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Abstract 
Nowadays, passive energy dissipation systems are used in the seismic design of new structures and retrofit of existing 
structures. Fluid viscous dampers are categorized as one of the important types of passive energy dissipation systems, which 
convert the kinetic energy caused by seismic excitation to heat. Using viscous dampers can considerably decrease the 
seismic response of structures. In this paper, seismic collapse behavior of steel Special Moment Resisting Frames (SMRFs) 
equipped with Fluid Viscous Dampers (FVDs) is investigated. Incremental Dynamic Analysis (IDA) is applied to obtain the 
collapse capacity values for three low- to mid-rise steel SMRFs equipped with FVDs considering different ground motion 
Intensity Measures (IMs). After obtaining the collapse capacity, IMcol, values by using different IMs, the ability of the 
considered IMs to reliably predict the seismic collapse capacity of these structures is investigated. For this purpose, the 
efficiency and sufficiency of the IMs, as the main desirable features of an optimal IM for collapse capacity prediction, are 
considered to classify the IMs. 

Keywords: Fluid viscous damper, Collapse capacity prediction, Intensity Measure 

1. Introduction 
Using passive energy dissipation systems, including fluid viscous dampers (FVDs), hysteretic dampers, 
viscoelastic dampers and friction dampers, is one of the effective ways to mitigate excitations due to strong 
ground motions [1, 2]. FVDs are a type of passive energy dissipation systems that are extensively used for the 
seismic design of new structures and retrofit of existing structures [3, 4] because they reduce both displacements 
and accelerations simultaneously [5, 6]. FVDs provide a velocity-dependent force and can behave as linear or 
nonlinear elements. The force developed by a nonlinear FVD is as follows: 

 )sgn(vvCFd ××= α  (1) 
 
where C is the damping coefficient, v is the relative velocity between the two ends of the damper, α is the 
velocity exponent, and sgn is the signum function. In seismic applications, the exponent α is in the range of 0.2 
to 1.0 [7]. When α is equal to one, the damper is called "linear FVD", and values of α lower than one correspond 
nonlinear FVDs.  
 Several researchers have investigated the seismic response and the design criteria of structures equipped 
with FVDs [8-11]. Although a number of procedures have been developed for the design of these structures [9, 
12-14], seismic collapse of these structures has not been extensively investigated. The collapse of structural 
systems due to strong ground motions is the primary source of casualties and loss of life during earthquakes. 
Seismic collapse is defined as the inability of a structural system to withstand gravity loads under ground 
motion. In recent years, due to significant advancements in the computational ability of computers and methods 
of nonlinear analysis, assessing the seismic collapse of structures has become an interesting field of study for 
researchers. Thus, several researches have been performed to assess the seismic collapse of structures [15-17] 
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and to develop engineering approaches for seismic collapse assessment. The ATC-63 document [18] presents a 
new methodology for seismic collapse assessment of structures, to assess design criteria and seismic 
performance factors existing in seismic codes. Recently, some studies have been performed to assess the 
collapse of structures equipped with FVDs. Seo et al. [19] investigated the seismic resistance of steel moment 
resisting frames (MRFs) with supplemental FVDs against collapse. Hamidia et al. [20] proposed a simplified 
approach to assess the seismic collapse of structures equipped with FVDs. 

 Intensity Measure (IM) is a parameter that describes the strength of a ground motion and quantifies its 
effect on structures. In fact, IM is the output of the ground motion hazard analysis, which links the hazard to the 
seismic response of structure. An optimal IM should meet the requirements of efficiency and sufficiency [21]. In 
other words, efficiency and sufficiency are the main desirable features of an optimal IM. Efficiency is the ability 
of an IM to predict the response or capacity of a structure subjected to ground motion with small dispersion, 
whereas sufficiency is ability of an IM to predict the response or capacity of a structure conditionally 
independent of other ground motion properties. In fact, using an efficient IM leads to smaller variability in the 
structural response or capacity prediction, which permits use of a lower number of ground motion records in 
seismic analyses. In addition, using a sufficient IM reduces the complexity of record selection procedure because 
no other ground motion information (i.e., magnitude, distance, etc.) is required to predict the structural response 
or capacity. In general, IMs are classified into two groups of scalar and vector. Common scalar IMs are spectral 
acceleration at the fundamental period of structure, Sa(TR1R), Peak Ground Acceleration (PGA), Peak Ground 
Velocity (PGV) and Peak Ground Displacement (PGD). Shome et al. [22] showed that Sa(TR1R) is more efficient 
and sufficient than PGA. Thus, nowadays, seismic codes throughout the world use Sa(TR1R) as the most common 
IM. Recently, several vector IMs have been proposed in the technical literature [23-27]. Most of these vector-
IMs consist of Sa(TR1R) as the first component and a spectral shape indicator as the second component. Most of the 
studies in the field of ground motion IMs are focused on investigating the efficiency and sufficiency of IMs to 
predict the structural response. Due the importance of assessing the seismic collapse of structures, some studies 
have focused on investigating the efficiency and sufficiency of IMs for collapse capacity prediction [28-30]. The 
basic tool for assessing the seismic collapse of structures is the collapse fragility curve, which expresses the 
probability of collapse as a function of a scalar IM. When using a vector IM, the collapse fragility surface can be 
used instead of the collapse fragility curve. Using an optimal IM for collapse capacity prediction leads to a more 
reliable collapse fragility curve or surface. 

  The aim of this study is to investigate the efficiency and sufficiency of scalar and vector IMs to predict the 
collapse capacity of structures equipped with FVDs. For this purpose, three low- to medium-rise structures are 
considered, and different levels of supplemental viscous damping are added to each of the structures. Then, the 
collapse capacities of the structures are obtained using six scalar and vector IMs, and the efficiency and 
sufficiency of the IMs for collapse capacity prediction are compared.  

2. Selected IMs 
In this study, four common scalar IMs and two vector IMs were considered. The scalar IMs are Sa(T1), PGA, 
PGV and PGD, whereas the vector IMs are (Sa(T1),NP) [24] and (Sa(TR1R),RRT1,T2R), [26, 27]. The first component of 
the vector IMs is Sa(TR1R) and their second components are un-scalable spectral shape indicators. The parameter 
NRPR is defined as follows: 
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1
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where Saave(T1…TN) is the geometric mean of spectral accelerations over the period range of T1-TN, and TN is 
equal to 2T1. The parameter RT1,T2 is defined as follows: 
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where Sa(T2) is the spectral acceleration at T2=2T1. It should be noted that both NP and RT1,T2 indicate the shape 
of pseudo-acceleration response spectrum in periods greater than the fundamental period of structure. Thus, 
when the fundamental period of structure elongates due to nonlinear deformations, the vectors (Sa(T1),NP) and 
(Sa(TR1R),RRT1,T2R) can imply the severity of ground motion more realistically, compared with Sa(TR1R).   

3. Structural modeling and analysis 
The structures selected for this study are 3- 6- and 9-story steel Special Moment Resisting Fames (SMRFs) that 
were used by Hamidia et al. [20]. These structures were designed for the SAC steel project [31], and their 
detailed information can be found in FEMA 355C [32] and the study by Hall [33]. OpenSees [34] was used to 
create the 2-D numerical models of the structures. Distributed plasticity force-based beam-column elements 
consisting of five integration points, each using a fiber section, along the element length were used to model the 
columns. Steel02 material in the OpenSees, assuming E=200 GPa and a hardening ratio of 0.002, was applied to 
model the uniaxial behavior of each fiber. Thus, cyclic deterioration in the column elements was neglected. The 
behavior of the beams was modeled using a concentrated plasticity approach (Ibarra and Krawinkler [16]; 
Haselton [17]). Therefore, each beam was modeled using two zero-length rotational springs at its both ends, 
representing plastic hinges, and an elastic beam-column element. The modified Ibarra-Medina-Krawinkler 
model [35] was used to model the moment-rotation relationship of the rotational springs. The parameters of this 
model were determined based on the relationships proposed by Lignos and Krawinkler [35]. In order to consider 
the rigid end offsets of the beams and columns, rigid elements were used at both ends of the beams and columns. 
The lengths of rigid elements in the beams and columns, in a beam-column joint, were assumed to be equal to 
the half of the column section depth and beam section depth, respectively. A leaning column was used to model 
the P-Δ effects of gravity columns. This leaning column was modeled by using elastic beam-column elements, 
which have moments of inertia and areas about two orders of magnitude larger than the frame columns. These 
beam-column elements were connected to the joints in the floor levels by zero-length rotational spring elements 
with very small stiffness values. Then, these joints were connected to the SMRF by axially rigid truss elements. 

 Rayleigh viscous damping was used to model the inherent viscous damping of the structures. Thus, a five 
percent damping ratio was assigned to the first and third mode (i.e., the mode at which the cumulative mass 
participation ratio exceeds 0.95) periods of the structures. In addition to the SMRF structures, assuming three 
levels of supplemental viscous damping ratio (i.e., vξ = 0.05, 0.1, and 0.15), linear FVDs were added to the 
SMRFs to improve their performance under seismic excitations. In other words, three SMRFs without 
supplemental viscous damping and nine SMRFs with supplemental viscous damping were considered. Fig. 1 
indicates the dimensions of the SMRFs, and the configuration of linear FVDs in the SMRFs with supplemental 
viscous damping. Table 1 presents the first mode periods of the SMRFs. 

3 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

  
Fig. 1– Dimensions of the SMRFs and the configuration of linear FVDs in the SMRFs with linear FVDs 

Table 1 – First mode periods of the SMRF structures 

Structure First mode period (s) 

3-story 0.95 

6-story 1.32 

9-story 2.08 

 

 The supplemental viscous damping ratio for the first mode of a structure with linear FVDs can be obtained 
as: 
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where T1 is the first mode period of the structure, Cj is the damping coefficient of story j, fj is a displacement 
magnification factor that depends on the geometrical configuration of the dampers at story j (for a diagonal 
damper with an angle of inclination θ j, fj =cosθ j), j1φ is the first mode shape value at the top of story j, 
normalized to have a unit component at the roof, mj is the mass of story j, and N is the number of stories. Given 
a supplemental viscous damping ratio for the first mode a structure, and assuming Cj fj

 2 to be proportional to the 
interstory drift obtained on the basis of the first mode shape, )1(11 −− jj φφ , the following equation can be 
obtained, based on Eq. (4), to determine the damping coefficient of story k: 
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 Eq. (5) was used to determine the damping coefficients corresponding to the different stories of the 
structures with supplemental viscous damping. Table 2 presents the values of story damping coefficients, Ck, for 
the three SMRFs with the supplemental viscous damping ratio of 0.05. It should be mentioned that the Ck, values 
for supplemental viscous damping ratios of 0.1 and 0.15 can be obtained from multiplying the values presented 
in this table by 2 and 3, respectively. To model the linear FVDs, it was assumed that the supporting brace 
member is rigid, and the dampers do not reach their stroke limits during seismic loading. 

Table 2 – Values of story damping coefficients, Ck, for the three SMRFs with the supplemental viscous damping 
ratio of 0.05 

 

 

 

 

 

 

 

 

 

 

 To obtain the collapse capacities of the structures using Incremental Dynamic analysis (IDA) method [15], 
67 ground motion records used by Yakhchalian et al. [28, 36] were considered. The collapse was assumed to 
occur when the maximum interstory drift ratio in the structure reaches 0.15. Considering Sa(T1) as the IM for 
performing IDAs, the intensity of each ground motion record, Sa(T1), was incrementally increased until the 
collapse occurs. Thus, the value of Sa(T1) corresponding to collapse, Sacol, was computed for each of the ground 
motion records. Fig. 2 illustrates the IDA curves of the 3-story structure with the supplemental viscous damping 
ratio of 0.1. When the values of Sacol for a structure were computed by using the selected ground motion records, 
it is easy to obtain the corresponding IMcol values of the other scalar IMs, (i.e., PGAcol, PGVcol and PGDcol). For 
instance, the value of PGAcol for each record can be calculated by multiplying the un-scaled value of PGA for 
that record by the ratio of Sacol to the un-scaled value of Sa(T1). Thus, the values of Sacol, PGAcol, PGVcol and 
PGDcol corresponding to the selected ground motion records were obtained for all of the structures.  

 
Fig. 2 – IDA curves of the 3-story structure with the supplemental viscous damping ratio of 0.1  

 Story Damping Coefficient, Ck [kips.s/in] 

 3-story 6-story 9-story 
1st Story 0.343 0.364 0.373 
2nd Story 0.569 0.595 0.598 
3rd Story 0.324 0.343 0.340 
4th Story - 0.550 0.541 
5th Story - 0.270 0.282 
6th Story - 0.264 0.275 
7th Story - - 0.523 
8th Story - - 0.679 
9th Story - - 0.420 
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4. Investigating the efficiency of the IMs for collapse capacity prediction 
Efficiency of an IM for collapse capacity prediction is the ability of that IM to predict the collapse capacity of a 
structure subjected to ground motion with small dispersion. Thus, an efficient IM can predict the collapse 
capacity of structures with a lower record-to-record variability in which causes more accuracy in obtaining 
collapse fragility curves or surfaces. Hence, by using an efficient IM the mean annual frequency of collapse can 
be estimated more reliably. The logarithmic standard deviation of IMcol values, σlnIMcol, is an index for the 
efficiency of scalar IMs for collapse capacity prediction. In other words, a lower value for σlnIMcol represents a 
more efficient IM for collapse capacity prediction. When using the vector IMs (Sa(T1),NP) and (Sa(T1),RT1,T2), 
the conditional logarithmic mean of collapse capacity, μlnSacol│IM2R, can be estimated, by performing a linear 
regression, as follows: 

    2ln ln
2

IMbaIMSacol
+=µ  (6) 

 
where a and b are the regression coefficients, and IM2 is the second component of the considered vector IM. 
When using the vector IMs (Sa(T1),NP) and (Sa(T1),RT1,T2), the standard deviation of the regression residuals, 
σlnSacol│IM2 is an index for the efficiency of the IMs for collapse capacity prediction. Table 3 presents the values 
of σlnIMcol and σ lnSacol│IM2 obtained for the scalar and vector IMs. It can be seen that, in the most cases, the vector 
IMs (Sa(T1),NP) and (Sa(TR1R),RRT1,T2R) are more efficient than the scalar IMs to predict the collapse capacity of the 
structures. Furthermore, PGV is more efficient than the other scalar IMs. The results also show that when the 
supplemental viscous damping ratio of a structure increases the efficiency of the IMs, except in some cases for 
PGV and PGD, to predict the collapse capacity of the structures decreases correspondingly.  

Table 3 – Values of σlnIMco l and σlnSacol│IM2RR Robtained for the scalar and vector IMs 

  Supplemental viscous damping ratio 
Structure IM - 0.05 0.1 0.15 

3-Story 

Sa(T1) 0.343 0.364 0.373 0.395 
PGA 0.569 0.595 0.598 0.623 
PGV 0.324 0.343 0.340 0.361 
PGD 0.549 0.550 0.541 0.538 

(Sa(T1),RT1,T2) 0.259 0.270 0.282 0.315 
(Sa(T1),NP) 0.254 0.264 0.275 0.310 

6-Story 

Sa(T1) 0.452 0.500 0.523 0.533 
PGA 0.602 0.656 0.679 0.685 
PGV 0.344 0.405 0.420 0.421 
PGD 0.519 0.546 0.559 0.541 

(Sa(T1),RT1,T2) 0.278 0.319 0.364 0.385 
(Sa(T1),NP) 0.308 0.374 0.420 0.434 

9-Story 

Sa(T1) 0.409 0.435 0.458 0.491 
PGA 0.676 0.707 0.717 0.731 
PGV 0.391 0.412 0.429 0.454 
PGD 0.470 0.473 0.472 0.506 

(Sa(T1),RT1,T2) 0.295 0.301 0.316 0.360 
(Sa(T1),NP) 0.278 0.289 0.309 0.351 

 

6 



16th World Conference on Earthquake, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

5. Investigating the sufficiency of the IMs for collapse capacity prediction 
Sufficiency of an IM for collapse capacity prediction is the ability of that IM to predict the collapse capacity of a 
structure conditionally independent of other ground motion properties such as earthquake magnitude (M), 
source-to-site distance (R), etc. In fact, when using a sufficient IM to predict the collapse capacity of structures, 
there is no need to use complex ground motion record selection procedures, because the IM represents all other 
ground motion properties. In order to test the sufficiency of a scalar IM with respect to a ground motion 
parameter (i.e., M, R, etc.) for predicting the collapse capacity of structures, a linear regression can be applied as 
follows: 

     )(][ln XdcIME col +=  (7) 
 
where E[ln IMcol] is the expected value of ln IMcol values; c and d are the regression coefficients; and X is the 
earthquake magnitude, M, or the natural logarithm of the source-to-site distance, ln R. The coefficient d in Eq. 
(7) is estimated using a finite number of observations; thus, statistical tests such as F-test [37] can be used to 
examine the statistical significance of the coefficient d. The result of the F-test is a p-value, which indicates the 
sufficiency or insufficiency of the IM with respect to the considered ground motion parameter. A p-value of less 
than 0.05, which implies the statistical significance of the coefficient d, indicates the insufficiency of the 
considered IM, whereas a p-value of greater than 0.05 indicates the sufficiency of the considered IM. In order to 
test the sufficiency of the vector IMs (Sa(T1),NP) and (Sa(TR1R),RRT1,T2R), the residuals of the regression performed to 
obtain Eq. (6) should be used in Eq. (7) instead of ln IMRcolR values.   

 Table 4 presents the p-values obtained from testing the sufficiency of the IMs, with respect to R, for 
collapse capacity prediction of the structures. It can be seen that all the p-values are greater than 0.05, and thus 
all the considered IMs are sufficient with respect to R. Table 5 presents the p-values obtained from testing the 
sufficiency of the IMs, with respect to M, for collapse capacity prediction of the structures. It can be seen that 
PGV is sufficient with respect to M for all the structures, whereas none of the vector IMs is sufficient with 
respect to M for all the structures. But the vector IM (Sa(T1),RT1,T2) is sufficient with respect to M for most of the 
structures. Fig. 3 compares the sufficiency of the vector IMs (Sa(T1),NP) and (Sa(T1),RT1,T2) with respect to R to 
predict the collapse capacity of the 3-story structure with the supplemental viscous damping ratio of 0.1. It can 
be seen that both the vector IMs are sufficient with respect to R, but (Sa(T1),NP) is more sufficient than 
(Sa(T1),RT1,T2). Fig. 4 compares the sufficiency of the vector IMs (Sa(T1),NP) and (Sa(TR1R),RRT1,T2R) with respect to 
M to predict the collapse capacity of the 3-story structure with the supplemental viscous damping ratio of 0.1. It 
can be seen that (Sa(TR1R),RRT1,T2R) is sufficient with respect to M, whereas (Sa(TR1R),NRPR) is insufficient with respect to 
M, because the p-value obtained from testing its sufficiency is less than 0.05. In other words, the vector IM 
(Sa(TR1R),NRPR) cannot predict the collapse capacity of the selected structure independently from M. 
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Table 4 – P-values obtained from testing the sufficiency of the IMs with respect to R 

  Supplemental viscous damping ratio 
Structure IM - 0.05 0.1 0.15 

3-Story 

Sa(T1) 0.276 0.252 0.128 0.155 
PGA 0.985 0.928 0.738 0.753 
PGV 0.678 0.790 0.870 0.887 
PGD 0.302 0.342 0.488 0.481 

(Sa(T1),RT1,T2) 0.466 0.422 0.193 0.246 
(Sa(T1),NP) 0.949 0.911 0.523 0.561 

6-Story 

Sa(T1) 0.750 0.921 0.949 0.841 
PGA 0.625 0.878 0.863 0.949 
PGV 0.665 0.912 0.947 0.810 
PGD 0.589 0.384 0.411 0.324 

(Sa(T1),RT1,T2) 0.248 0.665 0.680 0.850 
(Sa(T1),NP) 0.504 0.977 0.954 0.908 

9-Story 

Sa(T1) 0.591 0.635 0.613 0.727 
PGA 0.702 0.729 0.706 0.774 
PGV 0.772 0.808 0.770 0.886 
PGD 0.500 0.485 0.518 0.470 

(Sa(T1),RT1,T2) 0.351 0.375 0.349 0.514 
(Sa(T1),NP) 0.180 0.201 0.193 0.328 

Table 5 – P-values obtained from testing the sufficiency of the IMs with respect to M 

  Supplemental viscous damping ratio 
Structure IM - 0.05 0.1 0.15 

3-Story 

Sa(T1) 0.238 0.240 0.155 0.071 
PGA 0.047 0.053 0.036 0.021 
PGV 0.792 0.855 0.912 0.887 
PGD 0.000 0.000 0.000 0.000 

(Sa(T1),RT1,T2) 0.142 0.139 0.074 0.028 
(Sa(T1),NP) 0.006 0.005 0.002 0.001 

6-Story 

Sa(T1) 0.009 0.031 0.021 0.011 
PGA 0.023 0.052 0.038 0.023 
PGV 0.665 0.880 0.652 0.438 
PGD 0.000 0.000 0.000 0.001 

(Sa(T1),RT1,T2) 0.046 0.198 0.126 0.065 
(Sa(T1),NP) 0.016 0.088 0.058 0.030 

9-Story 

Sa(T1) 0.057 0.037 0.037 0.142 
PGA 0.014 0.011 0.010 0.029 
PGV 0.280 0.182 0.162 0.415 
PGD 0.000 0.001 0.001 0.000 

(Sa(T1),RT1,T2) 0.796 0.900 0.889 0.438 
(Sa(T1),NP) 0.821 0.642 0.627 0.794 
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Fig. 3 – Comparison between the sufficiency of the vector IMs with respect to R for collapse capacity prediction 
of the 3-story structure with the supplemental viscous damping ratio of 0.1: (a) (Sa(T1),NP); (b) (Sa(T1),RT1,T 2) 

  
Fig. 4 – Comparison between the sufficiency of the vector IMs with respect to M for collapse capacity prediction 
of the 3-story structure with the supplemental viscous damping ratio of 0.1: (a) (Sa(T1),NP); (b) (Sa(T1),RT1,T2) 

6. Conclusions 
In this study, the efficiency and sufficiency of four common scalar and two vector IMs for collapse capacity 
prediction of SMRFs with linear FVDs were investigated. The results indicate that, in the most cases, the vector 
IMs (Sa(T1),NP) and (Sa(TR1R),RRT1,T2R) are more efficient than the scalar IMs. Moreover, PGV is more efficient than 
the other scalar IMs. It should be mentioned that when the supplemental viscous damping ratio of a structure 
increases, the efficiency of the IMs, except in some cases for PGV and PGD, to predict the collapse capacity of 
the structures decreases correspondingly. Investigating the sufficiency of the IMs with respect to R, for collapse 
capacity prediction of the structures, shows that all the IMs are sufficient with respect to R. Furthermore, 
investigating the sufficiency of the IMs with respect to M, for collapse capacity prediction of the structures, 
shows that among the scalar IMs only PGV is sufficient with respect to M for all the structures, whereas none of 
the vector IMs is sufficient with respect to M for all the structures. But the vector IM (Sa(TR1R),RRT1,T2R) is sufficient 
with respect to M for most of the structures. 
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