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Abstract 
Earthquake and wave actions may be simultaneously applied to bridge piers in deep water. It is necessary to calculate the 
dynamic response of bridge piers under combined earthquake and wave actions. In order to consider the randomness of 
earthquake and wave action, stochastic dynamic response analysis is adopted. The interaction between bridge piers and 
water can be considered into two parts: the hydrodynamic pressure and wave action. Since most bridge piers belong to 
large-scale cylinder, the hydrodynamic pressure is established using radiation wave theory, and the wave action is 
considered by the diffraction theory. Based on the pseudo excitation method, a stochastic dynamic analysis method for 
bridge piers in deep water under combined actions of earthquake and wave is developed. A circle solid pier is calculated 
with a sectional diameter of 5 m and a height of 24.7 m. The Clough-Penzien spectrum is used as the earthquake 
acceleration spectrum and the Bretschneider-Mitsuyasu spectrum is used as the wave height spectrum. Stochastic dynamic 
responses of bridge piers under the earthquake action, wave action and combined actions of earthquake and wave, are 
analyzed respectively. Different relative water depths and earthquake acceleration amplitudes are considered for the analysis 
of the numerical model under earthquake action. While the model under wave action is caculated, different wave heights 
and relative water depths are analyzed and compared. Moreover, in order to compare with the response under combined 
earthquake and wave actions, the response under the direct superpositon of two individual actions should be achieved. The 
results show that the stochanic dynamic response of the pier in deep water is increasing because of the influence of the 
hydrodynamic pressure. For a pier with a fixed water depth under different earthquake acceleration amplitudes, the 
increased percentage of the internal force power spectrums at the bottom of piers is identical, considering the effect of the 
hydrodynamic pressure. With relative water depth becoming deeper, the effect of the hydrodynamic pressure to the internal 
force power spectrums at the bottom of the pier becomes more significant. Because the attached mass generated by the 
pier’s elastic motion in the water has little effect on the frequency response function of the pier, stochanic dynamic 
responses under combined earthquake and wave actions are identical with these under the direct superposition of two 
individual actions. 
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1. Introduction 
With the development of economy, the number of bridges, especially sea-crossing and river-crossing bridges, 
increases faster. There are already a large number of studies about the dynamic responses of multiform bridges 
under earthquakes [1, 2]. As the sea-crossing or river-crossing bridges are in a water environment, it needs to 
consider the interaction between piers and water under earthquakes. Generally, the interaction can be considered 
into two parts: the hydrodynamic pressure generated by moving piers in static water and the wave action 
generated by static piers in moving water. Earthquake ground motion and wave height are both random 
processes, therefore it is necessary to analyze the response of bridge piers under combined earthquake and wave 
actions using the stochastic vibration method. 

The studies on analysis method of the interaction between piers and water mainly include numerical 
method and semi-numerical method. Ozdemir Z [3] proposed a fully nonlinear liquid-solid coupling finite 
elements approach based on the numerical method. Yeung RW [4] studied on the hydrodynamic attached mass 
and damping of a vertical column in finitely deep water. Keming S [5] deduced the hydrodynamic pressure 
formula of an axisymmetric structure based on the Trefftz-complete function. Lai W [6] deduced the exterior 
attached hydrodynamic pressure of circle piers based on the linear radiation wave theory. There are two methods 
normally adopted for calculation of the wave force, including the diffraction wave theory for large-diameter 
columns and Morison function for small-diameter columns [7-9]. The studies shown above mainly analyzed the 
effects of the interaction of piers and water for piers or bridges in time domain, and the effect is related to the 
earthquake wave [10]. To date, there are only limited number of studies on stochastic dynamic responses 
analysis of bridge piers in deep water under the earthquake action or combined earthquake and wave actions. 

Stochastic vibration methods applied on engineering structures mainly include the pseudo excitation 
method and Monte Carlo method. Lu F [11] proposed an efficient algorithm for non-stationary random vibration 
of vehicle-bridge systems basing on the pseudo excitation method. Fan LC [12] investigated the response 
characteristics of long-span cable-stayed bridges under seismic action with spatial variation by using the pseudo 
excitation method. Considering the uncertainties in the ground motion characteristics through the Monte Carlo 
method, Moghaddasi M [13] evaluated the influence of foundation flexibility on the structural seismic response. 
However, these studies only analyzed the responses under an single load. In this paper, based on the pseudo 
excitation method, this paper establishes a stochastic dynamic responses analysis method for bridge piers in deep 
water under combined earthquake and wave actions in linear scope. Stochastic dynamic responses of bridge piers 
under the earthquake action, the wave action and combined earthquake and wave actions are analyzed 
respectively. 

2. Stochastic dynamic analysis method of bridge piers in deep water under combined 
earthquake and wave actions 
2.1 Hydrodynamic pressure based on radiation wave theory 
Generally, the radiation wave theory uses the separation variable method or Green function to obtain general 
solutions of the velocity potential of the Laplace equation, and solve the constant of the velocity potential by 
water’s boundary condition. After that, the expression of the hydrodynamic pressure from the Bernoulli equation 
can be obtained, and the deduced process is privided in reference [5] in detail. 

The structure-fluid-ground system is illustrated in Fig.1. The water is assumed to be irrotational, inviscid, 
and incompressible; and the motion of the water is limited to small amplitudes during the earthquake action. 
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Fig. 1 –Structure-fluid-ground system 

In the cylinder coordinate, when the ground undergoes a harmonic motion with frequency ω, the velocity 
potential of the water can be expressed by the complex form ( ) ( ), , , , , i tr z t r z e ωθ φ θΦ =  according to the radiation 
wave theory. Substitute ( ), ,r zφ θ  into the Laplace equation, the flow control equation is 
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( ), ,r zφ θ  can be expressed by introducing the Trefftz-complete function and  meets boundary conditions as 
shown below 
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Eqs. (2)-(5) are the free surface bounary condition, the bottom bounary condition, the interface surface 
bounary condition and Sommerfeld radition bounary condition, respectively; 1i = − ; a is the pier’s radius; h is 
water depth; k=ω/c, where c denotes the sound velocity in the water; and U is the absolute displacement of the 
pier, including the rigid displacement and elastic displacement. The full velocity potential can be taken into two 
parts: the velocity potential Ф1 generated by the pier’s rigid motion and velocity potential Ф2 generated by the 
pier’s elastic motion. They can be derived by Eqs. (1)-(5). Note that the effect of free surface wave is ignored in 
the analysis. 

According to the the small amplitudes wave theory, the hydrodynamic pressure F of the pier’s surface 
along a unit height is 

( )2
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, , ,
cos d

r z t
F a

t
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=
∂∫                                                       (6) 

where ρ is the water density. Substitute the rigid velocity potential Ф1 and elastic velocity potential Ф2 into Eq. 
(6), the hydrodynamic pressure can be expressed as 
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where F1 and F2 is the hydrodynamic pressure generated by the ground motion and the elastic vibration of the 
structure respectively; gx  and x  are the harmonic ground motion acceleration and elastic vibration acceleration 
of the structure respectively. M1 and M2 are the rigid attached mass matrix and elastic attached mass matrix 
respectively. M1 is a diagonal matrix, and the ith diagonal element is 
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The elements in the mass matrix M2 are 
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where Γi denotes the integral interval of the ith node; Li is the ith element’s length; Zi is the ith node’s coordinate 
of axis Z; and K1(βmr) is the modified Bessel function of the second kind and first order.  

2.2 Wave force based on diffraction theory 

Generally, the velocity potential of the diffraction problem can be considered into two parts: the incident 
potential iφ  and diffraction potential dφ . Substitute both potentials into the Bernoulli equation, the wave force 
acting on a circle pier can be solved [10]. In the cylinder coordinate, the incident potential ( ), ,i r zφ θ should be 
expressed as 
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; A is the wave amplitude; Jm (kr) is the Bessel function of the first kind; and k is 

the wave number. 

The diffraction potential ( )d , ,r zφ θ  can be expressed as 
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where Hm(kr) denotes the Hankel function of the first kind. The incident potential and diffraction potential 
should meet the boundary conditions below 
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Substitute the incident potential and diffraction potential into the boundary conditions and the full velocity 
potential space factor of the whole wave field can be solved as 
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Using the orthogonality of the cosine function and Wornkcy identical equation, the wave force acting on the pier 
structure can be expressed in Eq. (20) by substituting Eq. (19) into the Bernoulli equation. 
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where x0 is the space position with the incident wave spreading direction on the pier’s central axis; and H1
(1)’(k0a) 

is the Hankel function of the first kind and first order. The Wornkcy identical equation is 
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Considering the phase difference of incident wave motion in different horizontal location at the same time, 
the wave force acting on the circle pier is the real part of P(z) in Eq. (20). 

2.3 Establishment of stochastic dynamic analysis method  
Substitute the hydrodynamic pressure obtained using the radiation wave theory and the wave force obtained 
using the diffraction theory into the dynamic equation of the pier, it gives  

( ) ( ) ( ) ( )2 1 gM M x Cx Kx M M Ix t P t+ + + = − + +                                              (22) 

where M, C and K are the mass, damping and stiffness matrices of the pier; and P(t) is the wave force. Only the 
wave action is considered when P(t) is zero, and only the earthquake action is considered when M1 and M2 are 
zero.There is no correlation between earthquake ground motions and wave heights, thus the correlation 
coefficient is zero. Assuming that ( ) ( ) ( ) ( )1 gZ t M M Ix t P t= − + + , the auto-correlation function Rzz(τ) of it which is 
used for the Fourier transform is 
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T
ZZ x x PPR M M IR I M M Rτ τ τ= + + +                                          (23) 

where ( )
g gx xR τ   and RPP(τ) are the auto-correlation functions of gx  and P(t) respectively. The power spectrum 

SZZ(ω) of Z(t) is 
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where ( )
g gx xS ω   is the earthquake acceleration spectrum; and the wave force spectrum Spp(ω) can be written as 
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where SHH(ω) is the wave height spectrum. 

Generally, SZZ(ω) is a positive definite or positive semi-definite symmetric matrix. Assuming that the 
matrix’s rank is r0, it can be decomposited into the product of the n×r0 matrix L and its transposition matrix 
LT accroding to the LDLT decomposition as 

( ) T=ZZS LLω                                                                        (26) 

By means of the method established by Lin JH [14], a pesudo excitation is created as 

= i tp Le ω                                                                            (27) 

Substitute the pesudo excitation above into the dynamic equation, the pesudo displacement response x  is 

( )= i tx H Le ωω                                                                        (28) 

where the frequency response function H(ω) is  

                                                           ( ) ( )2
2=1/H M M K i Cω ω ω − + + +                                                          (29) 

The displacement response spectrum Sxx(ω), the internal force response spectrum SFF(ω) and their square-
variances σx and σF can be expressed respectively as 
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In order to apply stochastic dynamic results in engineering designs, the extreme value distributions, means 
and variances of responses can be calculated by random extreme value theory [15, 16]. 

3. Numerical example 
3.1 Calculation model 
A circle solid pier is calculated with a sectional diameter of 5 m and a height of 24.7 m. The calculated span, 
height, density and elastic modulus are 51.1 m, 4.25 m, 2500 kg/m3 and 3.0×104 Mpa, respectively. The girder of 
525000 kg is considered as a lumped mass acting on the top of the pier. In the numerical model, the pier is 
divided into 13 elements. The height is 0.7 m for the bottom element and 2 m for the others. The finite element 
model adopts smeared model to consider the reinforced concrete. The fundamental frequency of the model is 
14.9 rad/s.  
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The Clough-Penzien spectrum is used as the earthquake acceleration spectrum ( )
g gx xS ω  and the 

Bretschneider-Mitsuyasu spectrum is used as the wave height spectrum SHH(ω). The expressions are given as 
below. 
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                                               (35) 

For both spectrums above, ωg presents the predominant frequency and ζg is the damping ratio of the first 
order highpass filter respectively; ωf and ζf are the parameters of the second order highpass filter; S0 is the 
constant spectral density of the input white noise process; besides, Hs is the significant wave height; and TH1/3 is 
the significant wave period. The frequency ranges, frequency spacings, durations and time intervals are [0, 20] 
rad/s, 0.05 rad/s, 4 s and 0.02 s, respectively. In order to analyze the responses results, two parameters are 
defined: the relative water depth h0=h/H where H is the pier’s height; and the increased percentage Δ=(S2-S1)/S1 
where S1 is the power spectrum of internal forces with no water at a specific frequency ω; and S2 is the power 
spectrum of internal forces with a relative water depth h0 at the same frequency ω. In this paper, the nonlinear 
solitary wave generated by strong seismic attack is not considered.  

3.2 Stochastic dynamic analysis of the pier in deep water under earthquake action 
Stochastic dynamic analysis of the pier in deep water under earthquake action is calculated with six conditions. 
The relative water depth h0 of 0.60 is chosen, and different earthquake acceleration amplitudes ag of 0.1 g, 0.2 g 
and 0.4 g are adopted. Zero water depth is also considered for comparision. The shear force power spectrum and 
moment power spectrum of the pier’s bottom at different conditions are shown in Figs.2 and 3 respectively. The 
figures show that the peak values of the shear force and moment power spectrums appear at the fundamental 
frequency of the pier. With the increase of earthquake acceleration amplitudes, the internal force power 
spectrums at the pier’s bottom are increasing. Fig. 4 graphically shows the increased percentage Δ. As seen from 
the figure, the internal force power spectrums at the pier’s bottom are affected by the hydrodynamic pressure 
with the same increased percentage Δ at different frequecies. The red circles in Fig.4 represent the increased 
percentage Δ at the peak value of the internal force power spectrums. Due to the hydrodynamic pressure, the 
peak value of the shear force power spectrum at the pier’s bottom increases 13% ,while the peak value of the 
moment power spectrum at the pier’s bottom increases only 4%.  

 
(a) ag=0.1 g                                           (b) ag=0.2 g                                          (c) ag=0.4 g 

Fig. 2 –The shear force power spectrum at the pier’s bottom with no water and h0=0.60 
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    (a) ag=0.1 g                                         (b) ag=0.2 g                                          (c) ag=0.4 g 

Fig. 3 –The moment power spectrum at the pier’s bottom with no water and h0=0.60 

 
                               (a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 4 –The increased percentages of internal force power spectrum with earthquake acceleration amplitudes 

In order to consider the influence of different relative water depths to the hydrodynamic pressure, four 
conditions are calculated with the relative water depth of 0, 0.45, 0.60 and 0.75. 0.1 g is adopted for the 
earthquake acceleration amplitude. The shear force power spectrum and moment power spectrum at the bottom 
of the pier at different conditions are shown in Fig.5. As shown from the figure, the influence of the response of 
the pier by the hydrodynamic pressure is increasing when h0 becomes deeper. The red circles in Fig.6 represent 
the increased percentage Δ at the peak value of the internal force power spectrums. Fig.6 shows that the peak 
values of the shear force power spectrums at the pier’s bottom increase by 4%, 15% and 31% respectively, while 
the peak values of the moment power spectrums at the pier’s bottom increase by only 1%, 4% and 9%, 
respectively. It shows that the hydrodynamic pressure increases the pier’s repsonse under earthquake action. 
Moreover, the relationship between the hydrodynamic pressure and relative water depth h0 is nonlinear and the 
influence of hydrodynamic pressure to the internal forces becomes more significant with the increase of  relative 
water depth h0.  

  
                             (a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 5 –The internal force power spectrum at the pier’s bottom with different relative water depths 
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(a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 6 –The internal force power spectrum increased percentage with different relative water depths 

3.3 Stochastic dynamic analysis of the pier in deep water under wave action 

Stochastic dynamic analysis of the pier in deep water under wave action is calculated, considering the wave 
height H0 and relative water depth h0 as two variables. When h0=0.60, with H0=2 m, 3 m and 4 m, stochastic 
dynamic responses of the pier are ploted in Fig.7. In addition, When H0=2 m, with h0=0.45, 0.60 and 0.75, the 
stochastic dynamic responses of the pier are shown in Fig.8. 

Fig.7 shows that the internal force power spectrums increase as the wave becomes higher. However, the 
results shown in Fig.8 indicate that if the wave height H0 is the same, the internal force power spectrum increase 
when h0 tends to decrease. The reason is that the velocity potential decreases with the increase of h0. Different 
from the responses under earthquake action, Figs.7 and 8 show that the peak values of the shear force and 
moment power spectrums appear at the frequency of the peak value of the wave height spectrum SHH(ω). 

 
(a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 7 –The internal force power spectrums at the pier’s bottom with different wave heights 

 
(a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 8 –The internal force power spectrums at the pier’s bottom with different water depths 
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3.4 Stochastic dynamic analysis of the pier in deep water under combined earthquake and wave actions 
Stochastic dynamic analysis of the pier in deep water under combined earthquake and wave actions is calculated 
with h0=0.60 and 0.1 g earthquake accelation amplitude. The responses of the pier under earthquake action and 
wave action are also added for comparision. The internal force power spectrums of two conditions are provided 
in Fig.9. 

 
(a) The shear force power spectrum     (b) The moment power spectrum 

Fig. 9 –Internal force spectrums at the pier’s bottom  

From Fig.9, there are two peak values of the internal force power spectrums. It illustrates that the internal 
force power spectrums under combined earthquake and wave actions are nearly identical with these under the 
direct superposition of two individual actions. As it is shown in Eq. (22), the difference between combined 
actions and direct superpositon is that the former considers the attached mass M2 under wave action. In this 
example, because the pier has high stiffness, the difference between the frequency response functions H(ω) with 
the mass matrix M and M+M2 at every frequency is negligible. Thus, the effect of the attached mass M2 on the 
frequency response function H(ω) can be ignored and the responses of two conditions are nearly identical.  

4. Conclusions 
(1) The stochanic dynamic response of piers in deep water is increasing because of the influence of the 
hydrodynamic pressure. For a pier with a fixed water depth under different earthquake acceleration amplitudes, 
the increased percentage of internal force power spectrums at the bottom of piers is identical, considering the 
effect of the hydrodynamic pressure. 

(2) With relative water depth becoming deeper, the effect of the hydrodynamic pressure to the internal force 
power spectrums at the bottom of the pier becomes more significant. The effect of the hydrodynamic pressure 
under earthquake action should be considered. 

(3) Because the attached mass generated by the pier’s elastic motion has little effect on the frequency response 
function of the pier, stochanic dynamic responses under combined earthquake and wave actions are identical 
with these under the direct superposition of two individual actions. 
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