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Abstract 

Given the very large length of embankments along rivers and channels, there is a need for a reliable, simple and affordable 

method to assess the stability of these structures in case of earthquake. However, most of the existing simplified methods have 

been developed considering earth dams. They are usually not representative in terms of height and frequency range of the 

particular case of a river embankment. Moreover, the river embankments do not lie directly on the rigid bedrock but on a (soft 

or stiff) soil foundation. For this last reason, and because it provides an analytical formulation, the Sarma’s method is 

considered as the first simplified method to apply for assessing the dynamic response of a river embankment. However, it is 
based on several assumptions that have never been qualified. Therefore, in order to assess the reliability of this method, it is 

applied on 18 configurations of embankments and soil foundation loaded by 26 accelerograms. The results are compared with 

those obtained by direct numerical simulation with the spectral element method for the same configurations. The comparisons 

show that Sarma’s simplified method generally leads to an overestimation of the peak response of the embankment. The 

discrepancies are mostly explained by the less accurate predictions of higher modes with Sarma’s method and by the 

assumption of a rigid bedrock under the foundation layer. Moreover, an analysis of the strain distribution indicates that Sarma's 

(1979) assumption of a uniform damping in the embankment and the foundation layer is far from being always justified, 

especially for equivalent linear computations. Finally, the main perspectives of this work is to provide an affordable 

methodology to estimate the peak response of an embankment taking into account the interaction with the underlying soil, 

which may be more complex than a simple horizontal layer.  
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1. Introduction 

Given the very large length of existing embankments along rivers and channels, simplified methods to assess their 

seismic stability are necessary to save money and time. Lots of methods have already been developed for studying 
earth dams [1-5], but they usually appear not to be transposable to small dykes. Apart from the difference in terms 

of range of resonance frequencies, one of the main distinction lies in the fact that embankments are almost never 

overlying directly on a bedrock. For this last reason, Sarma’s simplified method [2] appears to be the first method 
to apply on the particular case of dykes. This model takes into account the interaction between the dam and its 

foundation, which consists in a layer of soil underlain by the bedrock. Besides, because it is based on an analytical 

formulation, it can give directly the response of the system in time-domain without the additional approximations 

of abacus. However, Sarma’s simplified method relies on several assumptions that never been qualified. The 
present study aims at comparing the results given by Sarma’s approach with those obtained by numerical analysis  

in order to better constrain the possible error introduced by the assumptions. For this purpose, 18 configurations 

of embankments and foundations are considered. Their peak response to a set of 26 accelerograms (fitted on design 
spectra) calculated numerically with a two-dimensional spectral element method are compared with the one given 

by Sarma’s equations [2]. 

2. Sarma’s method (1979) 

S.K. Sarma developed the well-known design curves for the assessment of the dynamic stability of the slopes of a 

dam [2]. These curves, frequently applied by geotechnical engineers, are based on the analytical resolution of the 

problem. The equations obtained in this way were then used by Sarma (1979) for different standard cases in order 
to develop the design curves. The different steps used by Sarma (1979) to solve analytically the problem consist 

in the estimation of: 

- the inertia forces generated in the dam during the earthquake; 

- the resistance of the dam against these forces; 

- the consequences (irreversible displacement) when the resistance is not sufficient. 

From the first point is deduced, in particular, an abacus that gives the seismic coefficient for different geometries 
of sliding wedges. The revisiting on Sarma’s method presented in this paper concerns only the estimation of inertia 

forces. Moreover it is not based on the design curves deduced by Sarma (1979) but on the analytical resolution 

itself. This analytical resolution of the dynamic response of a dam resting on a layer is based on several 

assumptions listed hereinafter. The other subsection deals with the equations obtained by Sarma (1979) after the 
resolution of the system. 

2.1 Assumptions 

Sarma (1979) made the following assumptions to translate the problem into a system of equations and solve it: 

- the dam is assimilated to a triangular wedge, symmetrical  with respect to the vertical axis, with a length 

much greater than its height (so it can be studied only in two-dimensions); 

- the dam is supposed to be homogeneous; 

- the foundation is modeled as a horizontal layer, without any lateral variations, in only one dimension; 

- the foundation layer is supposed to be homogenous, with characteristics that can be different from the 

properties of the dam;  

- the foundation layer is resting on a semi-infinite and rigid bedrock where the horizontal input motion is 
applied; 

- the behavior of the materials in the dam and the layer of soil stays in the linear viscoelastic domain, the 

only source of energy dissipation comes from the viscous damping (no radiation of energy in the rigid bedrock); 
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- the viscous damping is constant, does not depend on the frequency and is the same in the dam and in the 
layer; 

- a shear beam approach is considered, thus, only horizontal displacements and simple shearing 

deformations are supposed to take place, moreover strains are assumed to be uniformly distributed along horizontal 
planes for a given depth. 

The real problem is therefore simplified to a one-dimensional study. 

 These hypotheses can lead to several interrogations. First of all, Ambraseys (1960) shows that when the 

length of the crest of the dam is less than 10% of its total width, its section can be assimilated to an untruncated 
triangle [6]. However, it is not often the case, especially for the particular case of embankments. Moreover, in 

reality, lateral variations of the materials can be expected in the embankment and the foundation. Vertical 

variations are also possible, especially in a layer with a significant depth. Besides, the radiation damping is not 
taken into account because of the rigid bedrock. This can lead to an overestimation of the surface motion. Finally, 

concerning the shear beam solution, it has been shown that neglecting the vertical motion of a dam could give rise 

to a spurious overestimation of its stiffness, more particularly at high frequencies [7].  

 2.2 Equations giving the dynamic response 

 The dynamic response is assessed by adding the contributions of all the modes of the system. The nth 

resonance pulsation ω0n is given by equation (1). In this equation, an̅ is the nth root of equation (2), Vs1 is the shear 

wave velocity in the embankment and h1 is its height. In equation (2), 𝐽0 and 𝐽1 are the Bessel’s functions of order 
0 and 1, respectively, q is the contrast in propagation time in the dam and in the layer (equation (3)) and m is the 

impedance contrast between the dam and the layer (equation (4)). In equations (3) and (4), Vs2 is the shear wave 

velocity in the layer, h2 is its thickness, ρ1 and ρ
2
 are respectively the mass density in the embankment and in the 

foundation. 

 ω0n=
an̅𝑉𝑠1

h
 ; 

J0(an̅)

J1(an̅)
=m tan (q an̅) (1) ; (2) 

 q=
 Vs1

Vs2

h2

h1
  ; m=

 Vs1

Vs2

 ρ1

ρ2

 (3) ; (4) 

The corresponding modal shape are given by equations (5) and (6). In these equations, Φn and Ψn are the modal 

shapes of the embankment and of the foundation, respectively, y is the depth from the crest, P0 and M0 are given 
by equations (7) and (8).  

 

Φn(y)=
2J0(

any

h
)

anP0(q,m,n)
 ; Ψn(y)=

2M0(y)

anP0(q,m,n)
 (5) ; (6) 

 

 

P0(q,m,n)= 
J1(an)

cos(q𝑎𝑛̅̅ ̅)
(cos2(qan)+mq+m2sin2(qan)-

m

an

sin(q an)cos(qan) (7) 

 

M0(q,m,n,y)=
mJ1(an)

cos(qan)
sin(qan 

(h1+h2)-y

h2

) (8) 

Finally, the absolute accelerations in the embankment ü1(y,t) and in the layer ü2(y,t) are given by equations (9) and 
(10). In these equations, n in the nth mode, N is the number of modes taken into account [Sarma (1979) proposes 

to consider N as the total number of modes below 20Hz], t is the time, g̈(t) is the input acceleration and San(t) is 

the absolute acceleration of a single degree of freedom oscillator of pulsation 𝜔0𝑛  and viscous damping 𝜆 

submitted to the accelerogram g̈(t) (equation (11)). In equation (11), ωn is the damped circular frequency and Sdn 

is the Duhamel’s integral, that gives the relative displacement response of the same oscillator. 
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ü1(y,t)= ∑  Φn(y)San(t)

N

n=1

+g̈(t) (1- ∑  Φn(y)

𝑁

n=1

) (9) 

 

ü2(y,t)= ∑  Ψn(y)San(t)

𝑁

n=1

+g̈(t) (1- ∑  Φn(y)

𝑁

n=1

)    (10) 

 

San(t)= 
d

2
Sdn

dt²
=-(ω

n

²- λ
2
ω0n²) Sdn+ 2λ ω0n  ∫ g̈(t-τ) cos(ωn(t-τ)) dτ

t

0

 (11) 

3. Methodology 

This study is based on the comparison between the predictions of the peak response of an embankment with 

Sarma’s formulation and with a 2D viscoelastic numerical model. The numerical model is considered as the 
reference one – even if it is still an approximation of the reality. Several configurations, all based on the same 

standard model, of an embankment resting on a soil layer are taken into account for the comparison, they are 

described in the paragraph below. Apart from the extra hypotheses imposed by the Sarma’s method, the Sarma’s 

equations are applied on the same configurations as the numerical ones. 

3.1 Considered embankment/soil layer configurations 

Some simplifying approximations are made to define a standard model from which the characteristic parameters 

can vary from one configuration to another. First of all, the behavior of the embankment and its foundation are 
considered viscoelastic and the substratum purely elastic. The chosen standard model consists in a symmetrical, 

trapezoidal embankment resting on a one-dimensional horizontal layer of soil; the substratum is reached below 

this layer (see Fig. 1). Therefore, the geometric parameters of a standard model are: 

- h1, the height of the embankment; 

- L, the width at crest of the embankment, 

- f=H:V, the slope batter of the embankment, 

- h2, the thickness of the foundation layer. 

The embankment is considered as homogeneous, with a uniform elastic shear wave velocity designated as Vs1, a 

density ρ1, a viscous damping ζ1 and a Poisson’s ratio called ν1. As the compaction of the soil in the foundation 

usually increases with depth, the following gradient of shear wave velocity is taken into account in the layer: 

 

Vs2(z) = Vsa+ (Vsb - Vsa)√
z - za

zb - za

 (12) 

In equation (12), 

- Vs2 is the elastic shear wave velocity in the layer of foundation; 

- Vsa and Vsb are the shear wave velocities at depths za and zb respectively; 

- z is the elevation (z = 0m corresponds to the top of the layer); 

- za = 0m and zb = -1000m. 

The Poisson’s ratio ν2, the viscous damping ζ2 and the density ρ2 in the layer of soil are considered constant. 

For this first study, only one embankment made of alluvium is considered, with a height of 10m, a crest width 

of 6m and a slope ratio of 2.2H:1V. The elastic shear wave velocity in the embankment is fixed at 300 m/s with a 

Poisson’s ratio equal to 0.25 (i.e., VP = 520 m/s) and a mass density of 2200 kg/m3. In total, 18  case studies of 
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foundation layers are taken into account, corresponding to 6 different thicknesses – 3m, 10m, 30m, 100m, 300 and 
900m – and 3 different profiles of elastic shear wave velocity. These profiles, defined from equation (12), are 

chosen in order to get three values of the mean shear wave velocity in the first 30m (Vs30) – 125 m/s, 250 m/s and 

500 m/s –,  defined by equation (13) : 

 
Vs30 = 

30

∫
𝑑𝑍

𝑉𝑠2(𝑍)
30

0

 
(13) 

The characteristics of the velocity profiles in the layer are given in Table 1 and the velocity gradients are shown 
in Fig. 1. The Poisson’s ratio in the layer is always equal to 0.25 and the mass density is kept equal to 2200 kg/m3 

for all the models. A constant (in space and frequency) viscous damping of 2.5% is considered in the layer and the 

embankment for all the models. Finally, in the substratum, the elastic shear wave velocity is fixed at 800 m/s with 

a Poisson’s ratio of 0.25 and a density of 2500 kg/m3. The geometry and the chosen parameters are summarized 
in Fig. 1. 

 Fig. 1 also shows the three possible sliding blocks considered for the study. All the blocks start from the 

middle of the crest, the height of block 1 is equal to half the height of the embankment, the height of block 2 is 
equal to the height of the embankment, and block 3 goes through the layer of foundation (at a depth corresponding 

to 20% of the height of the embankment, i.e., 2 m), with a maximum lateral extension of 36.4m (about 1.45 times 

the half width of the base of the embankment).  

Table 1. Characteristics of the 3 velocity gradients considered in the layer of soil. For the two first cases, the S-

wave velocity in the topmost part of the layer is lower than that of the embankment. 

Vs30
 
(m/s) 125 250 500 

Vsa (m/s) at z=0m 80 160 434 

Vsb (m/s) at z=-1000m 480 950 1000 

 

  

Fig. 1 – Geometry, parameters and velocity gradients. 

 

3.2 Input accelerograms 

Horizontal accelerograms fitted on French design spectra (based on Eurocode 8) are imposed as input in the 

numerical models and Sarma’s equations in order to consider different levels of loading. Four design spectra are 
used Z4A to Z4D (see Fig. 2), and, for each of them, six or seven real accelerograms are selected and adjusted to 

represent them. They correspond to earthquakes with magnitude ranging from 4 to 6.5, depending on the spectra. 

In total, each embankment-soil configuration is loaded with 26 different accelerograms. 
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Fig. 2 – Design spectra considered for the study 

3.3 Numerical analysis 

The 2D spectral-element solver SPECFEM2D [8] is used for the direct numerical computation of the seismic 

response of the embankment. The code implements the spectral element method in space, with a polynomial order 

N=4, and a second order explicit finite-difference method in time. The total width of the computational domain is 
2000m, with the embankment in the middle, and it extends to an elevation of -1500m (an elevation of 0m 

corresponds to the top of the soil foundation layer). The spectral element mesh is made of quadrangles. The mesh 

resolution in the layer of soil is adapted to the value of Vs30 in order to ensure that the results can be acceptable 
until 30Hz, that leads to the size of the elements to be smaller than the minimum seismic wavelength. In all models, 

the input motion is introduced as a plane wave with vertical incidence, imposed at the elevation -1200m. The 

polarization of the imposed motion coincides with the horizontal in-plane direction (SV wave). The impulse 
response of the 18 models is computed up to a frequency of 30Hz, and then convolved with the 26 accelerograms. 

Numerous points, called receivers, are defined in the model to extract the impulse response. There are: 

 - a receiver every 1m on the symmetry axis, from the top of the embankment down to the rock; 

- a line of receivers every 1m in depth inside the embankment (the first line on the crest and the last one at 
the base), with, for each line, 14 receivers distributed from the symmetry axis to the limit of the slope; 

- a line of receivers every 1m in depth within the topmost part of the foundation (the first line at z=0m and 

the last one at z=-15m), with for each line, 21 receivers distributed every 2m (horizontal distance between two 
consecutive receivers). 

At each receiver, the following results are extracted: 

- horizontal and vertical velocities, 

- the four spatial derivatives of displacements:  
∂ux

∂x
(xi,zi,t); 

∂uz

∂z
(xi,zi,t); 

∂ux

∂z
(xi,zi,t) and 

∂uz

∂x
(xi,zi,t); where xi,zi 

are the horizontal and vertical coordinates of the receiver number i,  ux and uz are respectively the horizontal and 
vertical displacements, x and z are respectively the horizontal and vertical directions. 

The accelerations and the horizontal shear strains are deduced from these output data.  

The computations are convolved at each of these points with the chosen accelerograms (these reference 

accelerograms correspond to outcropping bedrock and are divided by two to account for the free surface effect for 
the vertically incident plane wave), in order to obtain the response of the system to these input solicitations. 

3.4 Details on the application of Sarma’s equations  
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For each of the defined models, equations (1) to (11) found by Sarma (1979) are used to assess the acceleration at 
each depth in time domain. These equations cannot take into account the gradient of shear wave velocity in the 

layer of soil. Therefore, the Vs30 values are used in this case. The 26 accelerograms at outcropping bedrock are 

directly used as input accelerograms for all of the 18 configurations. As, with the Sarma’s method, there is no 
lateral variations of the results, the accelerations in time domain are deduced every 1m (vertical distance between 

two calculation points). 

4. Results 

4.1 Horizontal shear strains obtained with numerical models 

 The shear strains at each receiver of the numerical models are deduced from the output data for all the 

accelerograms. For each receiver, the maximum value reached during the whole dynamic response of the system 
is calculated (the maxima are not necessarily synchronous at all the receivers). For a given spectra, the mean of 

the maximum shear strains on the six or seven corresponding accelerograms are determined for each receiver. The 

results are interpolated between receivers in order to get images of the peak shear strains such as in Fig.3. 

Fig.3(a) and Fig.3(b) map the peak shear strains for the same geometry and the same input solicitation, the 

only difference resides in the properties of the layer: in Fig.3(a), the layer is softer (Vs30 = 125 m/s) than in the 

second case (Vs30 = 500 m/s). There is a factor of 10 in the peak shear strain between the two cases. The differences 

can be better seen in Fig.3(c) which represents the profile of peak shear strains on the symmetry axis for the same 
two cases. One can see that the localization of the maxima are not the same in the two situations: 

- when the layer is softer than the embankment, all the deformations are concentrated inside it, and the 

embankment only follows the motion of its foundation with a quasi-uniform deformation; 

- on the contrary, when the layer is stiffer than the embankment, the peak deformation is rather located in 

the heart of the embankment, and more especially near its bottom part close to the velocity contrast with the 

foundation soil. 

 

Fig.3– (a) and (b): Peak shear strains (%) reached in the case of a layer of 30m, with a Vs30 equal to 125 m/s (a) 

and 500 m/s (b), and a PGA of the input accelerogram equal to 2.8 m/s² (spectrum Z4B on Fig. 2). 
(c) : Comparison of the peak shear strains reached on the symmetry axis for these two cases. 

One can notice that the maximum values of strains reached inside the embankment are globally at the same 

values in the two cases. This might mean that, for a given loading level, the deformation is controlled by the value 
of the shear modulus, which stays the same in the embankment for all the models used in this study. As damping 

is strongly related to shear deformation in all non-linear constitutive models, for strong loading, the assumption of 

Sarma (1979) that the viscous damping is the same in the layer and the embankment in any case does not seem 
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realistic. To the advantage of the shear beam approach, the shear strains seem to remain generally the same for a 
given depth. 

4.2 Horizontal accelerations obtained with numerical models and the equations of Sarma (1979) 

 The horizontal accelerations are derived from the velocities at each receiver of the numerical models, in 
particular along the symmetry axis. As for the shear deformation, the maximum value is deduced at each point, 

and the mean of the response to the six or seven accelerograms of a given design spectra is calculated. The Sarma’s 

equations are used to derive the time-acceleration at each depth. In the same manner, the maximum reached at 

each depth (not necessarily synchronously) is deduced, and the mean is made on the accelerograms of a given 
design spectra. The figures Fig.4 presents the evolution of these maxima for different models. 

 Looking at the numerical results in Fig.4(a), one can see that a very thin (3m), soft layer (Vs30=125 m/s) 

amplifies significantly the input. On the top of this thin and soft layer, the embankment seems to follow the motion 
of its foundation without amplifying it so much. When the layer is harder (Vs30=500m/s, in blue) than the 

embankment (V1=300 m/s), the layer does not amplify any more the input solicitation, whereas the embankment 

increases it by a factor 2.7. These observations are also visible on the results obtained with the Sarma’s method. 

However, the dynamic response given by Sarma’s method are, in this case, globally overestimated: 

-  when the layer is softer than the embankment, the amplification of the motion by the layer is overestimated 

whereas the amplification by the embankment is globally the same as the one obtained with Specfem; 

-  when the layer is harder than the embankment, the amplification of the motion by the layer is well 
predicted whereas the amplification by the embankment is overestimated. 

 

Fig.4 – Evolution with depth of the peak horizontal acceleration reached with Specfem model (on the symmetry 

axis) and with the formulation of Sarma (1979) for a PGA of the input solicitation equal to 2.8 m/s² (spectrum 
Z4B on Fig. 2) and a thickness of the layer equal to 3m (a) and 100m (b). 

The first point may be explained by the assumption of an infinite impedance contrast at the interface between the 

layer and the bedrock. The second point is in agreement with the conclusion of Gazetas (1987), who compared the 

results obtained with a two dimensional finite element analysis to those obtained with a shear beam approach. One 
of the conclusions from this study is that the shear beam approach leads to an overestimation of the acceleration 

at crest [7]. According to Gazetas (1987), this discrepancy can be explained by the greater importance given to 

high frequency content of the motion, which is the consequence of neglecting its vertical component. Sarma’s 
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method is less accurate for the prediction of higher modes because they affect more the vertical motion. This 
phenomenon is not visible for a soft layer that filters out the high frequencies.  

 Fig.4(b) represents the case of a deeper layer (100m); the observations are not exactly the same. Having a 

look at the numerical results, the common point with the case of a thin layer is that the harder the foundation the 
higher the amplification by the embankment and the crest motion. When the mean velocity in the first 30m is equal 

to 250 m/s or 500 m/s, there is no amplification inside the layer because it is relatively stiff. However, in the case 

of a soft layer (Vs30=125m/s), one can observe that the layer attenuates the input motion. This is caused by the 

relatively high viscous damping in the model (2,5%) combined with the lower wavelength. Like in Fig.4a, the 
results obtained with Sarma’s equations catch relatively well the same phenomenon. Regarding the response of 

the embankment, the same remark can be done: when the layer is softer than the embankment, the amplification 

of the motion by the embankment is well predicted. Nevertheless, the attenuation by a soft layer and the 
amplification by a stiff layer are overestimated in this case. The main differences between the case of a thin and a 

thick layer that might explain the modification of the predicted response of the layer with Sarma’s equations are 

the greater importance of the viscous damping and of the velocity gradient with a thicker layer. A phenomenon 

which is more visible in Fig.4(b) than in Fig.4(a) is the differences in peak accelerations at the basis of the layer 
between Sarma and Specfem. This comes from the different ways of introducing the input motion and from the 

assumption of a rigid bedrock in Sarma (no radiation of energy through the bedrock). 

4.3 Quantification of the error introduced by Sarma’s resolution on the maximum acceleration at crest 

In order to study the inaccuracy introduced by the shear beam approach for the estimation of maximum 

acceleration at crest, the following ratio is calculated for all the situations: 

 
RAcrest

=
AmaxcrestSARMA

AmaxcrestSPECFEM

 (14) 

In equation (3), AmaxcrestSARMA
 and AmaxcrestSPECFEM

 are the peak horizontal accelerations at the crest of the 

embankment, on the symmetry axis, with Sarma’s formulation and numerical calculation respectively. 

 The mean value of this ratio, calculated on the 18 models and the 26 input motions, is equal to 1.33 with a 
logarithmic (with a base 10) standard deviation equal to 0.37. In order to study the relative impact of the different 

parameters the mean ratio is calculated for a given design spectra, a given thickness of the layer and, finally, for a 

given Vs30 of the layer (Fig.5). In this figure the mean and the logarithmic standard deviation obtained in each case 
are represented. The reference (in red) is the results considering all cases (mean of 1.33 with a logarithmic standard 

deviation equal to 0.37).  

 As one can see in Fig.5(a), the overestimation of acceleration at crest is of the same order (between 35% 
and 40%) for design spectra Z4B, Z4C and Z4D that have globally the same frequency content (but different peak 

ground acceleration). The overestimation is twice less important when the input motion is fitted on the design 

spectra Z4A, which has more energy at low frequency. This also tends to confirm that Sarma’s equations do not 

lead to a satisfying prediction of the motion at higher frequencies. 
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Fig.5 – Mean and standard deviation of ratio of peak acceleration at crest, and their variations with respect to 

design spectra (a), thickness of the layer (b) and Vs30 in the layer (c). 

 Fig.5(b) shows the evolution of the ratio RAcrest
 with respect to the thickness of the layer of foundation. The 

results are a generalization of what has been observed in paragraph 4.2 for the specific cases of a layer of 3m and 

100m, with larger overestimations (up to 60%) for thin layers. Because of viscoelasticity, a large thickness of the 
layer tends to attenuate the high frequency content of the motion, and therefore to reduce the overestimation 

amplification at crest with Sarma’s method. However, it is not the case for the extreme case of a 900 meters thick 

layer, maybe because of the bigger importance of the velocity gradient for such a big thickness. 

 Finally, as seen in paragraph 4.2, the ratio RAcrest
 is of the same order of magnitude (20 to 30 % of 

overestimation) when the layer is softer than the embankment whereas, for a Vs30 value equal to 500 m/s in the 
foundation, the acceleration at crest is generally overestimated by 50% (Fig.5(c)). This is consistent with results 

mentioned in Gazetas (1987), who compared the shear beam formulation with a two-dimensional finite element 

analysis: he found, for the shear beam approach, a mean overestimation about 50% of the peak acceleration at 
crest of a dam resting on an elastic bedrock (impedance contrast between the dam and the bedrock equal to 0.2). 

4.4 Quantification of the error introduced by Sarma’s resolution on the peak acceleration of potential sliding 

blocks. 

The peak acceleration at crest is not the best indicator of the possible damage that can be generated on the 

embankment: irreversible displacements occur when the resistance mobilized along a sliding surface is not 

sufficient (smaller than the inertia forces endured by the block) to prevent the sliding. Therefore the ability of 

Sarma’s method to estimate the peak acceleration on three possible sliding blocks (defined in Fig. 1) is studied by 
comparison with the values obtained with Specfem. Considering the numerical results, the acceleration endured 

by each block Bk (k = 1,3) is derived in time domain from the acceleration at each receiver (synchronous mean on 

the whole area of the block at each time step t) for each situation (model and accelerogram). The peak value is 

called AmaxBkSPECFEM
. About Sarma’s method, the acceleration of a possible sliding block is derived from the 

acceleration at each depth, considering that it is uniform for a given depth (synchronous mean on the delimited 

block, in time-domain). The peak value is called AmaxBkSARMA
. For each block Bk and each situation (model and 

design spectra), the following ratio is considered: 

 
RABk

=
AmaxBkSARMA

AmaxBkSPECFEM

 (15) 

The mean value of this ratio, considering all the models and all the accelerograms, is equal to 1.40 for block 1, 
1.44 for block 2 and 1.49 for block 3 with logarithmic (base 10) standard deviation respectively equal to 0.39, 0.38 

and 0.39. These values are generally the same for the three blocks, however it slightly increases with block number, 
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probably because the lateral extent of the block also increases, giving more impact to the assumption of a uniform 

acceleration at a given depth. As for the peak acceleration at crest, the evolutions of the ratio RAblock b
 with respect 

to the design spectra, the thickness of the layer and the Vs30  in the layer are given on 

Fig. 6. On this figure, the references on left are the aforementioned mean and standard deviation values for each 

block. 

 The conclusions are the same as for peak acceleration at crest. However, one can notice that the Sarma’s 

method generally leads to an even bigger overestimation when considering the peak acceleration of possible sliding 
blocks. Applying this method may lead, in several cases, to overestimate the inertia forces and therefore the 

resulting damages on the embankment. 

Fig. 6 – Mean and standard deviation of ratio of peak acceleration of the three blocks defined in Fig. 1, with 

respect to design spectra (a), thickness of the layer (b) and Vs30 in the layer (c). 

5. Conclusions and perspectives 

  This study is based on the comparison of Sarma’s method to a 2D finite element numerical method. The 
results show that Sarma’s method generally tends to overestimate the maximum response of the embankment 

resting on its foundation. On average, the inertia forces on potential sliding blocks are overestimated by 45%: that 

would necessarily lead to an overestimation of the resulting irreversible displacements. This is probably mainly 
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due to the bad representation of the behavior of higher modes and to the assumption of a rigid bedrock. The 
discrepancies are also explained by the assumption of a homogeneous layer of soil that is not valid for deep soil 

layer. Consequently, Sarma’s equations may be adapted in order to take into account a velocity gradient in the soil 

layer.  

However, the numerical method also relies on several assumptions about the features of the embankment, 

the foundation and the bedrock: 

- the geometry of the embankment is simplified (two-dimensional, trapezoidal section, symmetric) as well 

as its materials (homogeneous, viscoelastic, non-saturated); 

- the geometry of the foundation is also simplified (one-dimensional, horizontal) as well as its materials (no 

lateral variations, viscoelastic, not-saturated); 

- the viscous damping is considered to be constant and to be the same in the soil layer and the embankment;  

- the input motion is on horizontal direction only. 

The main problem remains the representation of the damping – which has a major effect on the results. Sarma 

(1979) developed design curves by using a uniform value of 20% for the viscous damping inside both the 

embankment and the soil layer in order to represent all sources of dissipation of energy in case of strong earthquake 
in a simple way. Having a look at the deformation in this study, it is not realistic to choose the same value of 

damping in the embankment and in the layer. Besides, such a great value is not justified considering the peak shear 

strains obtained here for relatively moderate motion. Another issue that needs to be investigated deals with the 
relevancy of the linear-equivalent approach: up to which loading level is this acceptable? 

 This study will be completed by taking into account more geometries of embankments, additional values of 

shear wave velocities in the embankment and different viscous damping in the embankment and the soil layer. In 
the long term, it would be also interesting to study the impact of a two dimensional valley. 
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