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Abstract 
This paper presents an approach for structural health monitoring by integrating nonlinear structural finite element (FE) 
models and Bayesian methods. Batch and recursive Bayesian estimation methods are used to calibrate/update a nonlinear 
structural FE model of a structure (e.g., building, bridge, dam, etc.) employing the input-output dynamic data recorded 
during an earthquake event. Unknown parameters of the nonlinear FE model describing inertia, geometric, material 
constitutive models, and/or constraint properties of the structure are estimated using spatially-sparse response data recorded 
by homogeneous or heterogeneous sensor arrays. The updated nonlinear FE model is then used to assess the state of health 
or damage of the structure. The recursive Bayesian estimation method processes the measured data recursively, and updates 
the estimation of the FE model parameters progressively over the time history of the event. The recursive Bayesian 
estimation method results in a nonlinear Kalman filtering approach. The Extended Kalman filter (EKF) and Unscented 
Kalman filter (UKF) are employed as recursive Bayesian estimation methods. The batch estimation method is based on a 
maximum a posteriori estimation (MAP) approach, where the time history of the input and output measurements are used as 
a single batch of data for estimating the FE model parameters. This method results in a nonlinear optimization problem that 
is solved using a gradient-based optimization algorithm. For those estimation methods requiring the computation of 
structural FE response sensitivities with respect to the unknown FE model parameters, the direct differentiation method 
(DDM) is employed. Response data numerically simulated from a nonlinear FE model with unknown material model 
parameters of a five-story two-by-one bay reinforced concrete frame building subjected to bi-directional horizontal seismic 
excitation are used to illustrate the performance of the proposed framework. 

Keywords: Structural health monitoring; Nonlinear finite element model; Bayesian methods; Damage identification; System 
identification 
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1. Introduction 
Damage identification (DID) is one of the main goals of structural health monitoring (SHM). The capability of 
assessing the state of damage (or health) of a structural system and, therefore, of evaluating the risk involved in 
the post-disaster occupancy (or operation) of the structure is of vital importance. Finite element (FE) model 
updating, which can be defined as the process of calibrating a FE model to minimize the discrepancy between 
the measured and FE predicted responses of a structure, is a powerful DID method for structural systems. Linear 
FE model updating has been one of the most popular approaches for DID of civil structures. In this technique, 
linear FE models are calibrated using low amplitude vibration data recorded before and after a potentially 
damaging event and damage is characterized as the reduction of effective stiffness over one or more regions of 
the structure [1]. Despite its popularity in the field of structural engineering, linear FE model updating cannot 
provide any information about the inelastic response regime in the structural components and system (e.g., 
history of plastic deformations, residual deformations, loss of strength, etc.), information that is essential for a 
comprehensive condition assessment of the structure. In recent years, a number of efforts have been undertaken 
in the field of nonlinear FE model updating of civil structures [2],[3]. Distefano and co-workers contributed 
pioneering work in this topic in the 1970's [4],[5]. The studies presented in the literature have utilized simplified 
nonlinear structural models with lumped nonlinearities defined phenomenologically, through for example the 
Bouc-Wen plasticity model, to describe the hysteretic force-deformation response behavior of the structure at the 
story level or at the plastic hinge zones. However, such models are not used for high-fidelity mechanics-based 
structural FE modeling; because they fall short in accurately simulating the nonlinear response behavior of real-
world structures under extreme loading conditions. Recently, the problem of updating mechanics-based 
nonlinear FE models of structures using input-output data recorded during damage-inducing events has been 
investigated [6]-[8]. An advanced mechanics-based FE model, updated using the measured input-output data, is 
able to capture actual damage mechanisms in the structural system and thus can provide accurate information 
about the presence, location, type, and extent of damage in the structure. 

This paper describes the use of batch and recursive Bayesian estimation methods to update mechanics-
based nonlinear FE models of civil structures using input-output dynamic data recorded during an earthquake 
event. The batch method is based on a maximum a posteriori (MAP) approach, resulting in a constrained 
nonlinear optimization problem that is solved using gradient-based optimization algorithm. The recursive 
method results in a nonlinear Kalman filtering approach. The Extended Kalman filter (EKF) and Unscented 
Kalman filter (UKF) are employed as recursive Bayesian estimation methods. Implementation of the EKF and 
MAP method requires the FE response sensitivities with respect to the model parameters to be estimated. These 
sensitivities are computed using the direct differentiation method (DDM), an accurate and computationally 
efficient approach based on the exact (consistent) differentiation of the FE numerical scheme with respect to the 
model parameters [9]. An application example is presented based on data simulated numerically from a realistic 
nonlinear FE model of a three-dimensional (3D) five-story two-by-one bay reinforced concrete (RC) frame 
building subjected to bi-directional horizontal earthquake excitation. 

2. Bayesian FE model updating 
In this section, different approaches for the identification of nonlinear structural FE models based on the 
Bayesian method are presented. First, a general Bayesian framework for FE model updating is described. Then, 
the batch and recursive methods for estimating the unknown FE model parameters and quantifying their 
uncertainty are introduced. 

The time-discretized equation of motion of an n -DOF nonlinear FE model of a structural system at time 
step i  subjected to rigid base earthquake excitation can be written as 

( ) ( ) ( ) ( ) ( )( ) ( ),
ii i i i g+ + = −M θ q θ C θ q θ r q θ θ M θ Lu     (1) 

in which 1, , n
i i i

×∈ =q q q    relative displacement, velocity, and acceleration response vectors, respectively, 
n n×∈ =M   mass matrix, n n×∈ =C   damping matrix, ( )( ) 1, n

i i
×∈ =r q θ θ    history-dependent internal 
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resisting force vector, 1n ×∈ =θθ   FE model parameter vector, gn n×
∈ =uL 
  influence matrix and 1g

i

n
g

×
∈ =uu    

input ground acceleration vector where 
g

n =u  number of base excitation components. From Eq. (1), the response 

of the FE model at time step i  can be expressed as a nonlinear function mapping the FE model parameters and 
the input ground acceleration time history to the FE predicted response vector (see [10] for more details), i.e., 

( )1:
ˆ ,

ii i g=y h θ u   (2) 

where 1ˆ n
i

×∈ =yy   FE predicted response, 
1: 1 2

[ , ,..., ]
i i

T T T T
g g g g=u u u u    , and ( )...i =h  nonlinear response function 

of the FE model. The dynamic response of the structure can be recorded using an array of heterogeneous sensors 
such as accelerometers, GPS antennas, strain gauges, etc. The measured structural response vector, iy , can be 
related to the FE predicted response vector, ˆ iy , using the prediction error framework, i.e., 

( ) ( )
1:

,
ii i i g= −v θ y h θ u  (3) 

where iv , the simulation error, stands for the discrepancies between the measured and FE predicted responses. It 
accounts for the measurement noise, errors in the FE model parameters, and analytical model uncertainties. It is 
ideally assumed that the FE model can capture exactly the real-world physics of the structural response and, 
therefore, the analytical model uncertainties are neglected. Moreover, it is assumed that the time history of the 
input ground acceleration is deterministic and known. By neglecting the effects of model uncertainties and 
assuming that the measurement noise is Gaussian white, the simulation error at each time step can be modeled as 
a stationary independent zero-mean Gaussian white noise vector process. Therefore, it follows that 

( )
( )

11
2

2 1 2

1
2 | |

T
i i

i np e
−−

=
π y

v R v
v

R
 (4) 

where | |R  denotes the determinant of the diagonal matrix n n×∈ y yR   defined as the time invariant covariance 
matrix of the simulation error vector (i.e., ( ),T

i iE i= ∀R v v ). The unknown FE model parameter vector θ  is 
modeled as a random vector (denoted by Θ ) according to the Bayesian approach for parameter estimation. 
Bayes’ rule is employed to derive the posterior joint probability density function (PDF) of the model parameters 
from the time histories of the noisy output measurements and the prior joint PDF of these parameters, i.e.,  

( ) ( ) ( )
( )

1:
1:

1:

k
k

k

p p
p

p
=

y θ θ
θ y

y
  (5) 

in which 1: 1 2, ,...,
TT T T

k k = = y y y y  time history of the measured response of the structure, and ( )1:kp =y θ  
likelihood function. According to Eq. (3), it follows that 

( ) ( ) ( )1: 1: i
1

k

k k
i

p p p
=

= =∏y θ v v  (6) 

The objective of the nonlinear FE model updating framework is to estimate the value of the unknown FE 
model parameter vector θ  at which the posterior joint PDF of Θ  given the measured structural response is 
maximum, i.e.,  

( )MAP 1:
ˆ( ) arg max ( )kp=

θ
θ θ y   (7) 

where MAP stands for maximum a posteriori estimate. Two different approaches to solve this problem are 
presented in this paper: (1) batch Bayesian estimation method, and (ii) recursive Bayesian estimation method. 

2.1 Batch Bayesian estimation method 
The entire time history of the measured data is used as a batch of data to update the posterior PDF of the FE 
model parameters and find the MAP estimate. Assuming a Gaussian distribution for ( )p θ  in Eq. (5) and that the 
response time history is available from the first to the kth time step, it can be shown that 
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( )( ) ( ) ( ) ( )( ) ( )( )
( ) ( ) ( ) ( ) ( )

1: 1:

1
1: 0

1

1

0 0 0 0

1log log 2π log , ,
2 2 2

1 1 ˆ ˆˆ ˆlog 2π log
2 2 2

i i

k T

k i i g i i g
i

T

kn kp c

n

−

=

−

= − − − − −

− − − − −

∑y

θ

θ y R y h θ u R y h θ u

P θ θ P θ θ

 

 (8) 

in which 0 1:log( ( ))kc p= − y  is a constant, 0θ̂  is the prior mean estimate of Θ , and 0P̂  is the prior covariance 
matrix of Θ , which quantifies the uncertainties associated with the prior estimates of the FE model parameters.  

The diagonal entries of R  (variances of the components of the simulation error vector) can also be treated 
as random variables and estimated jointly with the FE model parameters through an extended estimation, which 
allows for automatic information assimilation from the data measured by heterogeneous sensor arrays. 

The MAP problem defined in Eq. (7) results in the following minimization problem: 

( )
( )

( )1:1:MAP ,

ˆ ˆ, arg min , , ,
kk gJ=

θ r
θ r r θ y u  (9) 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )1: 1: 1:

11
1: 0 0 0

1 1

1 1 ˆ ˆˆ, , , log , ,
2 2 2k i i

n k T T

k g j i i g i i g
j i

kJ r
−

−

= =

= + − − + − −∑ ∑
y

r θ y u y h θ u R y h θ u θ θ P θ θ    (10) 

in which 1n ×∈ yr   is the vector of the diagonal entries of matrix R . This minimization problem is solved using 
the interior-point method [11], a gradient-based minimization algorithm. It requires the computation of the 
gradi0065nt of the objective function with respect to the optimization parameters, which in turn requires the FE 
response sensitivities with respect to the FE model parameters. The latter can be computed accurately and 
efficiently utilizing the DDM (e.g., [9],[12]). 

The Posterior Cramér–Rao lower bound (PCRLB) theorem [13] can be used to quantify the parameter 
estimation uncertainties and to estimate a lower bound for the covariance matrix of the estimated FE model 
parameters. The lower bounds for the estimation problem shown in Eq. (9) can be derived as [10] 

( )
( ) ( ) ( )1: 1:

1

11
0

1
ˆ ˆ ,

, ,
ˆCov i i

T
k i g i g

i

−

−
−

=

   ∂ ∂   ≥ +   ∂ ∂      

∑
θ R

h θ u h θ u
Θ R P

θ θ

 
 (11) 

( ) 2

1Cov
ˆ2i
i

kR
r

≥  (12) 

in which iR  is a random variable characterizing the ith diagonal entry of matrix R . The right-hand side of Eq. 
(11) is the inverse of the Fisher Information matrix and can be approximated by the Hessian matrix of the 
objective function J  in Eq. (10). Then, two methods can be used to quantify the parameter estimation 
uncertainty. The first is based on computing the Fisher Information matrix, as shown in Eq. (11), which is 
referred to as Method 1 in this paper. Referred to as Method 2, the second method is based on the computation of 
the Hessian matrix of the objective function in Eq. (10). The Hessian matrix is a by-product of the optimization 
procedure and is approximately estimated using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [14]. 

2.2 Recursive Bayesian estimation method 

2.2.1 Extended Kalman filter (EKF) 
The MAP problem (Eq. (7)) can also be solved using a recursive (time step by time step) solution approach. The 
MAP estimate of Θ  at time step i is derived by differentiating Eq. (8) with respect to θ  and solving for θ , i.e., 

( )( ) ( )( ) ( ) ( ) ( )1:

1:

11
,log ˆ ˆ0 , i

i

T Ti gi
i i g i i

p −
− − −
∂∂

= ⇒ − − − =
∂ ∂

h θ uθ y
y h θ u R θ θ P 0

θ θ


  (13) 

in which ˆ
i
−θ  and ˆ

i
−P  are the prior estimates of the mean and covariance matrix of Θ  at time step i, respectively. 

Eq. (13) is a nonlinear algebraic equation, which can be solved approximately using a first-order approximation 
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of the nonlinear function 
1:

( , )
ii gh θ u  which represents the nonlinear finite element response function. The first-

order Taylor series expansion of 
1:

( , )
ii gh θ u  at ˆ

i
−θ  can be expressed as 

1: 1:

ˆ ˆ( , ) ( , ) ( )
i ii ig i g i i

− −≅ + −h hθ u θ u C θ θ   (14) 

where ( )1: ˆ
,

i
i

i i g
−

 = ∂ ∂  θ
C h θ u θ = FE response sensitivity matrix computed at ˆ

i
−=θ θ . Substitution of Eq. (14) 

into Eq. (13) results in the following posterior mean estimate of Θ  at time step i: 

1:

1 1 1 1 ˆˆ( ) ] [ ( , )]ˆ ˆ [
i

T
i i i i i i g

T
i i i

− − − −+ − − −+ −= + C R C P y h θ uθ θ C R   (15) 

in which 1 1 1 1ˆ[ ( ) ]T T
i i i i i

− − − − −+ =C R C P C R K  is known as the Kalman gain matrix. It can be shown that the Kalman 
gain matrix can also be expressed as 

1( )i i i
−= θy yyK P P  (16) 

where ˆ T
i i i

−= =θyP P C  cross-covariance matrix of Θ  and Y  at time step i and  ˆ T
i i i i

−= + =yyP C P C R  covariance 
matrix of Y  at time step i. Therefore, the posterior mean estimate of Θ  at time step i can be found as 

1:

ˆ[ ( , )]ˆ ˆ
ii i i i gi i

−+ − −= +K y h θ uθ θ   (17) 
The posterior covariance matrix of Θ  can be approximated using the PCRLB theorem and the matrix inversion 
lemma as 

ˆ ˆ ˆ( ) T
i i i i i i i i
+ − −= − = − yyP I K C P P K P K  (18) 

Therefore, at each time step, the prior estimates of the mean and covariance matrix of the parameter vector Θ  
are updated to the posterior estimates based on the observed discrepancies between the measured and estimated 
responses. The posterior estimates of the mean and covariance matrix of Θ  are then transferred to prior 
estimates at the next time step and the estimation process continues in time. However, to improve the 
convergence of the recursive estimation procedure, a random disturbance referred to as process noise is added to 
the estimation process. This process noise ( γ ) is modeled as a stationary independent zero mean Gaussian white 
noise random vector with a time-invariant diagonal covariance matrix Q. Thus, at each time step, Q is added to 
the posterior covariance matrix of Θ  to yield the prior covariance matrix of Θ  at the next time step, i.e., 

1 1
ˆ ˆ

i i i i
− + − +
+ += + ⇒ =Θ Θ γ θ θ , 1

ˆ ˆ
i i
− +
+ = +P P Q  (19) 

This recursive MAP estimation procedure using linearization (with respect to θ ) of the nonlinear FE 
model is referred to as the EKF method. By the linearization of the nonlinear FE model, the likelihood function 
shown in Eq. (6) will be a Gaussian function of θ . Assuming a Gaussian prior joint PDF of the FE model 
parameters Θ , the posterior joint PDF will also be Gaussian (see Eq. (5)). Therefore, the MAP estimate is the 
mean of the posterior joint PDF of Θ . 

2.2.2 Unscented Kalman filter (UKF) 
The UKF is similar to the EKF but it uses the unscented transformation (UT) [15], a deterministic sampling 
approach, to propagate the uncertainty in Θ  through the nonlinear FE model (see Eq. (2)), thus circumventing 
the linearization of the FE model used in the EKF method (Eq. (14)). Therefore, it results in a more accurate 
estimation of the posterior mean and covariance matrix of the parameter vector Θ , especially for highly 
nonlinear (FE) models (with respect to θ ). The UT provides a more accurate estimation of θyP  and yyP  and, 
therefore, of the Kalman gain matrix (see Eq. (16)). 

The UKF evaluates the nonlinear FE model at a set of deterministically selected realizations of the FE 
model parameter vector Θ , referred to as sigma points (SPs) and denoted by , j

i
−ϑ , taken around the prior mean 

estimate ˆ
i
−θ . In this study, a scaled UT is selected and, therefore, the number of SPs is (2 1)n +θ , i.e., 

1,...,2 1j n= +θ . The weighted sample mean and covariance matrix of the SPs are equal to the prior mean 
estimate ( ˆ

i
−θ ) and prior covariance matrix estimate ( ˆ

i
−P ) of the parameter vector θ , respectively. The SPs are 

propagated through the nonlinear FE model yielding 
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( )1:

, ,
i

j j
i i i g

−= uh ϑy  (20) 
The mean and covariance matrix of the FE predicted structural response Y , and the cross-covariance 

matrix of Θ  and Y  are respectively computed as [7] 

( )1:

2 1

1
,

i

n
j j

i g m i
j

W
θ +

=

= ∑h θ u y                      ( ) ( )1: 1:

2 1

1
, ,

i i

n T
j j j

i c i i g i i g
j

W
+

=

   = − − +   ∑
θ

yyP h θ u h θ u R y y  

( )1:

2 1
,

1

ˆW ,
i

n T
j j j

i c i i i i g
j

θ +
− −

=

  = − −   ∑θyP θ h θ uϑ y  
(21) 

where j
mW  and j

cW  denote the mean and covariance weighting coefficients, respectively. The Kalman gain 
matrix, posterior mean and covariance matrix estimates of θ  at time step i are obtained from Eqs. (16), (17), and 
(18), respectively. 

3. Application example 
Simulated dynamic response data from a 3D five-story two-by-one bay RC frame building subjected to bi-
directional horizontal seismic excitation are used to verify the FE model updating methodologies. A mechanics-
based nonlinear FE model of the building, developed in OpenSees [16], is used for response simulation. The 
simulated response data are contaminated with additive zero-mean white Gaussian noise and used as measured 
data to estimate the parameters characterizing the nonlinear material models of concrete and reinforcing steel. 

The structure is designed according to the 2012 International Building Code [17] as an intermediate 
moment-resisting RC frame located in downtown Seattle, Washington, with Site Class D soil conditions, a short-
period spectral acceleration 1.37MSS g= , and a one-second spectral acceleration 1 0.53MS g= . The building has 
two bays in the longitudinal direction (X) and one bay in the transverse direction (Z), with plan dimensions of 
10.0×6.0 m, respectively. The frame has five stories with a floor-to-floor height of 4.0 m. Grade 75 and Grade 60 
reinforcing steel is assumed for the columns and beams, respectively. Fig. 1a shows the overall geometry of the 
building, the cross-sections of the beams and columns, and details of the reinforcement of the elements. 

Section A-A

Section B-B

Section C-C
0.40 m

0.
40

 m

3 #8

3 #8

#3@100mm

0.45 m

0.
45

 m

3 #8

2 #8

3 #8

#3@150mm

0.40 m

0.
45

 m

4 #8

4 #8

#3@100mm

a)

4 m 
(typ)

A

B

B

C

C X

Z

Y

A 1 1

2

2

4

4

3 3

b)

  

Fig. 1 – RC frame building: (a) Isometric view (black arrows indicate the locations and directions of the 
measured acceleration responses), (b) Cross-sections of beams and columns, (c) Finite element model. 

Fig. 1b shows the FE model details for the RC frame building. Nonlinear fiber-section displacement-based 
frame elements [18] are used to model the beams and columns and Gauss-Lobatto quadrature is used for 
numerical integration along the elements. The stress-strain behavior of the fibers is governed by nonlinear 
uniaxial material constitutive laws. Material constitutive models depend on a set of parameters, the estimation of 
which is the objective of the nonlinear FE model updating approaches presented in this paper. The cross-sections 

6 



16th World Conference on Earthquake Engineering, 16WCEE 2017 

Santiago Chile, January 9th to 13th 2017  

of beams and columns are discretized into longitudinal fibers as illustrated in Fig. 2a. Linear force-deformation 
models for shear and torsion are defined (aggregated) at the section level and along the element, but the shear is 
coupled with bending only at the element level through equilibrium. 

 

b)

Strain (ε)

Stress (σ)

Es

b Es
fy

Reinforcing steel

Stress (σ)

εc

Ec

fc

Concrete

 
Fig. 2 – (a) Cross-section fiber discretization, (b) uniaxial material models for concrete and reinforcing steel. 

The modified Giuffré-Menegotto-Pinto model [19] is used to model the nonlinear uniaxial stress-strain 
behavior of the longitudinal steel reinforcing bars. The primary material parameters consist of the elastic 
modulus ( sE ), initial yield strength ( yf ), and strain hardening ratio ( b ) and they are considered unknown 
parameters and estimated using the FE model updating methodologies. The Popovics-Saenz model [20],[21], 
which is characterized by five material parameters, is used to model the nonlinear uniaxial stress-strain behavior 
of the concrete fibers. The concrete material model parameters are the modulus of elasticity ( cE ), peak 
compressive strength ( cf ), strain at peak compressive strength ( cε ), crushing strength ( uf ), and strain at 
crushing strength ( uε ). The values of cf , cε , uf , and uε  correspond to the confined state of concrete and for 
response simulation purposes are determined based on the initial properties of the concrete material. The 
confinement effects of the transverse reinforcement on the concrete compressive strength and ductility are 
accounted for by modifying the parameters cf  and cε  according to Mander et al. [22] and uε  as suggested by 
Scott et al. [23]. Fig. 2b shows the uniaxial material constitutive models used for the concrete and reinforcing 
steel fibers with their corresponding parameters assumed to be unknown in the estimation phase. A set of 
material parameter values, referred to as true values, are assumed for the concrete and reinforcing steel materials 
in order to simulate the response of the structure. These parameter values are: 200 GPatrue

s colE − = , 
517 MPatrue

y colf − = , 0.01true
colb = , 200 GPatrue

s beamE − = , 414 MPatrue
y beamf − = , 0.05true

beamb = , 27600 MPatrue
cE = , 

40 MPatrue
cf = , and  0.0035true

cε = . The concrete parameters uf  and uε  are not considered as estimation 
parameters, since in this case study they have negligible effects on the response of the structure. The damping 
energy dissipation (beyond the energy dissipated through hysteretic material behavior) are modeled using mass 
and tangent stiffness-proportional Rayleigh damping. A critical damping ratio of 2% for the first and second 
modes (T1 = 2.01 sec and T2 = 0.64 sec, after application of gravity) is considered. Consequently, the mass and 
stiffness proportional parameters used to describe the Rayleigh damping are 0.0948Mα =  and 0.0031Kβ = , 
respectively. The horizontal components of the ground acceleration recorded at the Sylmar County Hospital 
during the 1994 Northridge earthquake (Fig. 3) are used as input base excitation ( gu ). The 360° and 90° 
components are applied in the longitudinal and transverse direction of the building, respectively. 

 
Fig. 3 – Ground acceleration records used as seismic input motions. 

3.1 Bayesian FE model updating 

The nonlinear FE model presented above with the true material parameter values 
( 9 1[ , , , , , , , , ]true true true true true true true true true true T

s col y col col s beam y beam beam c c cE f b E f b E f ×
− − − −= ε ∈θ  ) is subjected to the earthquake input motion 
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shown in Fig. 3 and used to define the true response of the structure. After completion of the response 
simulation, the true relative horizontal acceleration responses at the 3rd, 5th, and roof levels in both the 
longitudinal (X) and transverse (Z) directions (see black arrows in Fig. 1) are contaminated with 1.0%g root-
mean-square (RMS) additive zero-mean Gaussian white noise and used as measured output ( y ) in the estimation 
phase. The true covariance matrix of the output measurement noise is 2 2 2 2

6 6(0.01 ) 0.96 10 ( / )g m s−= ×I I  where 
I j = j × j identity matrix. Statistically independent realizations of output measurement noise are used for 
different responses. It is noted that a noise level of 1.0%g RMS is considerably larger than the level of noise 
expected from accelerometers currently used in earthquake engineering. Nevertheless, this relatively high level 
of measurement noise is considered to examine the performance and robustness of the proposed parameter 
estimation process under extremely noisy conditions. It is assumed that the noiseless seismic input is available in 
the parameter estimation phase. The batch and recursive Bayesian estimation approaches presented in Section 2 
are used to estimate the unknown FE model parameters ( [ , , , , , , , , ]T

s col y col col s beam y beam beam c c cE f b E f b E f− − − −= εθ ) 
and to update the nonlinear FE model of the structure. The initial estimates of the expected values of the model 
parameters ( 0θ̂ ) are taken as 0

ˆ / [0.70,1.30,1.25,1.30,0.80,0.75,1.20,0.85,0.90]true T=θ θ . 

For the recursive approaches (UKF and EKF), it is assumed that the output measurement noise is a zero-
mean white Gaussian process with a covariance matrix 2 2 2

60.47 10 ( / )m s−= ×R I , i.e., a standard deviation (or 
RMS) of 0.7%g. The assumed amplitude of the measurement noise is purposely chosen to be different from the 
true amplitude, since in a real-world application the exact measurement noise amplitude is unknown and should 
be estimated based on the characteristics of the sensors and DAQ system used, experience, and engineering 
judgment. Time-invariant first- and second-order statistics are assumed for the process noise, with zero-mean 
and covariance matrix k =Q Q . The diagonal entries of Q  are taken as 2

0
ˆ( )

n
q×θ  where 1,...,9n =  and 

51 10q −= × . The initial estimate of the covariance matrix of the model parameters, 0P̂ , is assumed to be diagonal 
(i.e., initial estimates of the FE model parameters are assumed statistically uncorrelated). Diagonal entries of 0P̂  
are taken as 2

0
ˆ( )

n
p×θ  where 1,...,9n =  and 0.15p = . 

Two cases are considered in the batch Bayesian estimation approach. In the first case, θ  and the diagonal 
entries of the measurement noise variance matrix ( 6 1×∈r  ) are jointly estimated though an extended 
optimization process as shown in Eq. (9). The initial estimate of the measurement noise variances is taken as 

[ ]2 2 2
0ˆ 0.47 10 1,1,1,1,1,1 (m/ s )T−= ×r , corresponding to a 0.7%g RMS measurement noise. The feasible search 

domain for the model parameters and for the measurement noise variance are chosen as 0 0
ˆ ˆ0.4 2.5≤ ≤θ θ θ  and 

0 0ˆ ˆ0.01 100≤ ≤r r r , respectively. In the second case, only θ  is estimated, while r  is initially estimated (by the 
same value assumed for the recursive approaches for comparison purposes) and kept constant during the FE 
model parameter estimation process. In both cases, the parameter estimation uncertainty is quantified by 
evaluating the CRLB using the two methods presented in Section 2. The optimization process is considered 
converged when at least one of the following conditions is satisfied: 

Condition 1: 71

1 2

ˆ ˆ
10

ˆ ˆ
m m

m m

−−

−

   
   − ≤
      

θ θ

r r
            Condition 2: ( ) 7, 10J −

∞
∇ ≤θ r  (22) 

where ˆ
mθ  = estimated normalized (with respect to the initial parameter estimates) FE model parameter vector at 

the mth optimization iteration, 2|| ... ||  denotes the Euclidean norm, and || ... ||∞  denotes the infinity norm. It is 
noted that for the second case study where the vector r  is fixed, only θ  remain in Conditions 1 and 2. 

3.1.1 Discussion of parameter estimation results 

Table 1 reports the estimated FE model parameters normalized by the corresponding true values ˆ( )true
n nθ θ  with 

1,...,9n =  and Table 2 their corresponding coefficient of variations (C.O.V.) defined as ˆˆ /
n nθσ θ , where ˆ

nθ
σ  is 
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the estimated standard deviation of the FE model parameter nθ . For the recursive approaches, these quantities 
correspond to the estimation results obtained at the last time step, while for the batch approach, they are the 
converged values obtained after the convergence criteria presented in Eq. (22) are satisfied. 

Table 1 – FE model parameter estimates. 

Estimation method 

FE Model parameter estimates ( ˆ true
n nθ θ ), 1,...,9n =  

s col
true
s col

E
E

−

−

 y col
true
y col

f
f

−

−

 col
true
col

b
b

 s beam
true
s beam

E
E

−

−

 y beam
true

y beam

f
f

−

−

 beam
true
beam

b
b

 c
true
c

E
E

 c
true

c

f
f

 c
true
c

ε
ε

 

UKF 1.00 1.00 1.01 1.00 1.00 0.99 1.00 1.01 0.98 
EKF 1.00 1.00 1.04 1.00 1.00 0.99 1.00 1.00 0.99 
Batch with noise variance estimation 1.00 1.00 1.01 1.00 1.00 1.00 1.00 0.99 0.98 
Batch without noise variance estimation 1.00 1.00 1.02 1.00 1.00 1.00 1.00 1.00 0.98 

Table 2 – Parameter estimation uncertainty. 

Estimation method 
C.O.V. (%) of FE model parameter ( ˆˆ /

n nθσ θ ) 

s colE −  y colf −  colb  s beamE −  y beamf −  beamb  cE  cf  cε  

UKF – 0.09 0.06 1.47 0.13 0.08 0.32 0.21 0.87 1.88 
EKF – 0.11 0.07 1.58 0.15 0.09 0.31 0.33 0.95 2.11 
Batch with noise var. 
estimation 

Method 1 0.15 0.10 2.27 0.21 0.13 0.43 0.50 1.29 3.03 
Method 2 0.16 0.11 2.45 0.25 0.13 0.33 0.55 1.33 3.45 

Batch without noise var. 
estimation 

Method 1 0.11 0.07 1.59 0.15 0.09 0.31 0.35 0.91 2.12 
Method 2 0.11 0.07 1.62 0.15 0.10 0.30 0.32 0.84 2.13 

Excellent results are obtained with the different estimation methods, with relative estimation errors less 
than or equal to 4% for all nine FE model parameters. Material initial stiffness ( s colE − , s beamE − , and cE ) and yield 
parameters of reinforcing steel ( y colf −  and y beamf − ) are accurately estimated using all the estimation methods. 
Material model parameters colb , beamb , cf , and cε  are estimated with larger relative errors (≤ 4%) and they are 
associated with larger estimation uncertainty as can be inferred from their C.O.V.s that are ranging between 0.3 
and 3.5%. Since the measured output responses are less sensitive to colb  and cε , i.e., less information about these 
parameters is contained in y , larger relative errors and C.O.V.s in their final estimates are observed. 

Fig. 4 show the convergence history of the nine FE model parameters using the recursive and batch 
estimation approaches. In the recursive approach, the initial-stiffness related material parameters ( ,s colE − ,s beamE −  
and cE ) start updating from the first time steps because the output responses are sensitive to elastic-related 
material parameters at all levels of excitation. These parameters converge to their true values at about the 4th 
second of excitation. It should be noted that the FE acceleration response sensitivities with respect to cE  are 
much higher than those to other material parameters during the first two seconds. Since the EKF is based on the 
analytical linearization of the nonlinear FE response, a large and abrupt jump in the recursive estimate of cE  is 
observed at the beginning of the excitation. The UKF shows a smoother convergence because this approach 
circumvents the analytical differentiation of the nonlinear FE response prediction with respect to the estimation 
parameters. In addition, in the UKF, a parameter controlling the spread of the SPs around the mean value (set 
equal to 0.01 in this study) allows to control the rate of convergence of the filter (see [7] for more details). The 
other material model parameters start updating at about or after the 2nd second of the excitation, when the 
amplitude of the excitation increases abruptly (see Fig. 3). The yield strength of the reinforcing steel 
(  and )y col y beamf f− − , the strain hardening ratio of the reinforcing steel in the beams ( ),beamb  and the compressive 
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strength of the concrete ( )cf  quickly converge to their true values. Estimates of the strain hardening ratio of the 
column reinforcing steel ( )colb  and of the strain at the peak compressive strength of concrete ( )cε  are moving 
towards and approaching their true values. However, these estimates do not fully stabilize and fluctuate until the 
end of the time history, because there is not enough information about these two parameters in the output 
measured response. In the case of the batch estimation approach (Fig. 4b), the number of iterations corresponds 
to the number of evaluations of the objective function defined in Eq. (10). As explained in [10], the spike-like 
behavior in the convergence histories of the estimated model parameters is due to perturbations applied by the 
optimization algorithm to escape from the attraction zones of local minima. Both batch estimation solutions 
(marked by dots in Fig. 4b) converge to the true values of the parameters; however, a large number of iterations 
is required for the extended estimation process, when r  and the FE model parameters θ  are estimated jointly. 
(a) 

 

(b) 

 

Fig. 4 – Posterior estimates of the FE model parameters: (a) recursive approach, (b) bath approach. 

The updated FE model can be used to reconstruct unobserved (unmeasured) responses quantities at global 
and local levels that can be used to define and quantify damage indices from which the degree of damage 
throughout the structure can be assessed. Such damage indices include those based on maximum inelastic 
deformation responses at different scales (e.g., maximum displacement or curvature or strain ductility factors) or 
normalized cumulative hysteretic energy dissipated (e.g., cumulative displacement, curvature or strain ductility) 
as a measure of cumulative damage (e.g., low-cycle fatigue), or a combination of both. Fig. 5 compares different 
force-deformation response histories at different scales (structure, section and fiber levels) computed with the 
true FE model parameters and with the final estimates of the model parameters obtained using the UKF and 
batch (without noise variance estimation) approaches. The total base shear in the longitudinal and transverse 
directions ( x

bV  and z
bV , respectively) normalized by the total weight of the building ( )W  versus the roof drift 

ratio in the corresponding direction ( xRDR  and zRDR ) are plotted in Fig. 5a−b, respectively. The moment ( )M  
versus curvature ( )κ  for sections at the base of a column (section 1−1 in Fig. 1a) and at the end of a 2nd floor 
longitudinal beam (section 2−2 in Fig. 1a) are shown in Fig. 5c−d, respectively. Fiber level responses are 
presented in Fig. 5e−f, where the stress (σ ) versus strain ( ε ) of a monitored reinforcing steel fiber at the bottom 
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of a column (section 3−3 in Fig. 1a) and a monitored concrete fiber at the end of a 2nd floor transverse beam 
(section 4−4 in Fig. 1a) are plotted. The excellent agreement between the true and estimated response based on 
the final estimates of the model parameters corroborates that the updated FE models can be reliably used for 
damage identification purposes. 

 
Fig. 5 – Comparison of unobserved FE responses computed with the true FE model parameters and final 

estimates of the FE model parameters obtained using the UKF and batch estimation approaches: (a) x
bV  vs. 

xRDR , (b) z
bV  vs. zRDR , (c) M vs. κ  at the base of a column (section 1−1 in Fig. 1a), (d) M vs. κ  at the end 

of a longitudinal beam (section 2−2 in Fig. 1a), (e) σ  vs. ε  of a reinforcing steel fiber at the bottom of a column 
(section 3−3 in Fig. 1a), (f) σ  vs. ε  of a concrete fiber at the end of a transverse beam (section 4−4 in Fig. 1a). 

4. Conclusions 
This study investigated and compared the performance of a new framework to identify and update mechanics-
based nonlinear structural finite element (FE) models using different Bayesian estimation methods. The 
framework uses recorded input-output data to estimate unknown parameters of advanced mechanics-based 
nonlinear FE models of the structure of interest, using both batch and recursive approaches. The batch estimation 
approach consisted of the maximum a posteriori method, which results in a nonlinear optimization problem that 
is solved using the interior point method, a gradient-based optimization algorithm. The Extended Kalman filter 
and Unscented Kalman filter were employed as recursive Bayesian estimation methods. The proposed 
methodology was verified using numerically simulated structural response data for a three-dimensional five-
story two-by-one bay reinforced concrete frame building subjected to bi-directional horizontal earthquake 
excitation. Parameters characterizing the nonlinear material constitutive laws of the reinforcing steel and 
concrete materials were successfully estimated using the noiseless seismic input data together with limited noisy 
output response data (6 relative acceleration response time histories). Excellent results were obtained with both 
batch and recursive estimation methods. Comparison of unobserved response quantities at different scales 
(structure, component, section and fiber levels) obtained from the updated FE model and the corresponding 
“true” responses demonstrated the capabilities of the proposed framework for (nonlinear) damage identification 
purposes. Thus, the updated FE model can be used to reconstruct unmeasured structural responses from the 
global to local levels. The reconstructed inelastic structural response can be utilized to estimate mechanics-based 
damage indices and therefore to assess the type and level of damage throughout the structure. 
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