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Abstract 

Notable past seismic events, such as the 2010 Chile earthquake, the 2011 Tohoku earthquake in Japan and the seismic 

events in Christchurch, New Zealand in 2011, have shown that the mainshock seismic event can trigger sequences of 

aftershocks. In such cases the time between the primary shock and the aftershocks might be not enough for repairing the 

mainshock-induced damages to structures; hence their vulnerability can significantly increase and consequently their 

recovery is delayed. This issue can be even more critical for highway bridges that are one of the most vulnerable 

components of transportation networks when exposed to earthquakes, since the higher risk imposed due to the successive 

shocks can have devastating effects to entire communities relying on them for their smooth functioning. Therefore, it is 

important to develop methodologies that capture the impact of incorporating aftershocks in the seismic vulnerability and 

resilience of highway bridges.  This paper discusses a computationally efficient methodology for probabilistic fragility 

analysis and resilience assessment of bridges that explicitly incorporates the effects of aftershock seismic events in the 

seismic hazard description. This methodology is based on nonlinear time-history analysis for simulating the structural 

response, whereas a procedure is developed for generating mainshock-aftershock sequences through stochastic ground 

motion modeling to support the mainshock-aftershock earthquake hazard characterization. In this setting, mainshock-

induced damage state-dependent aftershock fragilities are developed, which are ultimately utilized in conjunction with 

appropriate recovery models for evaluation of bridge functionality and resilience. The various model parameters 

characterizing the seismic hazard, structural and recovery models are considered as uncertain, and the bridge performance 

metrics (i.e., fragility, functionality, resilience) are probabilistically calculated. To facilitate adoption of complex structural 

and probability models, an efficient computational framework based on kriging surrogate modeling is used for estimating 

the bridge performance metrics through stochastic (Monte Carlo) simulation. The surrogate model is established in an input 

parameter space, composed of uncertain seismic hazard and structural parameters, and deterministic structural/geometrical 

bridge parameters, and therefore is utilized to facilitate development of parameterized fragilities. As an illustrative example 

fragility and resilience assessment of a typical bridge class in California under the effects of mainshocks and aftershocks is 

performed.  

Keywords: aftershock fragility, mainshock-aftershock sequences, probabilistic seismic resilience, kriging metamodeling 
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1. Introduction 

Past experience (e.g. seismic events in Christchurch, New Zealand in 2011) as well as probabilistic analysis [1] 

have shown that the likelihood of a structure experiencing sequences of earthquake events such as mainshock 

and aftershocks is significant. In such cases it is likely that a bridge sustaining damages due to a mainshock 

event will not be repaired when subsequent aftershock events occur; hence its vulnerability can considerably 

increase and consequently its recovery is delayed, leading to reduction in the resilience of the bridge. Therefore, 

it is important to develop methodologies that capture the impact of incorporating aftershock events in the 

probabilistic fragility and resilience assessment of bridges. This topic has received limited attention so far, and 

the focus of relevant studies has been on specific bridge case studies [2-4] without considering uncertainties 

pertaining to hazard or bridge model parameters [2], using simplified (i.e., SDOF) models to evaluate seismic 

response [3, 4], or without explicitly subjecting the bridge model to mainshock-aftershock earthquake sequences 

[5]. This study seeks to advance these efforts and presents an efficient methodology for probabilistic fragility 

analysis and resilience assessment of bridges that explicitly incorporates the effects of aftershock events in the 

seismic hazard description and addresses various sources of uncertainty. Within this methodology the structural 

response is evaluated through nonlinear time history analysis, uncertainty is included in various structural and 

hazard model parameters; furthermore a seismic hazard characterization based on stochastic ground motion 

modeling is adopted supporting a method proposed for simulating mainshock-aftershock sequences. 

Sophisticated finite element models are employed to capture the highly inelastic behavior of the bridge subjected 

to mainshocks and aftershocks. Select engineering demand parameters (EDPs) are utilized to link the bridge’s 

seismic response with damage states and ultimately evaluate damage state-dependent aftershock fragility, 

quantifying the conditional probability of meeting or exceeding a specified damage state given an intensity 

measure of the earthquake excitation and the initial mainshock-induced damage state. Then the estimated 

fragilities can be mapped to recovery models describing the percentage of the bridge’s functionality as a function 

of the damage state attained and the time elapsed after the seismic event. Ultimately, knowledge of the 

functionality allows calculation of the resilience of a bridge. Because of the complexity of the adopted numerical 

and probability models, all required fragilities and resilience/functionality metrics are estimated through 

stochastic simulation, which can facilitate high-accuracy estimates, though frequently at a large computational 

burden. Therefore, in this study an efficient kriging surrogate modeling technique [6] is adopted to alleviate this 

burden. The surrogate model (known also as a metamodel) is developed for approximating the EDPs of interest 

with respect to various  parameters that impact the seismic response (i.e. uncertain hazard and structural model 

parameters, and deterministic structural/geometrical bridge parameters), whereas the inherent stochastic 

characteristics of the earthquake ground motions are addressed through adoption of an appropriate statistical 

distribution for the EDPs under the influence of white noise. Such an input parameterization of the surrogate 

model facilitates an efficient development of parameterized fragilties. Once the metamodel is established, the 

fragility and resilience assessment are efficiently performed by stochastic simulation. In the illustrative example, 

the proposed methodology is implemented to a typical bridge class in California. 

2. Mainshock and aftershock fragility analyses 

In general, fragility is defined as the probability that a structure will meet or exceed a specified, i
th
, damage state 

(DS) conditioned on a given intensity measure (IM) of the seismic hazard (e.g. peak ground acceleration). This 
conditional probability can be expressed as [ | ] [ | ]iP DS i IM P z b IM   , where z denotes an EDP, 
corresponding to a bridge response quantity of interest (e.g. peak column drift, peak column displacement 
ductility, etc.), and bi denotes a capacity threshold that determines initiation of the i

th
  damage state. It is noted 

here that for the remainder of the paper superscripts ms and as characterize quantities/variables associated with 
mainshock and aftershock excitations, respectively. 

2.1 Probabilistic quantification of mainshock seismic fragility 

The evaluation of mainshock seismic bridge response z
ms

, established here in terms of nonlinear time history 
analysis, which is ultimately required for quantification of fragility, entails adoption of appropriate excitation 
(i.e. seismic hazard) and bridge system models. These models are characterized by a set of uncertain model 
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parameters pertaining to the properties of the bridge system (e.g. material strengths) and/or characteristics of the 
excitation (e.g. duration of strong ground motion). In this context, let θΘ, denote a vector composed of all 
model parameters for the individual structural and excitation models, and Θ represents the space of possible 
model parameter values. Usually, these parameters are considered as uncertain variables characterized by a 
probability density function (PDF) p(θ). Furthermore, as discussed in the introduction, a stochastic ground 
motion model is adopted here as an excitation model, which involves as primary input a (Gaussian) white noise 
sequence, wW (more details for this model are provided in section 5). Similar to θ, the uncertainty in the white 
noise sequence w is described through a PDF denoted as pw(w). Within this probabilistic framework for 
evaluating structural response, seismic fragility for a bridge subjected to mainshock is quantified as: 

 [ | ] [ | , , ] ( ) ( )ms ms ms ms

i w
W

P DS i IM P z b IM p p d d


    θ w w θ w θ  (1) 

In this definition it is common to introduce uncertainty in the damage state threshold  by assuming that bi 

follows a lognormal distribution [7]. This then leads to [6]: 

 [ | , , ] Φ ln( / ) / | , , )ms ms ms ms

i i bP z b IM z b      θ w θ w  (2) 

where Φ(.) denotes the standard normal cumulative distribution function (CDF) and σb is the logarithmic 

standard deviation associated with bi.    

2.2 Probabilistic quantification of aftershock fragility for mainshock-damaged bridge 

The formulation in the previous subsection described fragility quantification for intact bridges subjected to 

mainshock seismic events. However, bridges that are subjected to mainshock – aftershock earthquake sequences 

may sustain damages after the first shock. Hence, aftershock fragility for a damaged bridge should take into 

account the extent of the mainshock-induced damages. This state-dependent fragility is defined as the probability 

of meeting or exceeding the k
th
 aftershock-induced damage state DS

as
 conditioned on the aftershock intensity 

measure IM
as

 and the initial mainshock-induced damage state DS
ms

=i, and it is expressed as [8]: 

 
[ | , ]

[ | , , , ] ( , | ) ( ) ; , [1, ];  
ms

as as ms

as as ms ms ms ms

w ds
W Z

P DS k IM DS i

P DS k IM z p z DS i p dz d d i k n k i


 

       θ w θ w w θ
 (3) 

where z
ms

 denotes the mainshock EDP and nds is the number of the considered DSs. 

The first term of the integrand in Eq.(3), [ | , , , ]as as msP DS k IM z θ w , is the probability of reaching or 
exceeding damage state k given the mainshock response z

ms
, which following similar considerations for 

threshold bk as in section 2.1 can be expressed similar to Eq. (2) as Φ[ln( / ) / | , , , )]as as ms

k bz b z  θ w , where 
z

as 
denotes the response due to the aftershock event. Computation of the latter probability requires evaluation of 

z
ms

 and z
as

 through nonlinear time-history analysis of the bridge subjected to mainshock-aftershock sequences 
simulated through a procedure described in section 5. Finally, p(z

ms
, θ|DS

ms
 = i) denotes the joint PDF of z

ms
 and 

θ conditioned on the case where bridge has reached the i
th
 mainshock damage state.  

Using the state-dependent fragility [ | , ]as as msP DS k IM DS i   in Eq. (3), the fragility of the bridge due 
to an aftershock event independent of the mainshock damage state can be evaluated through the use of the total 
probability theorem as [9]: 

 
1

[ | ] [ | , ] [ ]
dsnas as as as ms ms

i
P DS k IM P DS k IM DS i P DS i


      (4) 

where [ ] [ ] [ 1]ms ms msP DS i P DS i P DS i       is the probability of being in the i
th
 damage state, and 

[ ]msP DS i  is evaluated by integrating the mainshock fragility in Eq. (1) over the probability distribution 
p(IM

ms
) characterizing the mainshock seismic hazard: 

 [ ] [ | ] ( )
ms

ms ms ms ms ms

IM
P DS i P DS i IM p IM dIM    (5) 

Finally the probability that the bridge has reached the i
th
 damage state either due to mainshock or aftershock is 

calculated as [5]: 
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  [ | ] [ | ] 1 [ | ] [ | ]ms ms ms ms as asP DS i IM P DS i IM P DS i IM P DS i IM        (6) 

where [ | ] [ | ] [ 1| ]as as as as as asP DS i IM P DS i IM P DS i IM      . 

3. Efficient fragility analysis through kriging surrogate modeling 

Quantification of fragility as described in the previous section involves estimation of the bridge mainshock and 

aftershock seismic response through nonlinear dynamic analysis of sophisticated bridge finite element numerical 

models. Therefore, stochastic (Monte Carlo) simulation techniques are adopted for fragility calculation, which 

pose no constraints on the complexity of the numerical and probability models used. However, these simulation 

techniques can impose significant computational challenges rendering their implementation prohibitive, 

especially in the context of evaluating bridge response subjected to mainshock – aftershock sequences, since the 

structure can attain highly nonlinear levels of response due to the successive shocks. Moreover, the simulation 

time of the nonlinear time-history analysis is usually higher because of the significant duration of analysis with 

multiple seismic shocks; thus further increasing the required computational burden. Hence, for efficiently 

estimating fragility the kriging surrogate modeling framework presented in [6] is adopted for approximating the 

bridge mainshock z
ms

 and aftershock z
as

 response corresponding here to peak component response quantities such 

as column displacement ductility, with respect to a vector of input model parameters x. Surrogate models are 

developed for approximating both z
ms

 and z
as

, abbreviated MS and AS, respectively. For MS vector x = [IM
ms

 θ p] 

is composed by mainshock intensity measure IM
ms

, uncertain model parameters θ and deterministic bridge 

geometric and/or structural parameters p such as column reinforcement ratio and/or span length, whereas for AS 

x is further augmented with mainshock response z
ms

 such that the history of the response prior to the aftershock 

is considered, and the aftershock intensity measure IM
as

 replaces IM
ms

, i.e., x = [IM
as

 θ p z
ms

].  

3.1 Statistical approximation of white noise and kriging formulation  

The influence of the white noise sequence w involved in the ground motion model is addressed through a 
statistical approximation such that development of a surrogate model in a high-dimensional space (that would 
involve augmentation of x with w) is avoided. Following recommendations in [6] this statistical approximation is 
established by assuming that, under the influence of white noise, response z

q
; q = ms, as,  follows a lognormal 

distribution with logarithmic mean ln( )qz  and logarithmic standard deviation qz
 . This approximation is a 

common assumption in earthquake engineering [10].  

The kriging surrogate model is formulated to provide predictions for the quantities needed to support 
evaluation of fragility, corresponding to the statistics of the mainshock and aftershock responses. These 
quantities define the output vector y = [ ln( )qz qz

 ]; q = ms, as. Details for the surrogate model development 
may be found in [6]. The process starts by generating nm samples for {x

l
, l=1,…,nm}, also known as support 

points, following initially a Latin hybercube grid over the expected range of values possible for each component 
of x. Stochastic ground motions are then generated according to the excitation model described in section 5 and 
the structural response is numerically evaluated. The influence of the white noise is addressed by considering nw 
different samples for each x

l
 and using the statistics under these samples to ultimately quantify the response 

sample y
l
. Using this dataset for the input-output pair x-y the kriging model is then obtained. When developing 

metamodel AS the logarithmic mean ln( )msz is used for the mainshock response z
ms

 component of x.  

Using this dataset the kriging surrogate model is developed providing the approximation of y which is 
associated with a prediction error that is a zero mean normal variable [6]. The approximation for ln( )qz  can be 
expressed as ˆln( ) ln( )q q qz z   , where ˆln( )qz  is the kriging prediction of ln( )qz  and ε

q
 is the associated 

prediction error with standard deviation q
 , whereas  the prediction error for  qz

  can be neglected following 
recommendations in [6]. Ultimately, under the lognormal assumption for white noise influence and incorporating 
the kriging prediction error, the probabilistic integrals in Eq. (1) and (3) for evaluating mainshock and aftershock 
fragility, respectively, simplify to (influence of w removed) [6]: 

 
2 2 2

ln( / )
[ | ] Φ | , ( )

ms ms

ms
ms msi

b z

z b
P DS i IM IM p d




  

 
  
  
 

 θ θ θ  (7) 
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2 2 2

ln( / )
[ | , ] Φ | , , ( , | )

ms

as as

as
as as ms as ms ms ms msk

Z

b z

z b
P DS k IM DS i IM z p z DS i dz d




  

 
    
  
 

  θ θ θ  (8) 

3.2 Computational details for fragility calculation  

The probabilistic integrals in Eq. (7) and (8) for evaluating of mainshock and aftershock fragility, respectively, 

are estimated through stochastic simulation utilizing the kriging surrogate model for a computationally efficient 

evaluation. In particular, using a finite number of samples, N, of θ drawn from p(θ) with θ
j
 denoting the j

th
 

sample, an approximation for the integral in Eq. (7) is given by: 

 
1 2 2 2

ln( / )1ˆ[ | ] Φ | ,
ms ms

ms
Nms ms ji

j

b z

z b
P DS i IM IM

N


  


 
  
  
 

 θ  (9) 

Similarly, the integral in Eq. (8) is approximated as: 

 ,

1 2 2 2

ln( / )1ˆ[ | , ] Φ | , ,
as as

as
Nas as ms as ms j jk

j

b z

z b
P DS k IM DS i IM z

N


  


 
   
  
 

 θ  (10) 

where θ
j
 and ,ms jz  denote the j

th
 samples drawn from ( , | )ms msp z DS iθ . Sampling from the latter distribution, 

which in general does not correspond to a known PDF, is performed by the following procedure. First, the 
population of samples from [  ]msz θ  that led the bridge to DS

ms
 = i is identified. This is accomplished by 

identifying the samples of msz and the associated ones for θ that lie on the interval between bi and bi+1, i.e., 

 1

ms

i iz b b  . Then based on these samples an approximation for ( , | )ms msp z DS iθ  is obtained through 
multivariate kernel density estimation (KDE) [11]. Finally, samples of [  ]msz θ  from the joint density 

( , | )ms msp z DS iθ  estimated through KDE are drawn through a stochastic sampling approach as in [12, 13].  

4. Probabilistic resilience assessment 

Quantification of fragility of a bridge under mainshock and mainshock-aftershock seismic hazard as discussed in 

the previous section can facilitate evaluation of its functionality and ultimately its resilience after the occurrence 

of one (or more) shocks. Here the time-variant functionality Q(t) of a bridge can be expressed as [3]: 

 
1

( ) ( | ) [ | ]
dsn

i
Q t Q t DS i P DS i IM


    (11) 

where Q(t|DS=i) denotes the functionality of the bridge conditional on the i
th
  damage state. This quantity can be 

mathematically expressed as:  

   0( | ) ( ) |r i t rQ t DS i Q H t t f t DS i Q Q        (12) 

where t0 is the time of occurrence of the seismic event, and Qr is the residual functionality after the event 

occurrence. H(.) represents the Heaviside step function, Qt is the functionality reached at the end of the recovery 

process, δi is the idle time between the occurrence of the seismic event and the beginning of the recovery process 

and f(.) is a restoration function describing the profile of the recovery process. A characteristic illustration of the 

variation of functionality with respect to time is shown in Fig. 1. 

The second term in Eq. (11) denotes the probability of the bridge being in damage state i. For the case 
that only the mainshock hazard is considered the latter probability is equal to 

[ | ] [ | ] [ 1| ]ms ms ms ms ms msP DS i IM P DS i IM P DS i IM      . When the aftershock hazard is additionally 
considered this probability corresponds to the probability that that the specified damage state is reached either 
due to mainshock or aftershock, and it is calculated according to Eq. (6). It is noted that the assumption that no 
repair actions of the bridge are performed between the occurrence of mainshock and aftershock is made here for 
the calculation of functionality due to mainshock and aftershock hazard. 
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Fig. 1 - Characteristic representation of functionality evolution over time.  

After bridge functionality is calculated through Eq. (11), the resilience of the bridge under a specified 

time horizon th can be quantified through the following definition [3]: 

 
0

0

1 ( )
ht t

h
t

R t Q t dt


   (13) 

It is noted that alternative definitions exist in the relevant literature [14].  

Finally, for a fully probabilistic resilience assessment the functionality and resilience of a bridge must be 

calculated by taking into account uncertainties pertaining to the seismic hazard as well as the various parameters 

that are characterizing the damage state-dependent functionality in Eq. (12) [e.g., δi, Qr, parameters defining f(.), 

etc.]. If φΦ denotes the vector of these parameters and p(φ) corresponds to the PDF adopted to describe their 

uncertainty, the expected value of the bridge functionality and resilience is expressed through Eq.(14) and (15), 

respectively: 

 [ ( )] ( ) ( ) ( )
IM

E Q t Q t p p d d


   IM φ IM φ  (14) 

 [ ] ( ) ( )
IM

E R Rp p d d


   IM φ IM φ  (15) 

where IM = [IM
ms 

IM
as

] and p(IM) is the joint PDF characterizing the mainshock-aftershock hazard. It is noted 

that for the case when only mainshocks are considered IM   IM
ms

. Ultimately, the probabilistic integrals in Eq. 

(14) and (15) are estimated through stochastic simulation in a similar way as described in section 3.2. 

5. Excitation model and simulation of mainshock-aftershock sequences 

For describing the seismic hazard a stochastic ground motion model [15] is adopted here, as discussed in 

previous sections. The approach involves as inputs two seismological parameters, the moment magnitude M and 

the rupture distance r, as well as predictive relationships that relate ground motion characteristics to these 

parameters. In particular, the excitation is represented through a point-source stochastic ground motion model 

[16] that entails modulation of the white noise sequence w through functions, dependent upon M and r, that 

address the frequency and time-domain characteristics of the excitation. Further details for the excitation model 

can be found in [17].  

The effect of aftershock seismic events on the structural response and ultimately to fragility and resilience 
is taken into account in this study by subjecting the structural model to mainshock – aftershock sequences and 
performing nonlinear time-history analysis. A method for generating mainshock – aftershock sequences is 
developed in this paper that utilizes the point-source stochastic ground motion model briefly described above. In 
this method only one aftershock is considered for the sake of simplicity, as previous studies have shown that 
such as an assumption provides an acceptable balance between computational effort and accuracy [18]. The 
proposed process for mainshock –aftershock simulation is illustrated through a schematic flowchart in Fig. 2 and 
is composed by the following steps. First, a scenario for the mainshock seismic event is determined through the 
mainshock moment magnitude M

ms
 and rupture distance r

ms
 [part (a) in Fig. 2]. Then an aftershock scenario, 

which should be related with the mainshock event, is determined (e.g., using a Gutenberg-Ricther relationship 
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[23]) [part (b) in Fig. 2], by considering that the largest possible aftershock in terms of magnitude 
max

asM  is equal 
to M

ms
 [19], whereas the location of the mainshock and aftershock is assumed to be the same, i.e., r

ms
 = r

as
 [20]. 

It is noted that the latter assumption is made for simplicity and more detailed considerations [21] can be 
incorporated in the method in a straightforward manner. After the scenarios for the mainshock and aftershock are 
determined acceleration time-history realizations are generated based on them through the adopted stochastic 
ground motion model [part (c) in Fig. 2]. Finally, a mainshock – aftershock sequence is obtained by assembling 
the aftershock acceleration time-history following the mainshock one with a time lag between them [part (d) in 
Fig. 2]. It is mentioned here that during this process appropriate intensity measures for the mainshock IM

ms
 and 

aftershock IM
as

 acceleration time-history realizations are computed and used in the input parameter vector x of 
the metamodels to characterize the intensity of the hazard.  Ultimately, a probabilistic characterization (discussed 
in the example section) of M

ms
, M

as
, r

ms
 and r

as
 (based on the regional seismicity) supports then a comprehensive 

description of the seismic hazard. 

(a) Mainshock scenario

• Moment magnitude (Mms)

• Rupture distance (rms)

(b) Aftershock scenario

• = Mas

• ras = rms
max

asM

White Noise Sequence (w)

Point source stochastic 

ground motion model

0 5 10 15

0

Acceleration Time History

(c) Ground motion realization

Mms, rms

Mas, ras

Mms, rms

Mainshock acceleration 

time history

Aftershock acceleration 

time history

(d) Mainshock-aftershock 

sequence simulation

 

Fig. 2 - Schematic flowchart of the mainshock-aftershock sequence simulation process 

6. Illustrative example 

6.1 Structural and excitation models 

For the illustrative example, a two span  continuous reinforced concrete box girder bridge with integral 

abutments, which is a common bridge class in California [22], is considered and shown in Fig. 3. The bridge 

consists of two spans with equal length L, a circular column pier with height Hc , diameter Dc and longitudinal 

reinforcement ration ρs supported on a pile foundation, a deck with width Wd and two abutments supported by 

piles. Values of these geometrical parameters of the bridge are shown in Fig. 3 and correspond to common 

values for this bridge class [22].  

Hc = 7.0m

L =45.0 m

Dc = 1.8m

W =10m
L =45.0 m

ρs = 1.0%

 

Fig. 3 – Layout of the bridge considered in the example. 

A 3D finite element bridge model is developed in OpenSees following modeling recommendations in 

[22]. In particular, the superstructure is modeled with elastic beam-column elements with mass lumped along the 

centerline, whereas the column is modeled through discretized fiber cross sections applied to a beam-column 

element. The constitutive material laws for concrete and steel were Concrete02 and Hysteretic, respectively. 
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Concrete and steel material strengths are denoted as fc and fs, respectively. The pile foundation of the pier is 

modeled with linear translational and rotational springs with stiffness values Kt and Kr respectively. The 

abutment active and passive response is modeled through nonlinear springs and the Hysteretic and 

HyperbolicGapMaterial laws, respectively. The primary model parameters for characterizing these laws are the 

effective abutment pile stiffness Kp and the initial backfill soil stiffness Ks. Rayleigh damping with damping ratio 

ζ associated with the first two modes is considered, and a multiplicative factor madd is applied to the mass 

stemming from the dead weight such that additional sources of mass (e.g. live loads) are considered. A more 

detailed description of the assumptions and the analytical models can be found in [22]. All the above bridge 

parameters are considered uncertain with PDFs reported in Table 1.    

Table 1 – Probability distributions for the uncertain bridge parameters 

Parameter PDF 
PDF parameters

+ 

Parameter PDF 
PDF parameters

+
 

α β α β 

fc (MPa) Normal 34.5 4.34 Kt (kN/m) Trun. Normal
* 

264165 105071 

fs (MPa) Lognormal 465 0.08 Kr (kN/rad) Trun. Normal
* 7344000 1129800 

ζ (%) Lognormal 5.0 0.3 Kp (kN/m) Lognormal 7000 0.2 

madd Uniform 1.1 1.4 Ks (kN/m) Lognormal 20300 0.2 

+ α and β represent parameters of the respective distribution, denoting mean and standard deviation for Normal, median and coefficient of 

variation for lognormal and lower and upper bound for uniform.  
* Left truncated normal distribution with lower bound equal to one and five times the standard deviation for Kt and Kr, respectively [22]. 

For the excitation model, the uncertainty in the moment magnitude is modeled by the Gutenberg-Richter 

(G-R) relationship [23] truncated on the intervals [5.5 8.0] and [5.5 M
ms

] for mainshocks and aftershocks, 

respectively. The regional seismicity parameters characterizing the G-R law are taken to be 0.90ln(10) and 

0.91ln(10) for mainshocks and aftershocks, respectively [18]. Regarding the uncertainty in the event location, the 

rupture distance r
ms

 = r
as

, is assumed to follow a lognormal distribution with median value 10 km and coefficient 

of variation 40%. Through such a probabilistic modeling of M
ms

, M
as

 and r
ms

 = r
as

, a probabilistic 

characterization of IM
ms

 and IM
as 

is also obtained. In this example, the peak ground acceleration (PGA) is used as 

intensity measure.  

6.2 Surrogate model development details 

As discussed in section 3 two separate surrogate models, MS and AS, are developed for approximating 
mainshock and aftershock response. The uncertain model parameters θ that are used for establishing the 
metamodels are θ = [fc fs ζ madd Kt Kr Kp Ks]. It is noted that the seismological parameters M

ms
, M

as
, r

ms
 and r

as
, 

characterizing the excitation model are not included in θ since the intensity level of the ground motions is 
described through IM

ms
 and IM

as
. However, for a different risk and/or resilience assessment application that the 

explicit dependence on IM is not required, vector θ can be easily augmented with these seismological parameters 
[6]. Vector p of bridge structural and geometric deterministic parameters corresponds to p = [L Hc Dc ρs Wd]. 
Therefore, the augmented input vector x is composed of θ, p¸ IM

ms
 or IM

as
 as well as ln( )msz  (for AS metamodel 

only), and it corresponds to x = [IM
ms

 fc fs ζ madd Kt Kr Kp Ks L Hc Dc ρs Wd] (nx = 14 parameters) and x = [IM
as

 fc fs ζ 
madd Kt Kr Kp Ks L Hc Dc ρs Wd  ln( )msz ] (nx = 15 parameters), for MS and AS, respectively.A total of nm = 2000 
support points is used and the influence of the white noise is addressed by considering nw = 50 samples. Space 
filling Latin hypercube sampling is used for the support points in the range that are expected to take values based 
on the assumed probability models for θ, whereas for the components of p appropriate ranges for this bridge 
class based on previous studies [22] are adopted. The response quantities z

ms 
and z

as
 predicted from the surrogate 

model correspond to the peak displacement ductilities of the column across the two orthogonal directions. The 
accuracy of the developed metamodels is evaluated by calculating different error statistics using the leave-one-
out cross-validation approach. The accuracy established is adequately high with coefficient of determination 
over 90% and mean error less than 15% for most approximated response quantities, i.e. [ ln( )qz qz

 ]; q = ms, as. 
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6.3 Fragility and functionality/resilience calculation details 

The damage states that are used in this example are qualitatively described as slight, moderate, extensive and 

complete. The thresholds bi determining the onset of these damage states for similar concrete bridge columns are 

adopted from the relevant literature [24] and are equal to 1.0, 1.20, 1.76, and 4.76, whereas σb is taken equal to 

0.35. Fragility is evaluated by using the maximum value of peak displacement ductility between the two 

orthogonal directions for z
ms 

and z
as

.  For estimation of mainshock and aftershock fragility through stochastic 

simulation [Eq. (9) and (10)] a total of N = 5000 samples is used. Regarding, the model parameters for 

functionality evaluation through Eq. (12), target functionality Qt is considered equal to 1, whereas the residual 

functionality Qr and the idle time δi are considered as uncertain parameters composing vector φ with probability 

models adopted following recommendations in [25]. For the restoration function f(.) in Eq. (12) the normal CDF 

shape as proposed in [26] is adopted. The total time horizon th for evaluation of resilience in Eq. (13) is taken 

here equal to 600 days. Finally, the same number of samples N is used for estimation of E[Q(t)] and E[R] 

through stochastic simulation. 

6.4 Results and discussion 

Using the kriging surrogate models established for approximating the bridge nonlinear response for the 
realizations of parameters composing p reported in Fig. 3 and the adopted probability models for the various 
model parameters, mainshock and state-dependent aftershock fragilities as well as expected functionality and 
resilience of the bridge under study are estimated through stochastic simulation. In particular, Fig. 4 presents the 
aftershock fragilities ˆ[ | , ]as as msP DS k IM DS i   for the four damage states considered estimated through 
stochastic simulation [Eq. (10)]. Parts (a), (b), (c) and (d) of the figure correspond to aftershock damage states 
DS

as
 = slight, moderate, extensive and complete, respectively. The different curves for each sub-plot indicate 

different levels of damage induced by the mainshock, whereas the curve reported as “intact” in the legend 
corresponds to the mainshock fragility ˆ[ | ]msP DS i IM estimated through Eq. (9). Comparing the mainshock 
and aftershock fragilities it is evident that inclusion of aftershock events in the seismic hazard description leads 
to increased vulnerability of the bridge as it was expected. Moreover, the effect of different levels of mainshock-
induced damage to the bridge can be observed through comparison of the different aftershock fragilities. It can 
be seen that as the bridge sustains more severe levels of damage due to the mainshocks the corresponding 
aftershock fragility increases. This result reveals the importance of incorporating aftershocks in the seismic 
hazard, since seismic risk is increased and consequently functionality and resilience of the bridge is reduced as 
demonstrated next. 

 

Fig. 4 – State-dependent aftershock fragilities of the bridge under study 
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Moving now to the investigation of the impact of including aftershocks on functionality and resilience of 
the bridge, Fig. 5 presents the evolution of the expected functionality E[Q(t)] with respect to time after seismic 
shock occurrence for the two hazard descriptions, i.e., including or disregarding aftershock events. The expected 
functionality is calculated by estimating the probabilistic integral in Eq. (14) via stochastic simulation. It can be 
observed that aftershock events can have a significant negative impact on the expected functionality of the 
bridge. As time evolves the difference of the expected functionality between the two cases is reduced, and 
ultimately the two curves converge to values of 1.0 that represent full restoration of the bridge. This result is 
attributed to the shape of the restoration curves f(.) used in Eq. (12), since they rapidly increase as time evolves.  

 

Fig. 5 – Expected functionality of the bridge for seismic hazard including or not aftershock events. 

Calculation of the evolution of functionality can ultimately support evaluation of the expected resilience 

E[R] of the bridge through stochastic simulation-based estimation of Eq. (15). Table 2 reports values of E[R] for 

both hazard cases and for different time instants of the recovery phase of the bridge. The different time instants 

considered correspond to the total time horizon, i.e., th = 600 days, as well as to the intermediate instants th = 45, 

60, 90 and 300 days. The percentage difference between the values of E[R] for the two hazard cases is reported 

in parentheses. The results indicate the significant impact that aftershock events impose on the recovery of the 

bridge, since the expected resilience can be up to ≈20% smaller compared to the case that only mainshock events 

are considered.  

Table 2 – Expected resilience E[R] of the bridge calculated at different time instants of the recovery phase. 

th (days) 
E[R] 

th (days) 
E[R] 

Mainshock Mainshock- aftershock Mainshock Mainshock- aftershock 

45 0.721 0.582 (19.4%) 300 0.913 0.868 (4.94%) 

60 0.748 0.620 (17.2%) 600 0.955 0.932 (2.44%) 

90 0.794 0.687 (13.5%)    

 

Finally, Fig. 6 presents histograms of the functionality samples of the bridge for different time instants (t 

= 45, 60, 90, 300 days) for both hazard cases. The mean values and the coefficient of variation (cov) of the 

samples are also reported. Beyond the expected trend (shown also in Fig. 5) of the reduced functionality when 

aftershocks are considered, it is interesting to observe that the cov for the mainshock-aftershock hazard is always 

higher than the mainshock case, and that for both cases the cov decreases as time evolves. The former trend is 

attributed to the fact that the incorporation of aftershocks in the hazard description introduces additional 

uncertainty. Whereas the latter trend is attributed to the fact that as mentioned above the particular shape of the 

restoration functions used leading to high values of functionality with small dispersion for higher time instants, 
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and that the parameters related to the functionality model considered as uncertain (i.e. Qr, δi) influence the earlier 

part of the recovery process. 

 

Fig. 6 – Histograms of functionality samples for different time instants of recovery phase. The mean values and 

the cov of the samples are also reported. 

7. Conclusions 

A computationally efficient methodology based on kriging surrogate modeling for probabilistic fragility and 

resilience analysis of bridges subjected to mainshock and aftershock seismic events is presented in this paper. 

The effect of aftershocks is explicitly considered by developing a procedure for simulating mainshock-

aftershock sequences using stochastic ground motion modeling, and ultimately incorporating it in the 

mainshock-aftershock seismic hazard description. Approximation of the nonlinear mainshock and aftershock 

bridge response is obtained using the surrogate models established with respect to uncertain hazard and 

structural model parameters, deterministic bridge and geometrical parameters, and the mainshock response 

(when estimating aftershock response). These metamodels facilitate the development of parameterized 

mainshock and state-dependent aftershock fragilities and ultimately support investigation of the impact of 

aftershocks on the probabilistic resilience assessment of bridges. The examined example that considers a typical 

bridge class in California, illustrated that aftershocks can have a significant negative influence on the 

vulnerability and functionality of the bridge.  

8. References 

[1] Kumar R, Gardoni P (2011): Modeling structural degradation of RC bridge columns subjected to earthquakes and their 

fragility estimates. Journal of Structural Engineering.138 (1):42-51. 

[2] Jeon JS, DesRoches R, Lee DH (2016): Post‐repair effect of column jackets on aftershock fragilities of damaged RC 

bridges subjected to successive earthquakes. Earthquake Engineering & Structural Dynamics. 

[3] Dong Y, Frangopol DM (2015): Risk and resilience assessment of bridges under mainshock and aftershocks 

incorporating uncertainties. Engineering Structures.83:198-208. 

[4] Ghosh J, Padgett JE, Sánchez-Silva M (2015): Seismic Damage Accumulation in Highway Bridges in Earthquake-Prone 

Regions. Earthquake Spectra.31 (1):115-35. 

[5] Kumar R, Gardoni P (2014): Effect of seismic degradation on the fragility of reinforced concrete bridges. Engineering 

Structures.79:267-75. 

[6] Gidaris I, Taflanidis AA, Mavroeidis GP (2015): Kriging metamodeling in seismic risk assessment based on stochastic 

ground motion models. Earthquake Engineering & Structural Dynamics.44 (14):2377-99. 

[7] Padgett JE, DesRoches R (2008): Methodology for the development of analytical fragility curves for retrofitted bridges. 

Earthquake Engineering & Structural Dynamics.37 (8):1157-74. 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

12 

[8] Ryu H, Luco N, Uma S, Liel A (2011): Developing fragilities for mainshock-damaged structures through incremental 

dynamic analysis. Ninth Pacific Conference on Earthquake Engineering, Auckland, New Zealand. 

[9] Luco N, Gerstenberger MC, Uma S, Ryu H, Liel AB, Raghunandan M (2011): A methodology for post-mainshock 

probabilistic assessment of building collapse risk. Ninth Pacific Conference on Earthquake Engineering, Auckland, New 

Zealand. 

[10] Aslani H, Miranda E (2005): Probability-based seismic response analysis. Engineering Structures.27 (8):1151-63. 

[11] Jia G, Taflanidis AA (2013): Non-parametric stochastic subset optimization for optimal-reliability design problems. 

Computers & structures.126:86-99. 

[12] Au S, Beck JL (1999): A new adaptive importance sampling scheme for reliability calculations. Structural Safety.21 

(2):135-58. 

[13] Jia G, Taflanidis AA, Beck JL (2015): A new adaptive rejection sampling method using kernel density approximations 

and its application to Subset Simulation. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: 

Civil Engineering.D4015001. 

[14] Chang SE, Shinozuka M (2004): Measuring improvements in the disaster resilience of communities. Earthquake 

Spectra.20 (3):739-55. 

[15] Boore DM (2003): Simulation of ground motion using the stochastic method. Pure and applied geophysics.160 (3-

4):635-76. 

[16] Atkinson GM, Silva W (2000): Stochastic modeling of California ground motions. Bulletin of the Seismological 

Society of America.90 (2):255-74. 

[17] Gidaris I, Taflanidis AA (2015): Performance assessment and optimization of fluid viscous dampers through life-cycle 

cost criteria and comparison to alternative design approaches. Bulletin of Earthquake Engineering.13 (4):1003-28. 

[18] Han R, Li Y, van de Lindt J (2016): Seismic Loss Estimation with Consideration of Aftershock Hazard and Post-Quake 

Decisions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering.04016005. 

[19] Song R, Li Y, Van de Lindt JW (2016): Loss estimation of steel buildings to earthquake mainshock–aftershock 

sequences. Structural Safety.61:1-11. 

[20] Goda K (2012): Nonlinear response potential of mainshock–aftershock sequences from Japanese earthquakes. Bulletin 

of the Seismological Society of America.102 (5):2139-56. 

[21] Yeo GL, Cornell CA (2009): A probabilistic framework for quantification of aftershock ground‐motion hazard in 

California: Methodology and parametric study. Earthquake Engineering & Structural Dynamics.38 (1):45-60. 

[22] Ramanathan K, Padgett JE, DesRoches R (2015): Temporal evolution of seismic fragility curves for concrete box-

girder bridges in California. Engineering Structures.97:29-46. 

[23] Kramer SL. Geotechnical earthquake engineering: Prentice Hall Upper Saddle River, NJ; 1996. 

[24] Zhang J, Huo Y (2009): Evaluating effectiveness and optimum design of isolation devices for highway bridges using 

the fragility function method. Engineering Structures.31 (8):1648-60. 

[25] Decò A, Bocchini P, Frangopol DM (2013): A probabilistic approach for the prediction of seismic resilience of bridges. 

Earthquake Engineering & Structural Dynamics.42 (10):1469-87. 

[26] HAZUS-MH. Multi-Hazard Loss Estimation Methodology: Earthquake Model HAZUS-MH MR5 Technical Manual. 

Washington DC: Federal Emergency Management Agency; 2011. 


