of the strong ground motion [8].  

Still, the evolving frequency content of GMs is not taken into account by any of the commonly-used scalar 

parameters to characterize the structural damage potential of GMs (see e.g. [9]). For instance, recent research work 

focusing on the effects of frequency content of GMs to the structural response of yielding structures [10,11] 

consider the Fourier transform-based mean period Tm in [12] for GM characterization and classification which 

provides only for the averaged in time spectral composition of the GMs; it does not carry any information on its 

time-varying trends. Accordingly, none of the non-structural intensity measures (IMs), such as the peak ground 

acceleration (PGA), and the peak ground velocity (PGV), or of the GM record selection criteria, extensively used 

to facilitate seismic risk quantification within the performance-based earthquake engineering (PBEE) framework, 

consider explicitly the evolution of GM frequency content. Further, the structure-dependent IMs used in PBEE, 

such as the spectral acceleration at the fundamental natural period, Sa(T1), (e.g., [13-15]) account for the non-

stationary GM frequency content only implicitly as it reflects to elastic or inelastic structural response. 

Nevertheless, this does not allow for examining the influence of the salient non-stationary frequency trends of 

different GMs to the response of yielding structures in a systematic manner, either from a structural dynamics 

viewpoint (e.g., identification of “moving resonance” phenomena [7] or “period elongation” phenomena [20]) or 

from a purely statistical viewpoint (e.g., peak inelastic response variability as obtained from incremental dynamic 

analysis- IDA [13]), and, therefore, to gauge its contribution to the seismic risk in the context of PBEE.  

In addressing some of the above open issues, the authors recently demonstrated that the time-varying mean 

instantaneous period (MIP), computed from wavelet-based joint time-period representations of ensembles of 

recorded GMs, correlates well with the MIP of acceleration response time-histories of inelastic single-degree-of-

freedom (SDOF) oscillators near collapse [16]. Note that the MIP is a time-history on the time-period plane 

tracking the variation of the mean signal frequency content in time by averaging along the frequency axis the 

signal wavelet coefficients at each time instant. In this respect, MIP is closely related to the mean instantaneous 

frequency (MIF) whose usefulness for treating GMs and inelastic structural response signals was established in 

[2,3]. In particular, it was found in [16] that the MIPs of the response signals tend to converge to the GM MIP in 

a point-wise manner as stronger inelastic behavior is exhibited in conducting IDA for a particular ensemble of far-

field GMs. Furthermore, it was observed that the slope of the ensemble average response MIP for the near-collapse 

limit state lies close to the ensemble average excitation (GM) MIP. 

The above findings motivated the herein work focusing on the average slope of the MIP of recorded GMs, 

hereafter termed angle “alpha” a, and aiming to quantify its relationship with well-established seismological 

parameters and widely used non-structure dependent IMs in a statistical sense. This is achieved by means of 

standard linear regression analyses pertaining to a large databank of far-field GMs. The remainder of this paper is 

structured as follows: Section 2 provides for a brief mathematical background and definitions of MIP and a along 

with their properties; Section 3 furnishes statistical data and comments on the relation of a to seismological 

parameters (M, Rrup), soil conditions (shear wave velocity Vs30), PGA, and PGV; Section 4 considers testing the 

most widely used non-structure IMs PGA and PGV for sufficiency with respect to a in undertaking IDA for a 

hysteretic bilinear oscillator with strength and stiffness degradation calibrated ; and Section 5 summarizes 

conclusions and points to future research directions.    
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2. Mathematical Background and Definitions 

2.1 Fourier transform-based mean period Tm 

Consider the continuous-time acceleration GM trace x(t) of finite duration To and its discrete-time version x[n]= 

x(n·Δt) with n=0,1,2,…,N-1 sampled with a time step Δt, such that To= N∙Δt. The discrete Fourier transform (DFT), 

defined as  
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decomposes/projects x[n] onto an orthogonal basis of harmonically related discrete-time sinusoidal functions with 
frequencies ωk= 2πk/N (in rad/s). In Eq.(1) i denotes the imaginary unit. The magnitude of the complex-valued 
Fourier coefficients  X̂ k  can be viewed as a measure of similarity between the signal x(t) and a non-decaying in 
time sinusoidal function of frequency ωk (i.e., single frequency component). Therefore, the magnitude of the DFT 
achieves a representation of the average over time frequency composition of x(t) on the frequency ω axis or, 
equivalently, on the period T=2π/ω axis, with the sharpest possible resolution. Further, the DFT is energy 

preserving (i.e.,     
22 ˆx n X k ) and, therefore, the square magnitude of the Fourier coefficients can be 

interpreted as a distribution of the signal energy in the frequency domain. This interpretation allows for defining 
the Fourier-based mean period within the frequency band [0.25 20] Hz of interest for GMs [26] 
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where K1 and K2 are the closest integers to 0.25N and 20N, respectively. The mean period Tm has been shown to 

represent better the (mean) frequency content of GMs (see e.g., [26]) compared to alternative response spectrum-

based metrics and it commonly used in the literature to quantify the impact of the mean frequency content of GMs 

to the response of yielding structures (e.g. [10,11]). However, Tm does not capture the time-varying frequency 

content of GMs which may significantly influence the inelastic structural response (e.g., [1,7,8]). This is because 

the magnitude of the DFT does not carry any temporal information (i.e., it is not possible to know the location in 

time of each identified frequency component). Motivated by the above studies and recognizing that wavelet-based 

signal representations have been successfully used to represent the time-varying frequency content of both GMs 

and inelastic structural response signals (e.g., [3,16]), the wavelet-based time-varying mean instantaneous period 

(MIP) is defined in the next sub-section to characterize the evolution of the mean frequency content of GMs. 

2.2 The continuous wavelet transform and the mean instantaneous period (MIP) 

The continuous wavelet transform (CWT) of a discrete-time signal x[n] is defined as (e.g., [17])  
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The above transformation can be viewed as a decomposition/projection of x[n] onto a collection of oscillatory 

localized in time functions (“wavelets”). These functions are generated by scaling, via the positive scale parameter 

s, and by translating in time a single finite energy function ψ(t) (“mother wavelet”), which may be complex-valued. 

In the last equation the superscript (*) denotes complex conjugation. Importantly, the scaling operation and the 

oscillatory form of the wavelets are the salient features that allow for interpreting the square magnitude (spectrum) 

of the wavelet coefficients |W(s,n)|2 as an estimator of the signal energy distribution on the time-frequency or, 

equivalently, on the time-period plane. This is because the scale parameter s can be associated with an effective 

frequency ωeff(s)=ωp/(Δt∙s) (or equivalently with an effective period Teff(s)=2π/ωeff(s)), where ωp is the 

predominant frequency of the unscaled (i.e., s=1) mother wavelet. To this end, a wavelet-based time-varying mean 

instantaneous period (MIP) is herein considered defined as (see also [2,3]) 
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band-limited within the same frequency range as the Tm in Eq. (2). That is, in the last equation, S1 and S2 are integers 

specifying scales with effective frequencies of 0.25Hz and 20Hz, respectively. Note that the above MIP is a time-

dependent function corresponding to the time frame in which the central 90% of the total signal energy lies. That 

is, in Eq. (5) t05 and t95 are the time instants at which 5% and 95% of the total signal energy, respectively, has been 

released, while the operators floor(∙) and ceil(∙) round their arguments to the closest small and large integer value, 

respectively. This time frame corresponds to the effective duration of GMs [9]. Therefore, the MIP provides an 

estimate of the temporal evolution of the mean period Tm within the effective GM duration. To this effect, it can 

be viewed as a generalization of Tm, in the sense that by temporal averaging of MIP, the following estimation of 

the Tm in Eq. (2) can be reached (see also [16]) 

  
1

0

1
MIP

N
MIP

m

n

T n
N





  .        (5) 

An important concern in the CWT is the choice of the wavelet analysis function in Eq. (3) which is highly 

application-dependent. For the purposes of this work, Morlet wavelets, which are widely used to derive “smooth” 

and well-localized in time wavelet spectra |W(s,n)|2 and were historically the first waveforms to be used in 

conjunction with the CWT [18] are considered. Specifically, the Morlet wavelet in Eq. (3) is defined as  
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where the term in front of the first exponential function is included to ensure that Morlet wavelets at all scales 

have unit energy. For illustration, contour plots of the Morlet wavelet spectrum on the time-period plane are 

provided in Figs.1(c) and 1(d) (warmer colors indicate higher amplitude values) for two different GMs plotted in 

Figs. 1(a) and 1(b), respectively, obtained from the PEER NGA-West2 database (http://ngawest2.berkeley.edu/). 

These wavelet spectra have been generated by considering a sufficient number of discrete scales corresponding to 

a frequency range of interest in earthquake engineering to achieve a meaningful signal representation as detailed 

in [17]. On the same plot, the so-called “cone of influence” [17] is indicated by a red broken line outside of which 

the wavelet spectrum is severely affected by end-effects and, therefore, is not reliable. Lastly, the MIP computed 

from Eq. (4) is superposed on Figs1(c) and 1(d) (thick broken black line), defined within the white rectangular 

window on the time-period plane.  

2.3 The average slope “alpha” α of the MIP 

The above discussed MIP is useful to visualize qualitatively the evolutionary trend of the mean frequency content 

of GMs, however, being a time-history on the time-period plane, it bears limited practical merit to serve as an 

index quantifying the evolving frequency content of GMs; a scalar quantity is desirable for the task. For this 

purpose, it is herein proposed to consider the average slope of the MIP “alpha” a as a scalar that captures the 

average evolutionary trend in time of the mean frequency content of GMs. Rather than providing an impractical 

mathematical definition, it is deemed preferable to define α graphically as shown in Figs. 1(e) and 1(f). In 

particular, in the latter figures the MIP of the GMs in Figs. 1(a) and 1(b) are plotted (blue continuous curves) on 

the time-period plane as extracted from the corresponding Morlet wavelet spectra. Next, a linear function is fit to 

the MIP using standard least squares minimization (broken black line), and a is defined as the slope of the linear 

function fitted to MIP measured in degrees. Therefore, a can be effectively viewed as the average slope of the MIP 

in time within the effective duration of the GM. The angle a is assigned a positive value when the mean GM 

frequency decreases in time (on the average) or, equivalently, when the GM period increases in time, as shown in 

Fig.1(e), while a is assigned a negative value when the mean GM frequency increases in time or, equivalently, 

http://ngawest2.berkeley.edu/
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when the GM period decreases in time, as shown in Fig.1(f). Following seismological considerations, it is expected 

that typical horizontal far-field GMs with no near-fault signatures would normally have a positive a since the 

seismic waves that arrive first at a recording station are dominated by higher frequencies while lower frequencies 

kick in at later times (e.g., [4,6,9]). Indeed, this is true for the vast majority of the 684 far-field GM components 

examined in the next section (Table 1). Nevertheless, there are also far-field GMs with a<0, as the recorded 

acceleration treated in the right panels of Fig.1. Careful examination of the Morlet wavelet spectra and the 

associated MIPs reveal that GMs with negative a values are typically characterized by the late appearance of 

significant bursts of energy carried at slightly higher frequencies compared to the mean frequency content at the 

beginning of the GM (see also Figs. 1(c) and 1(d) vis-à-vis). Overall, visual record-by-record qualitative inspection 

of wavelet spectra and MIPs of all the 684 GMs considered in this study suggests that the value of α (in degrees) 

reflects well the actual average-in-time evolutionary trend of the mean frequency content as captured by Morlet 

wavelet transformation. The following section includes further discussion on the rationale and validity of a to 

serve as an index of the frequency non-stationarity of GMs in view of pertinent statistical analyses gauging its 

correlation with seismological parameters and established GM properties. 

 

Fig. 1 – (a), (b): Acceleration time-histories, (c), (d): Morlet wavelet contour plots with mean instantaneous 

period (MIP) superposed, and (e), (f): slope α of MIPs, for two different accelerograms. 

3. Statistical relationships of α with GM properties and seismological parameters  

The angle a defined in the previous section is computed for 684 GMs from 30 different seismic events with 

magnitude range 6.5<M<8  and distance to rupture plane range 20km<Rrup<120km retrieved from the PEER NGA-

West2 Ground Motion Database (http://ngawest2.berkeley.edu/). Unscaled and unfiltered GMs along the “as-

recorded” direction were considered and no filter was applied on the faulting type, while “pulse-like” GMs were 

excluded [5]. Table 1 lists the seismic events, number of GMs considered per event, magnitude, and faulting 

mechanism. In computing the a for each GM, the MIP of the Morlet wavelet spectrogram is computed as detailed 

in the above section, upon base-line adjustment of the GM signal by acausal high-pass filtering with a fourth-order 

Butterworth filter with 0.13Hz cut-off frequency (see also [19] and references therein). 
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Table 1 – Catalogue of GMs used in this study 

Event date 
Records 

number 
Magnitude Mechanism 

Northwest California 02/09/1941 2 6.6 strike slip 

Borrego Mtn, El Centro 

Array 
04/09/1968 2 6.5 strike slip 

San Fernando 02/09/1971 32 6.61 Reverse 

Friuli - Italy 05/06/1976 4 6.5 Reverse 

Imperial Valley-06 10/15/1979 9 6.53 strike slip 

Irpinia - Italy 11/23/1980 8 6.9 Normal 

Ierissos - Greece 08/06/1983 1 6.7 strike slip 

Taiwan SMART1(25) 09/21/1983 9 6.5 Reverse 

Borah Peak ID-01 10/28/1983 8 6.88 Normal 

Superstition Hills-02 11/24/1987 4 6.54 strike slip 

Spitak Armenia 12/07/1988 1 6.77 Reverse Oblique 

Loma Prieta 10/18/1989 62 6.93 Reverse Oblique 

Cape Mendocino 04/25/1992 2 7.01 Reverse 

Northridge-01 01/17/1994 120 6.69 Reverse 

Kobe Japan 01/16/1995 12 6.9 strike slip 

Nenana Mountain Alaska 10/23/2002 2 6.7 strike slip 

Kern County 07/21/1952 3 7.36 Reverse 

Tabas Iran 09/16/1978 2 7.35 Reverse 

Trinidad 11/08/1980 3 7.2 strike slip 

Taiwan SMART1 11/14/1986 15 7.3 Reverse 

Landers 06/28/1992 16 7.28 strike slip 

Gulf of Aqaba 11/22/1995 1 7.2 strike slip 

Duzce Turkey 11/12/1999 5 7.14 strike slip 

Caldiran Turkey 11/24/1976 1 7.21 strike slip 

Manjil Iran 06/20/1990 4 7.37 strike slip 

Hector Mine 10/16/1999 38 7.13 strike slip 

Kocaeli Turkey 08/17/1999 13 7.51 strike slip 

Chi-Chi Taiwan 09/20/1999 302 7.51 Reverse Oblique 

Sitka Alaska 07/30/1972 1 7.68 strike slip 

St Elias Alaska 02/28/1979 2 7.54 Reverse 

 

Next, standard linear regression analysis is undertaken for the GM dataset of Table between a and three 

different GM properties, namely PGA, PGV, and Tm. For each GM, the values of PGA and PGV reported in the 

PEER NGA-West2 database are used, while the estimate of Tm in Eq. (5) is adopted as this is consistent with the 

wavelet-family-dependent MIP used in the analysis [16]. Further, a similar regression analysis is also undertaken 

between a and the shear wave velocity Vs30 value (a representative measure of the local soil site conditions) as 

defined and reported in the same database. The aim of these analyses is to quantify the regression slope coefficients 
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between a and PGA, PGV, Tm, and Vs,30 which, upon qualitative interpretation, can serve as evidence that a is a 

valid index to capture the non-stationary frequency trends of GMs, rather than a signal analysis artefact.   

Table 2 – Regression analysis results between α and four different GM properties 

Y R2 Standard 

error 
Coefficient 

Coefficient 

Value 

95% confidence 

interval 
p-value t-value 

PGA 0.0060 1.14 

C0 

(intercept) 
1.12 0.9827 1.264 0.0000 15.66 

C1 (slope) 1.21 0.045 2.379 0.0417 2.04 

PGV 0.076 1.10 

C0 

(intercept) 
0.78 0.641 0.929 0.0000 10.66 

C1 (slope) 0.035 0.026 0.044 0.0000 7.53 

MIP

mT  0.12 1.076 

C0 

(intercept) 
0.42 0.23 0.61 0.0000 4.40 

C1 (slope) 1.13 0.90 1.37 0.0000 9.46 

VS,30 0.03 1.127 

C0 

(intercept) 
1.69 1.48 1.91 0.0000 15.80 

C1 (slope) -0.001 -0.0016 -0.0006 0.0000 -4.65 

 

 
Fig. 2 – Linear regression analyses of α with (a): PGA, (b): PGV, (c): MIP

mT , (d): Vs30. 
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Figure 2 plots clouds of the 684 data points along with the mean and the mean plus/minus one standard 

deviation lines obtained from linear regression analysis of the form 

 a=C0+C1·Y    (7) 

where Y is the GM property under consideration. Table 2 collects the coefficient of determination R2, the standard 
errors and the values and confidence intervals of the determined regression coefficients Co and C1 as well as their 
p-values and t-values testing the null hypothesis (i.e., Co=0 or C1=0) for all regression analyses undertaken. It is 
deduced from Fig.2(a) that, on the average, a is not significantly affected by the PGA as the mean fitted linear 
function to the (α, PGA) pairs of values is almost flat. Indeed, the fact that the p-value and the t-value of the slope 
C1 coefficient of the regression analysis are close to 0.05 and 2.0, respectively (Table 2), confirm that the either 

way small value of the slope is not statistically significant. However, the average value of a increases appreciably 
as PGV increases in Fig.2(b) and slope coefficient of the regression analysis is statistically significant. These 
trends can be intuitively justified by considering that GMs with larger PGV values tend to be richer in low 
frequencies (this is because the velocity trace of GMs is derived by integration of the acceleration trace which is a 
low-pass filtering operation [20] suppressing the higher frequency components and accentuating the lower 
frequencies); and by noticing that the lower frequency components in a typical GM usually appear at later times 

compared to the high frequencies due to the early arrival of the p-waves (see e.g., Fig. 1(c) for a typical example). 
Therefore, it is natural to expect that the higher the PGV value in a typical GMs is, the more significantly the mean 
frequency content shifts in time from the higher to the lower frequencies. And if this shift is to be accommodated 
within roughly the same effective duration (note that in Table 1 most GMs considered are associated with a 
relatively narrow magnitude range, 7<M<7.5, and hence with roughly the same effective duration as the latter 
correlates well with the magnitude [9]), then the angle a (i.e., rate of change of the mean frequency content from 

higher to lower frequencies for α>0) attains higher values.  

The validity of the above reasoning is further reinforced by examining the average a- MIP

mT trend in Fig.2(c). 
Specifically, it is seen that α increases with increasing mean frequency (averaged over all times). Hence, it is 
confirmed that the rate of change in time of the mean frequency content is, on the average, higher for GMs with 
rich mean low frequency content. The latter observation has also been reported in [6] in which the rate of change 
of the average frequency content was used as one of the parameters defining a non-stationary GM stochastic model 

but was extracted from a databank of recorded GMs based on the average zero-crossing rate of GMs: a very 
different time-domain approach from the wavelet-based one herein adopted. Turning the attention to the a-Vs30 

trend in Fig.2(d), it is observed that a decreases as local soil conditions becomes “stiffer” [9], that is, as the value 
of Vs30 increases. This trend can be readily justified by taking as a fact that a is higher for GMs with richer low 
frequency content and by considering that soft soils shifts the frequency content of the GMs towards lower 
frequencies [9]. Alternatively, by reversing the above line of arguments, Fig.2(d) can be used as further evidence 

that the temporal rate of change of the mean frequency content is higher for GMs that are richer in low frequencies. 

Overall, the statistical data furnished in Table 2 and Fig.2 suggest that despite the large scattering/variability 
of the a with all 4 considered scalars (note the small R2 values of the regression analyse), it is seen that a is mostly 
related to the mean frequency content: GMs with lower frequency content tend to have larger a values. To gain an 
insight on the potential dependency of the angle a on the amplitude of the GM acceleration trace as captured by 
the PGA, further linear regression analyses are undertaken between a- MIP

mT and a-Vs30 upon dividing the GM 

dataset of Table 1 into 3 different bins according to their PGA: (i) PGA≤0.05g; relatively low intensity GMs, (ii) 
0.05g<PGA<0.15g; medium intensity GMs, and (iii) PGA≥0.15g; relatively high intensity GMs. The mean 
regression lines between a- MIP

mT and a-Vs,30  are plotted in Figs. 3(a) and 3(b), respectively, for all 3 bins on top of 
data points clouds color-mapped according to the considered PGA-based classification. It is observed that as PGA 
increases, the average value of a becomes more sensitive to the values of both the MIP

mT and Vs30. Indeed, the rate 
by which the statistical average value of a increases as the low frequency content of GMs becomes richer depends 

significantly on the PGA: the slope of the red regression line corresponding to high intensity GMs is significantly 
steeper from the other two regression lines (pertinent t statistic tests [21] were considered verifying that the slope 
differences in Fig.3 are statistically significant). This result indicates that although PGA is not well-correlated with 
a directly (at least not as much as the PGV in Figs. 2(a) and 2(b)), it does influence the expected value of a 
significantly for GMs rich in low frequency content. This trend can be attributed to the fact that typical GMs with 
relatively high PGA and PGV values are characterized by an early in time significant in amplitude high frequency 
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content, which drives the MIP towards high frequencies (short periods) at the beginning of the GM, and by rich 
low frequency content kicking in later in time, which shifts the MIP towards long periods at a fast rate (i.e., with 

a large a value). The above observation is also verified by visual inspection of the Morlet spectra contour plots 
and MIPs of GMs with PGA>0.15g. Furthermore, Fig. 2(b) suggests that the expected (average) value of a is more 
sensitive to the soil conditions for high intensity GMs. Indeed, for the PGA≤0.05g bin, the average regression line 
of a with respect to the soil stiffness is flat: the expected value of a is not sensitive to soil conditions. However, 
the average a values increase as softer soils and higher PGA values are considered. This trend can be readily 
attributed to the fact that soft soils exhibit stronger non-linear behaviour under intense (high amplitude) seismic 

shaking compared to stiff soils [9], which reflects on the frequency content of GMs becoming richer in low 
frequencies. 

Lastly, the regression lines in Fig.4 suggest that the magnitude and the distance to rupture Rrup (at least 
within the considered ranges of 6.5<M<8 and 20km< Rrup <120km, respectively) do not influence a in a direct 
manner. 

 

Fig. 3 – Regression analysis of α with (a): MIP

mT  and (b): Vs30, for the GM dataset of Table 1 classified in 3 

different PGA bins. 

 

Fig. 4 – Regression analysis of a with (a): magnitude M and (b): distance to rupture Rrup, for the GM dataset of 

Table 1 classified in 3 different PGA bins. 
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4.  Sufficiency of the non-structure-specific IMs PGA and PGV with respect to a  

Having established the validity and usefulness of a to represent the non-stationary trend of the mean frequency 

content and its relationship with key GM properties, a further study is herein undertaken to examine whether and 

to what extend a carries information not included in the PGA and PGV in gauging/predicting the structural damage 

potential of GMs. This study is motivated by the fact that PGA and PGV are the most commonly adopted non-

structure-specific intensity measures (IMs) used to predict certain engineering demand parameters (EDPs) 

characterizing the seismic response of yielding structures within the PBEE framework [13-15, 22-24]. Although 

it is well-recognized that PGA is not an efficient IM in predicting EDP values, several studies demonstrated that 

PGV can be an efficient IM, especially for the case of relatively flexible structures [22-24]. For the purposes of 

this work, a standard sufficiency IM test is adopted (see e.g. [15, 23]) to assess a potential capability of a, beyond 

that of PGA and PGV, to predict the peak (collapse) inelastic drift θmax: arguably, the most widely used EDP in 

earthquake engineering applications (see also [24]). In particular, the considered statistical test involves first 

undertaking regression analysis between the IM Y (e.g., PGA or PGV) and an EDP (e.g., θmax). Under the common 

assumption that the EDP-IM relationship follows a power law, the linear regression model is written as  

      * *

max 1ln ln lnoC C Y   ,       (8) 

where  *ln oC  and *

1C  are the intercept and the slope regression coefficients of the ln(EDP)-ln(IM) relationship, 

respectively. Next, a second regression analysis is undertaken between the residuals Y of the previous regression 
analysis and a as in  

 1oY C C a    ,        (9) 

and the attention is focused on the value of the slope 1C   and its statistical significance as captured by its p-value. 
This is because the regression in Eq.(9) is a one-predictor (i.e., the a) case, therefore a hypothesis test on 1 0C  
is a test on R2=0 of the last regression which seeks to determine whether a does not correlate with the residuals 

Y and, hence, whether Y already encompasses the information carried by a in predicting the EDP values. 

 

Fig. 5 – (a): Regression analysis of PGV  residuals with a (p-value=0.0186), and (b): Regression analysis of 
PGA residuals with a (p-value=0.0096). 

Following the above methodology, clouds of PGV and PGA residuals with a are plotted in Fig.5 (count: 
684) along with the fitted linear regression lines. The underlying θmax (EDP) values used in the regression analysis 
in Eq. (8) were obtained by performing IDA for the 684 GMs considered in the previous section to a single-degree-
of-freedom bilinear hysteretic oscillator with strength and stiffness degradation following the model in [25] as 

implemented in the OpenSees finite element platform. The bilinear backbone curve of the considered oscillator 
has been calibrated, using the N2 pushover method, against a regular benchmark 12-storey r/c frame designed 
according to the current European seismic code (Eurocode 8) for high ductility class [11]. The pre-yield natural 
frequency of the oscillator is 0.966s and a viscous damping of 5% has been assumed. More details on the adopted 
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oscillator can be found in [11] and in the references therein. It is seen in the plots of Fig. 5 that there is a non-
negligible linear trend (slope 1C  ) in the fitted regression lines and, more importantly, these trends are statistically 

significant since the p-values (also reported in Fig. 5) are significantly lower than 0.05 [21]. These results 
demonstrate that a has a statistically significant effect to the peak inelastic structural response and this effect is 
more prominent when PGA is used as an IM as opposed to the PGV. 

5. Concluding Remarks 

A novel wavelet-based scalar quantity termed alpha, a, was proposed to characterize the temporal evolution of the 

mean frequency content of recorded GMs. It is defined as the average slope (angle) of the time-varying mean 

instantaneous period (MIP) extracted from the wavelet coefficients of GMs bounded in time within the GM 

effective duration and bandlimited within the [0.25 25]Hz frequency range. Morlet wavelets were considered in 

the wavelet transformation of GMs as they yield relatively smooth MIPs in time. Pertinent linear regression 

analyses involving 684 GMs with no near-fault directivity effects was undertaken to quantify the relationship of a 

with GM properties PGA, PGV, and mean frequency content Tm, with seismological parameters, M, Rrup, and with 

the shear wave velocity Vs30. No significant correlation was found between a and M, Rrup, or PGA. However, it 

was established that a is well-correlated with the average frequency content of GMs as captured by Tm and by 

PGV: the lower the average frequency content, the larger a tends to be, that is, the faster the time evolution 

(transition) of the average frequency content is from higher to lower frequencies. Further, the reported numerical 

data indicate that the level of the above correlation depends on the intensity of GMs in terms of PGA (conditional 

on PGA): a is larger for fixed Tm as PGA increases and a increases faster as Tm increases for larger PGA values. 

Moreover, GMs recorded on softer soils are more likely to have larger a conditional on PGA, a phenomenon that 

is attributed to the fact that soft soils under strong seismic shaking exhibit strong non-linear behavior that enriches 

the low frequency content of free field recorded GMs. Lastly, sufficiency statistical tests on a with the residuals 

of regression analyses between peak inelastic drifts θmax of a bilinear hysteretic SDOF structure estimated through 

IDA for the previous 684 GMs with PGA and with PGV used as IMs were also conducted. The considered structure 

includes strength and stiffness degradation effects and is used as proxy of a 12-storey r/c frame. These statistical 

tests demonstrate that the non-stationary average frequency content of GMs as captured by a influences the peak 

inelastic structural response at collapse, as captured by θmax. Overall, the herein furnished results establish the 

validity and usefulness of a in characterizing the evolutionary frequency content of GMs and suggests that a should 

be considered as a record selection criterion in undertaking IDA using PGA and PGV as IMs. Further research, 

currently undertaken by the authors, is warranted to confirm the applicability of a for pulse-like GMs and to test 

whether structure-specific IMs (e.g., Sa(T1)) are sufficient with respect to a especially for pulse-like GMs and for 

long period structures.  
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