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Abstract 
The 12.9km long Confederation Bridge connecting Prince Edward Island and New Brunswick in eastern Atlantic Canada is 
the world’s longest bridge built over ice covered sear water. With 45 main spans of 250m each and a 100-year design life, 
the design criteria of the Confederation Bridge are not covered by any code or standard in the world. Since the bridge 
opening in 1997, a comprehensive structural health monitoring system has been collecting data on the response behaviour 
and performance of the bridge under ambient traffic, wind and earthquake load actions. This paper summarizes the lessons 
learned, challenges identified and the future directions of the vibration structural health monitoring program. In the early 
phase of the project, dynamic response data have been used to verify the dynamic properties and design assumptions of the 
bridge. Subsequently, vibration data are used to provide support for decision making on the efficient operational 
management and maintenance of the bridge and to help with structural condition assessment. Ambient and strong wind 
event and traffic induced vibration monitoring data have been used to calibrate and improve the accuracy of the bridge 
computer models. The variability characteristics of uncertainties in the monitoring data crucial for realistic structural health 
and condition assessment application of bridges using field monitoring data are evaluated and a first ever data variability or 
uncertainty model based on actual field data has been developed. Implications of data noise and variability on structural 
condition assessment of bridges are discussed. An application platform developed for the Confederation Bridge monitoring 
project for real-time data processing, analysis and visualization is described. Future directions of vibration based structural 
health monitoring of critical bridges and bridge infrastructure networks are presented.  
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1. Introduction 
The Confederation Bridge is a 12.9 km long pre-stressed concrete bridge over the Northumberland Strait that 
provides the only fixed link between New Brunswick on mainland Canada and Prince Edward Island. It is one of 
the world’s longest bridges operating in water with winter sea ice cover. The bridge is divided into 21 approach 
spans, two transition spans of 165 m each and 43 main spans of 250 m each at a typical height of 40 m above the 
mean sea level. The main-span portion of the bridge comprises 22 repetitive structural frame modules of 500 m 
length each. Each frame module is a 440 m portal frame made up of a 250 m centre span and two 95 m 
overhangs, one on each side of the centre span, plus a 60 m simply supported drop-in expansion span, as shown 
in Figure 1a. Because it operates under very severe and harsh environment conditions over a period significantly 
longer than the normal design service life of typical bridges, a comprehensive and detailed understanding of the 
behavior of the Confederation Bridge is essential in order to accurately predict and evaluate its performance in 
the future.  A comprehensive long-term monitoring system on the Confederation Bridge has been in operation 
since the bridge opening in 1997 to collect data and information about its behaviour and performance. The 
monitoring system records both environmental and bridge response data including vibration responses, concrete 
temperature, short and long term deformations and material properties, ice cover conditions and interactions of 
ice features with the bridge piers, and weather data.  Details of the Confederation Bridge monitoring 
instrumentations and research programs have been presented in a separate publication [1].  The dynamic 
monitoring system is dedicated to the measurement of the vibration responses of the bridge caused by significant 
sources of dynamic excitations, including wind, heavy traffic, ice loads and earthquakes. The vibration 
instrumentation comprises a total of 76 accelerometers of both piezoelectric and servo types distributed between 
Piers 30 to 33 of the bridge, as shown in Figure 1b. 

 The monitoring project of the Confederation Bridge represents a unique and ideal opportunity for research 
to advance the state-of-the-art and practices of vibration based structural health monitoring (VBSHM) 
technology because of the availability of comprehensive long-term monitoring data and information covering not 
only the dynamic responses of the structure but also other important structural behaviour and performance 
aspects, such as concrete temperature, material properties and wind speed, etc. The basic theoretical premise of 
VBSHM is that any changes in the vibration properties of a structure can be attributable to damage or 
deterioration of the structure.  However, practical applications of VBSHM techniques to bridges in the field 
often encounter difficulties because of noises or uncertainties in the data affected by fluctuations in the 
environmental conditions and loading actions masking the changes due to structural damage.  The data from the 

Fig. 1 – (a) Dimensions, main components; (b) Accelerometer locations in Confederation Bridge 
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monitoring project of the Confederation Bridge are used not only to better understand the behaviour of the 
bridge but also to characterize the variability of the monitoring data that will facilitate advances in the practical 
use of monitoring data for structural assessment and damage detection. The data is also especially relevant to the 
study of the influences of environmental factors on the variability of monitoring data and results. The weather 
condition at the Confederation Bridge site ranges (-20oC to +25oC) from hot summer to very cold and windy 
winter season (>100km/hr) and has exposure to significant loading from seasonal ice floes in the strait.  

 This paper presents an overview of the lessons learned, challenges identified, and future directions of the 
vibration structural health monitoring program. Dynamic response and monitoring data have been used to verify 
the dynamic properties and design assumptions of the bridge. Ambient and strong wind event and traffic induced 
vibration monitoring data have been used to calibrate and improve the accuracy of bridge computer models. The 
variability characteristics and uncertainties in the monitoring data crucial to successful realistic structural health 
and condition assessment application of bridges using field monitoring data have been investigated. To interpret 
the large amount of data, an application platform (SPPLASH) developed for the Confederation Bridge 
monitoring project for real-time data processing, analysis, and visualization is described. Four system 
identification algorithms applied to real vibration monitoring data in the presence of high level uncertainty and 
noise related to field measurement data are discussed. Another approach in tackling the challenges of practical 
structural health monitoring and condition assessment using a data driven approach is described. Data driven 
models are based on “features” with no physical meaning, for example, the pattern recognition technique. This is 
also linked to big data and data analytics and is discussed for applications in structural health monitoring herein. 
Finally, some conclusions and future directions of vibration based structural health monitoring of critical bridges 
and bridge infrastructure networks are presented.  

2. Dynamic Response Monitoring and Measurements 
Vibration responses of the bridge girders are measured in the vertical and lateral horizontal directions, as shown 
in the accelerometer layout in Figure 1b.  This setup facilitates the recovery of vertical bending, lateral bending 
and torsional vibration modes of the bridge superstructure.  The response behaviour observed in the instrumented 
segment of the bridge is considered representative of the behaviour of the main-span portion of the structure.  

The vibration sensors used in the monitoring system include both piezo-electric accelerometers and servo 
accelerometers. Signals are sampled using a strict sample and hold analog to digital conversion by a network of 
high-speed data loggers before being sent to on-site computers and transmitted back to Carleton University in 
Ottawa for data processing and analysis. Typical data sampling rates vary between 100 Hz and 167 Hz. 
Dedicated communication lines between the different data loggers ensure simultaneous triggering and recording. 
The data loggers operate in continuous buffered data collection mode, which upon triggering by detection of 
specific dynamic events, such as heavy traffic signals or high winds, or simply upon user request, store time 
history response data in hard disk for detailed analysis and research.  Otherwise, only statistic information 
determined from the time history data, such as mean, maximum, minimum and standard deviation, are stored.  

The structural monitoring framework encompasses not only the monitoring instrumentation and data 
collection systems at the bridge site, but extends to also include the computer infrastructure for the distribution, 
processing and utilization of the monitoring data.  Details of the monitoring system setup have been described in 
previous publications [1, 2], while the development of the associated computer tools have been discussed by [3]. 

Figure 2 shows typical time domain plots of bridge acceleration responses at mid-span of the portal frame for 
sensor location 9. The datasets were collected from November 2000 to May 2002. The figures illustrate the 
typical distinctive characteristics of data under different loading scenarios. Frequency content collected under 
high-wind scenarios are characterized in the low-frequency range, mostly below 1.0 Hz. Alternatively, the 
frequency content of the responses under traffic is markedly different from those associated with the high wind 
scenarios and are concentrated mainly in the 2.5 Hz to 3.5 Hz range. In the ambient responses, which represent 
typical operating conditions where the bridge is subjected to random combinations of wind and traffic loading 
the bridge responses essentially exhibit a combination of the characteristics of the wind-driven and traffic-driven 
responses described above. Under the presence of ice floes, the responses of the bridge are not too dissimilar to 
the response under the ambient scenarios without ice. The characteristic frequency content including dominant 
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frequencies in the dynamic behaviour under each of these loading scenarios has been established and is essential 
for use of the monitoring data for structural assessment and health monitoring of the bridge in the future.  

 From the system identification analysis of the monitoring data, twenty-five vibration modes are identified 
in the 0 – 5.2 Hz range. The extracted vibration modes are compared to the expected design values based on 
finite element models of the bridge constructed from design drawings and material specifications of the structure 
with the aim of verifying that the bridge behaves as expected from design. Taking into consideration the time 
varying properties of the structure, such as the concrete modulus of elasticity, the identified modal frequencies 
differ only by -3% to 4% on average from expected design values (the slight difference depends on the type of 
finite element model used to obtain the expected design values). The extracted mode shapes are reasonably close 
to those expected from the design with the exception of some localized discrepancies. In addition, damping ratio 
design assumptions, which vary according to the type of loading have also been verified against modal damping 
ratios extracted from the monitoring data. The damping ratios assumed at the design stage for bridge response 
under wind seem to be reasonably conservative compared to the extracted values.  Damping ratios of 2% and 5% 
assumed in the earthquake design are slightly higher than the extracted values, but also seem to be reasonable 
since significant additional damping can be expected in the large amplitude responses to strong ground motion. 
Additional details on the dynamic characteristics and finite element modelling of the Confederation Bridge are 
available in references [4, 5]. 

The variability observed in the dynamic properties extracted by system identification of the field monitoring 
data is highlighted because it represents a major challenge for the use of the monitoring data for structural 
condition assessment given that the typically small changes in the extracted properties caused by damage or 
deterioration of the structure could easily be masked by the normal variability of the data.  On average, identified 
modal frequencies exhibit a standard deviation of 1.8% from mean values while damping ratios exhibit 
significantly higher variability.  The higher uncertainty of the damping ratios stems from the complexity of the 
damping phenomena.  Identified mode shapes also show some variability. Understanding the causes of the 
variability, together with the development of improved system identification and damage detection algorithms, is 
essential for the field application of vibration based health monitoring in the future. 

Fig. 2. – Typical vertical acceleration time histories under different loading scenarios 
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3. Real-time Structural Health Monitoring Application Platform 
The processing and analysis of large datasets collected from continuous monitoring systems often require a 
significant amount of time and effort.  In order to accelerate the processing of these continuous monitoring data 
and to facilitate more rapid data analysis, and more timely interpretation and use of the results; a real-time data 
processing and analysis application platform SPPLASH has been developed which encompasses all aspects of 
data manipulation.  This application platform consists of data processing, analysis and visualization modules, all 
integrated through graphical user interfaces (GUIs).  The applications are designed and adapted to run in a real-
time mode by automatically sorting incoming data and re-directing it to the processing and animation modules 
for graphic display of bridge displacements and motion in near real-time, as limited by the network speed. With 
this capability, after the occurrence of extreme events such as windstorms, earthquakes or ship impacts, bridge 
responses and condition of the facility can be assessed in a timely manner for decision support of its operation.  

The design of such a tool helps to overcome the numerous challenges on the development of intelligent 
automatic data processing and analysis, reliable condition assessment algorithms that take into account the 
stochastic variations in data behaviour, and the development of graphical user interfaces (GUIs) and 
visualization tools to facilitate engineering interpretation of the monitoring information. The developed 
application platform has a modular design in which each module has its own GUI for configuration of the 
processing of data and is designed to interface seamlessly with other appropriate modules in the application 
platform. Modules for data processing, data display and plotting, system identification, and visualization of 
bridge responses have been developed.  With the modular design, additional application modules can be 
developed and added to the platform to perform new tasks in the future. Another advantage of the modular 
design is that the application architecture can easily be adapted to take advantage of the rapidly increasing 
computing power by parallel processing. For example, modules performing CPU intensive tasks, such as data 
processing, system identification and 3D visualization can be handled by separate dedicated processors or 
computers in a distributed network computing environment. The processing and visualization modules are 
designed to have the capability to operate in real-time mode enabling the animation of bridge responses, such as 
the displacements, in near real-time as limited by the network speed.  

3.1 Data Processing 
File sorting and processing of the raw monitoring data is performed in order to correct the above listed problems 
and to produce suitable outputs for data analysis and visualization. The file sorting operation organizes the data 
files into appropriate input files for the processing engine.  File sorting tasks include organization of the data 
files, identification and separation of different data events, and the assembling of matching data event segments 
to form a complete data event of proper duration.  

 The data processing operations and procedures carried out by the processing engine includes a number of 
steps. Data assimilation or synchronization of data events from different loggers into full datasets corresponding 
to the same dynamic event are carried out first. Any small gaps where data samples are found to be missing are 
patched and any duplicate records are purged from the dataset. A baseline adjustment of the accelerometer time-
history signals and conversion of the data to engineering units is then carried out. The data then undergoes 
resampling to a common sampling rate and is decimated to within the typical frequency content of interest for 
the structure, typically below 15 Hz. Finally, the data signals are integrated to obtain displacement and 
acceleration time histories for the response of the structure.  

3.2 Data Display and Visualization 
The primary purpose of this platform from the user perspective is to simplify the process of extracting 
meaningful engineering information from the monitoring data.  To facilitate this process, a visualization module 
including a data plotting tool with extensive plotting capabilities provides a convenient environment for the 
analysis of large datasets within a reasonable time frame. Using the developed GUI, displacement and 
acceleration time histories and spectral plots can be easily manipulated to obtain the desired information on the 
behaviour of the structural system, as shown in Figure 3a.  Data may be viewed at any intermediate stage of 
processing to qualitatively evaluate the processing results.  Different channels may be plotted simultaneously in 
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the same figure providing easy comparison. A second visualization module includes a 3D bridge model for 
animation of bridge displacement responses and mode shapes, shown in Figure 3b. Bridge responses during a 
dynamic event such as a windstorm, an earthquake or simply during normal operational conditions can be 
animated for more effective visualization and interpretation of the results, which provides valuable insight into 
the bridge behaviour.  The animation module permits flexible user interaction.  Parameters of the animations 
include scaling factor, view angle and playback speed.  The animation and plotting capabilities are seamlessly 
integrated.  There is also an option to record animation sequences for playback on common media players.  

In the future, given that important challenges currently existing in vibration based health monitoring can 
be overcome, it should be possible to integrate the real-time data processing modules with data analysis tools and 
damage detection algorithms to facilitate timely condition assessment of the monitored facilities based on 
evaluation of continuous dynamic monitoring data.  The data visualization modules facilitate the extraction of 
engineering information from large datasets collected by a continuous monitoring system.  Timely extraction of 
engineering information from the bridge response monitoring data is also very important for the operation of 
bridge facilities. For example, a warning system has been implemented using the extracted information to give 
early warning to facility operators if it is detected that certain response value exceeds a specified safety or 
threshold limit during normal operation or after the occurrence of an extreme event, such as an earthquake. 

3.3 Spectral Analysis 
As a preliminary analysis of the bridge monitoring response signals, power spectral density (PSD) analysis of the 
monitoring data can be conducted to identify the dominant structural vibration frequencies and distribution of the 
energy of the signals in the frequency domain.  In the developed computer application platform, PSD functions 
of the monitoring responses can be visualized through the data display module, as shown in Figure 3.  The PSD 
function module can be applied to the analysis of the data signals at any intermediate or processing stage.  

3.4 System Identification 
Determination of the structural vibration frequencies, mode shapes and damping ratios of the structural system 
from the monitoring data are important aspects of structural health monitoring as they are the fundamental 
parameters of vibration based structural condition assessment techniques. To obtain more accurate values for 
structural frequencies, mode shapes and damping ratios of the structural system, a number of different system 
identification techniques have been implemented in the modular application platform discussed in the following 
section, including Stochastic Subspace Identification (SSI), PolyMAX, Eigensystem Realization Algorithm 

   
(a)                                                                                      (b) 

Fig. 3 – Graphical user interfaces (a) data display module; (b) animation module  
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(ERA) and Frequency Domain Decomposition method (FDD). Additional details on the development of the real-
time analysis application platform are available in a separate publication [3].  

 

4. Comparison of System Identification Techniques 
The Confederation Bridge is exposed to harsh environmental conditions including high wind and moving ice 
floes as well as a wide range of seasonal environmental fluctuations, which make it an ideal setting for studying 
the practical applicability of VBSHM due to the high level of uncertainties present in the environmental and 
loading conditions. The latest development of promising output-only modal identification technique, PolyMAX 
allows new capabilities in automatic data processing for the estimation of modal parameters due to its ability in 
providing a clear stabilization diagram of the system poles of the monitored structure. The accuracy and 
efficiency of four different identification methods: (1) Stochastic Subspace Identification (SSI), (2) PolyMAX, 
(3) Eigensystem Realization Algorithm (ERA) and (4) Frequency Domain Decomposition (FDD) method are 
compared using a total of 14 data sets selected from the confederation bridge monitoring database for analysis. 
The range of average concrete temperature in the dataset is -2.7°C to -1.4°C, while the average wind speed range 
is 7.2 m/s to 14.8 m/s. The ranges of these values, 1.3°C and 7.6 m/s are reasonable when compared to the yearly 
variations of 45°C and 30 m/s for the typical annual average environmental conditions at the bridge site. As 
described earlier the FDD, ERA and PolyMAX methods have been added to the existing Confederation Bridge 
monitoring software platform (SPPLASH) and the results obtained by these four identification algorithms are 
compared with finite element models of the bridge. 

4.1 Stochastic Subspace Identification 
Four vertical and two lateral sensors at monitoring locations 7 and 9 are used as reference sensors for cross-
correlation computation. These sensors are suitable references because of their relatively high response 
amplitudes and because their locations do not simultaneously coincide with modal nodes of any of the important 
vibration modes of the bridge. In the present study, proper models are identified by the SSI method with a model 
order of 150 i.e. models containing 75 modes. Even though the actual model order of the data analyzed here is 
typically around 40, a relatively high maximum model is used in the construction of the stabilization diagrams to 
allow for a clear visualization of stabilized trends. In the assessment of the stabilized modal parameters, a 
stabilization limit of 0.5% is chosen for frequency identification, whereas for mode shape and damping the limits 
are 1% and 15% respectively. Figure 4a shows the stabilization diagram for dataset 1 obtained by SSI method. 

 
(a)                                                                    (b) 

Fig. 4. – Stabilization diagram: (a) SSI method; (b) PolyMAX method 
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4.2 PolyMAX Method 
Here, the primary identification data, positive power spectrum is estimated via the correlogram approach with 
2048 correlation lag time. The same 6 sensors (4 vertical and 2 lateral) at monitoring locations 7 and 9, selected 
in the SSI method are used as reference sensors here. To reduce the error due to leakage, a 1% exponential 
window is applied prior to correlogram spectrum estimation. To generate the stabilization diagram by the 
PolyMAX method, the model order between 150 and 200 is selected and the same stabilization criteria as in the 
SSI method for frequency, mode shape and damping are employed. Figure 4b shows a typical stabilization 
diagram for one of the dataset obtained by the PolyMAX method.  

4.3 Eigensystem Realization Algorithm (ERA) 
For the ERA method, the correlations calculated with respect to the same 6 sensors at monitoring locations 7 and 
9 (4 vertical and 2 lateral sensors) are used as identification data. A Hankel matrix of the dimension 8750x600 
corresponding to 9.3s of “free response” data is evaluated. Because there is no “gap” in the singular value i.e. it 
is very difficult to determine the number of modes being excited by just examining the singular value plot. In 
most of the datasets, the truncation of block Hankel matrix is carried out with the model order of 50 to 60 so that 
approximately 25-30 modes are identified. As the frequency range of interest is 0-5.5 Hz, only the frequencies 
below 5.5 Hz are considered in the system identification analysis. Modes with high damping ratio are discarded. 
A threshold of 5% damping ratio is established. Repeated modes are eliminated based on the lowest energy 
content given by the singular values.  

4.4 Frequency Domain Decomposition (FDD) Method 
The spectra are estimated via Welch periodogram method using 2048 points FFT with a Hamming window of 
50% segment overlap. This results in a frequency resolution of 0.0122 Hz for singular value plot. For each 
dataset, two spectral matrices were calculated, one for vertical and another one for lateral accelerations. Then, a 
singular value decomposition of the spectral matrices was performed to evaluate the corresponding non-zero 
singular values. Figure 5 shows the average singular values of all datasets for both directions. Damping estimate 
is performed in time domain assuming a SDOF around a peak via enhanced FDD. 

4.5 Comparison of System Identification Results 
Modal vibration frequencies, mode shapes and damping ratios obtained by four system identification methods 
are compared to the theoretical values based on the calculated finite element model to examine the correlation 
between extracted and analytical modal properties. Both SSI and PolyMAX algorithms are able to identify 21 
modes below 5.5 Hz. The ERA method fails to detect a mode at 0.55 Hz whereas in case of FDD method; two 
modes namely at 0.55 Hz and 0.84 Hz are not identified. The finite element modal frequencies based on the field 
measurement of concrete modulus are in close agreement to the measured values with an overall observation of 

Fig. 5 – Average singular values of spectra matrix 
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estimated frequencies being slightly lower than the theoretical frequencies. Furthermore, the good agreement 
between the measured modal frequencies and the updated finite element model values show that the field 
observed structural dynamic properties as related to stiffness and mass are reasonably close to the design values.  

In particular, the SSI method offers a more consistent frequency estimate compared to other algorithms. 
The variation in the identified frequencies relative to the mean appears to be higher for the lower frequency 
vibration modes and shows a decreasing trend for higher frequency modes. This observation has very important 
significance since the lower vibration modes often represent the dominant vibration behaviour of most structures 
under typical dynamic loading conditions, and thus can have an impact on the proper selection of vibration based 
algorithms for health monitoring purposes. 

In general, the standard deviations obtained for the damping ratios are much higher than those obtained for 
the modal frequencies especially for ERA and FDD methods; the high variance on damping estimate is quite 
noticeable. In case of FDD method, damping estimate for low frequency modes are unrealistically high, an 
indication of high leakage bias in spectra computation. In fact, the closeness of the modes and the relatively low 
frequency resolution adapted to guarantee significant number of averages which is essential for good 
performance of FDD technique, leads to an unaccepted biased spectra estimation. On the other hand, both SSI 
and PolyMAX methods provide comparable damping estimate. The average modal damping ratio by SSI method 
is 1.62% corresponding to 53% standard deviation of the mean while for PolyMAX; these values are 1.67% and 
62% respectively. It is worth noting that the mean extracted modal damping ratios show a slight decreasing trend 
with increasing frequency. Additional details on the comparison of different system identification techniques are 
available in a separate publication [6].  

Among all the methods, SSI algorithm seems to be more consistent in frequency, damping and mode 
shape estimate. The application of PolyMAX and SSI methods to the ambient vibration data results in a very 
similar estimates for natural frequencies and damping ratios while for mode shape estimation; SSI outperforms 
PolyMAX method. The more traditional identification algorithm, ERA method provides comparable results at 
least in terms of frequency and mode shape estimation. Furthermore, all four algorithms exhibit higher variance 
in damping estimate especially for ERA and FDD method, it is quite noticeable.  

5. Pattern Recognition by Time Series Analysis 
In recent years, another approach in tackling the challenges of practical VBSHM and condition assessment 

of large structures in the field is the development of a data driven approach. A common challenge of vibration-
based structural condition assessment algorithms is how to account for the uncertainties in the monitored bridge 
responses due to noise from the sensors, variability of the environmental conditions, assumptions in the 
structural models and processing and analysis algorithms. Alternatively, data driven models are techniques that 
eliminate the constraints of a physical theoretical model, and thus in theory may be better suited for accounting 
for the influence of uncertainty in the monitoring of data or signals. The basic premise of structural health 
monitoring (SHM) is that any change in the dynamic properties of a system is directly correspondent to change 
in the condition or state of health of the overall system. Field measurement output-only acceleration data from 
the Confederation Bridge monitoring project has been used to investigate changes in vibration response 
characteristics of the bridge structure in the past [1]. To improve the accuracy and reliability of vibration-based 
structural health monitoring and assessment techniques, monitoring vibration responses of bridges have been 
analyzed by pattern recognition by time series analysis. This technique is a unique combination of random 
decrement averaging method, autoregressive modelling, and Mahalanobis squared distance measure for outlier 
detection, proposed by Gul et al. [7]. The techniques has been applied to the Confederation Bridge structure 
structure to study changes in dynamic response behaviour under ambient load conditions. The objective of using 
these techniques is to quantify the variability characteristics of the measured vibration responses to different 
loading scenarios for excitations due to traffic, wind, ice, and earthquake. 

5.1 Random Decrement Method  
The Random Decrement (RD) technique is a time domain procedure, where the structural responses to 
operational loads are transformed into random decrement functions. Following the RD technique, it is assumed 
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that the response of a system to random input loads, at time instant, t, is the summation of the response to an 
initial displacement, the response to an initial velocity, and the response to the random input loads between the 
initial state and the time instant t. By averaging a large number of time segments of the response with the same 
initial condition, the random part of the response will vanish, and what remains is the response of the system to 
the initial conditions. Therefore, measured acceleration time histories can be transformed into pseudo-free 
vibration response by RD method. Noise reduction is another important advantage of RD averaging method 
especially for the experimentally measured structural responses. More details and applications of the RD 
technique to the Confederation Bridge project can be found in the reference [8]. 

5.2 Time Series Analysis  
One approach to extract characteristic information from time series data is by autoregressive modelling. An 
autoregressive (AR) model of order r is employed to fit a curve to a signal, such that the value of the estimated 
function at time t is a linear combination of r consecutive values prior to time t. For each time series X(t) 
previously obtained by RD averaging of the standardized signal, an AR model is constructed. The coefficients of 
the AR models are reported as features of the original signal. These features which contain characteristics of the 
measured acceleration response are then passed to a pattern recognition method for outlier detection.  

5.3 Pattern Recognition  
Pattern recognition techniques can be employed to detect changes in dynamic characteristics of structures under 
various loading and structural conditions. One of the most common pattern recognition techniques among those 
applied to SHM problems is outlier detection. Mahalanobis squared distance measure [9] is one of the outlier 
detection techniques, which is capable of detecting deviation of an observation cluster from a reference cluster or 
a series of clusters. Extracted features of the measured acceleration response from the Confederation Bridge 
monitoring project are analyzed by a Mahalanobis distance-based outlier detection method. A “pool” of 
reference datasets from the Confederation Bridge structural health monitoring project has been considered and 

 

 
Fig. 6 – (a) Acceleration time-histories of the selected datasets from the Confederation Bridge; 

 (b) Mahalanobis distance between extracted features (DS1/DS2: reference datasets) 

(a) 

(b) 
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the Mahalanobis distances of the extracted features of this pool from the extracted features of different 
observation datasets are computed. As shown in Figure 6a, five vertical acceleration time-history datasets (DS1-
DS5) under ambient loading condition with a sampling frequency of 125 Hz and duration of 570 seconds for 
each signal have been used (sensor location 9). The datasets then undergo the process of random decrement 
averaging and autoagressive modelling to compute the Mahalanobis distance, which is shown in Figure 6b.  

The steps of the pattern recognition algorithm is shown in Figure 7. Each signal is first standardized by 
subtracting the signal mean and then dividing by standard deviation of the signal. The standardized signals are 
then processed by the random decrement (RD) averaging method to obtain pseudo-free vibration response. After 
averaging the standardized signals using auto RD, an auto-regressive (AR) model is fitted to the averaged 
signals. For each averaged signal, the ratio of the standard deviation of the AR model estimation residuals to the 
standard deviation of the averaged signal is kept as small as 1% to ensure a confidence level of 99% in the AR 
modelling. Enforcing this selected confidence level helps to substantially reduce the effect of time series 
modelling parameters such as AR model order on the extracted features. The coefficients of the AR model are 
then reported as features of the original signal. These extracted features are assumed to carry dynamic 
characteristics of the bridge structure and they can be used for pattern recognition.  
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Fig. 7 – Autoregressive model applied to dataset DS1 with RD averaging: (a) standardized acceleration time-
history; (b) RD-averaged signal; (c) extracted features; (d) comparison of AR estimate and RD-
averaged signal.  

To examine the variability of the extracted features between different datasets, the methodology of feature 
extracting described in this section is applied to all other datasets, and Mahalanobis distance-based outlier 
detection method is used to detect deviation of an observation set of features from a reference set of features. For 
this purpose, preceding datasets DS1 and DS2 are chosen as reference to represent healthy states, and other 
datasets are considered as observation. In addition to the condition of minimum 99% confidence level for the AR 
model, a minimum RD length of 500 seconds is used as another condition to increase the accuracy of the 
extracted features before passing to next step for pattern recognition. Figure 6b shows the Mahalanobis distance 
from reference datasets to observation datasets for all data segments satisfying these two conditions (i.e. 
minimum 99% confidence level for the AR model, and a minimum RD length of 500 seconds). For the 
observations, it is evident from the figure that different events are clearly separated by using this methodology. 
However, this cannot be simply interpreted as a change in structural properties because there exists traces of 
external loading in the extracted features, and further study is required to quantify these effects before detecting 

(a) 

(c) 

(b) 

(d) 
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damage. This presents a challenge moving forward to distinguish the effects of changes in external loading from 
those of structural changes in the response of the bridge.  

6. Conclusions and Future Directions 
Vibration based health monitoring of civil engineering structures has the potential to provide timely essential 
information about the state of structural integrity of important civil engineering structures, either on a routine 
basis or after extreme unexpected loading. The technology and developments presented herein could be used in 
conjunction with the current structural assessment techniques to provide a more informative and accurate global 
assessment of the structural health. To facilitate the timely processing of continuous monitoring data, a near real-
time structural health monitoring platform (SPPLASH) has been developed to extract engineering information 
from large data sets of continuous monitoring data for both research and operation of the bridge in a timely 
manner. Four different system identification techniques have been implemented into the modular design of the 
monitoring platform and have been shown to be a reliable tool for extracting modal properties of a structure. 
However, in many cases the condition assessment of large structures in the field is limited by uncertainty and 
noise in the continuous monitoring data. To overcome the limitations and constraints of a physical theoretical 
model, a unique data driven pattern recognition by time series analysis has been applied to selected acceleration 
datasets from the Confederation Bridge structural health monitoring project. It is observed that the methodology 
is capable of recognizing patterns in the bridge response and quantify deviation of the response characteristics 
from a certain reference. However, to perform damage detection, further study is needed to distinguish effects of 
external loading from those of structural changes in the bridge response. Using the monitoring data collected 
from the long-term structural health monitoring system of the Confederation Bridge, a comprehensive database 
of the ambient vibration response of the instrumented bridge under different environmental and loading 
scenarios, such as summer (without ice cover) and winter (without ice cover) season ambient conditions, traffic 
and strong wind triggered events. The statistical characteristics of the uncertainties associated with different 
loading and environmental conditions have been quantified.  These together with the vibration response database 
will serve as the crucial baseline reference for future evaluation and detection of any change in the structural 
condition, deterioration or damage of the bridge.  Experiences and lessons learned from the long-term vibration 
monitoring project also show that continuous monitoring is essential for updating the vibration response database 
in order to be able to continuously refine the uncertainty models and to minimize the sensitivity of monitoring 
data due to noises and uncertainties in structural health monitoring evaluation application.  
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