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Abstract 

The seismic anchor elements of bridges are vertical steel bars that connect the slab of the superstructure with the bearing 

seat of the substructure. These bars are currently used on bridges in Chile and have the purpose of preventing the lifting of 

the superstructure during strong earthquakes. The Highways Manual and the New Seismic Design Criteria for Bridges of 

the Department of Public Works only specify the minimum strength they must have. They do not specify any prestress for 

them, no minimum or maximum distance between the anchor point to the bearing seat and anchorage point of them to the 

bridge deck, and no maximum or minimum length of these bars. In this paper the variables listed above, and the seismic 

behavior of bridges supported by elastomeric bearings that are fixed to the heel of the beams of the bridge, but can slip on 

the bearing seat, are analyzed. The elastomeric bearings are designed to be able to withstand the vertical loads of the bridge, 

the bridge temperature deformations and the maximum shear stress that can be generated in them because of the friction 

between the bearing seat and the elastomeric bearing. The support system is also designed so that the elastomeric bearing is 

able to accept temperature deformations of the bridge without sliding on the bearing seat. For strong earthquakes, the 

bearing slip on the bearing seat and seismic anchor elements provide restitution forces, to prevent span unseating and almost 

bring them back to its original position. Small permanent deformations after a strong earthquake may require a minor 

alignment of the superstructure. The friction between the elastomeric bearing and the bearing seat provides damping to the 

system. The proposed solution will improve the seismic performance and reduce the cost of the bridges because it decreases 

the stresses and strains in abutments and piers, as with a formal seismic isolation. 

Keywords: Bridges; Seismic behavior; Seismic anchor cables; Elastomeric bearings. 
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1. Introduction 

Seismic anchor bars of bridges are elements that were conceived in order to prevent the lifting of the 

superstructure of bridges as well as excessive horizontal displacement that could lead to the collapse of it. The 

Highways Manual of Department of Public Works (MOP, 2000) [1] proposes to use steel bars 22mm in diameter 

or larger, with specification ASTM A706M and ASTM A615M grade 280 and 420, designed to resist 50% of the 

weight of the bridge (100% after the 2010 Maule earthquake, according instructive "New Seismic Design 

Criteria for Bridges in Chile" [2]) multiplied by ground acceleration in the bridge site, expressed as a percentage 

of 𝑔. Meanwhile AASHTO LRFD Specifications (2012) [3] establish that anchoring devices must be provided to 

prevent the lifting of the deck in areas where the vertical seismic force is greater than, or equal to 50% of the 

permanent load. In neither case it considers lateral stiffness, or suggests any analysis procedure to evaluate its 

influence on the bridge behavior under seismic loads. 

In 2010 Maule earthquake was evident that seismic bars did not have a suitable performance because of 

the absence of a structural design of these (Fig. 1). Such bars quickly attain yield stress and they offered no 

restriction to lateral movement of beams, which reached excessive displacements on the bearing seat that in 

several cases caused the collapse of the superstructure (Fig. 2). A detailed description of the damages of bridges 

during the Maule earthquake can be found, for example in studies by Elnashai et al. (2010) [4] and Kawashima 

et al. (2011) [5]. 

              

Fig. 1 – Damage in seismic anchor bars in Champa Bridge (Paine, Chile) during Maule earthquake of 27 

February 2010 (by Carl Lüders)  

                  

Fig. 2 –Americo Vespucio Norte Bridge (Santiago, Chile): (a) residual displacement, and (b) unseating of span, 

during Maule earthquake of 27 February 2010 (by Carl Lüders) 

To understand the behavior of seismic bars under lateral loads it must take into account factors such as the 

type of seismic anchor (bar or cable), diameter and clear length of the element, the prestress level, the stiffness of 

elastomeric bearings, the friction between the bearing and substructure and other aspects that may influence the 

transverse behavior of the bridge. 

In this paper the variables listed above are analyzed and a model with seismic pretensioned anchor cables 

for bridges supported by elastomeric bearings that are fixed to the heel of the beams, but can slip on the bearing 

seats, is proposed. The model considers elastomeric bearings designed to resist the vertical loads of the 
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superstructure, the bridge temperature deformations without sliding on the bearing seat and the maximum shear 

stress that can be generated in them because of the friction between the bearing seat and elastomeric bearing. 

The anchor cables will provide restitution forces necessary to avoid the bridge unseating and instead it attempts 

to return to its original position. The objective of this paper is to investigate the effect of anchor cables in 

reducing the seismic demand of bridges as with a formal seismic isolation, without replacing the elastomeric 

bearings by expensive seismic isolators. 

2. Pretensioned seismic anchor cable model   

2.1 Description of the proposed system 

A system with pretensioned seismic anchor cables capable of generating, within the elastic range, restitution 

forces that allow controlling the maximum displacements of the bridge during strong earthquakes and limiting 

residual displacements to small values, is proposed. 

The system consists of a pretensioned cable with section 𝐴, modulus of elasticity 𝐸 and initial length equal 

to (𝐿1 + 𝐿2) which is connected in series with a spring (stiffness 𝐾𝑜 and natural lenght 𝑙𝑜) between the bridge 

deck and bearing seat. The cable passes through the diaphragm. The ratio of the height of the diaphragm and the 

distance between the bridge deck and the bearing seat can regulate the effectiveness of the proposed system as a 

restitution element of the bridge. During the assembly, spring and cable are tensioned with a force 𝑇𝑜. The spring 

can be materialized by a piece of cable without bonding in a duct within the pier or abutment. 

For analysis it can identify two cable segments hereinafter indicated as "section 1" (defined as the portion 

of the cable within the diaphragm) and "section 2" (defined as the free portion of the cable). In Fig. 3(a) the 

geometry of the proposed system in its undeformed shape, is shown, where 𝑙0 is the initial length of the spring 

(without tension), ℎ1 is the height of the diaphragm and ℎ2 is the clear distance between diaphragm and bearing 

seat. Fig. 3(b) shows pretensioned anchor cable, where 𝛿𝑠𝑜 and 𝛿𝑐𝑜 are the elongation due to prestressing force 

of the spring and cable, respectively. Fig. 3(c) shows the anchoring system with the diaphragm laterally 

displaced in ∆ℎ, where 𝐿1 and 𝐿2 correspond to the natural lengths of the cable in sections 1 and 2, respectively, 

𝛿𝑠 is the spring deformation, and 𝛿1 and 𝛿2 are the deformations of cable in sections 1 and 2, respectively.  

  

Fig. 3 – Scheme of proposed model: (a) Initial position without prestress, (b) Initial position with prestress,      

(c) Deformed shape 

 

If a horizontal displacement ∆ℎ on bridge deck is imposed, slip of the cable at point A’ in Fig. 3(c) will 

occur when: 

 𝑇1 = 𝑇2𝑒−𝜇𝜃 (1) 

A'

l

F

so s 1 

co c 1 1 

s




co 

so 

L  + L1 2

h1 

h2

o 
lo lo 

L1 

L2

h

h

T2

T1



To

 c 22 (1-   ) co 

L  + L1 2

H

h1 

h2

H

h1 

h2

(a) 

 

(b) 

 

(c) 

 



16th World Conference on Earthquake, 16WCEE 2017 

 Santiago Chile, January 9th to 13th 2017

  

4 

where 𝜇 corresponds to the friction coefficient at point A’, and 𝜃 is the deflection angle in radians between 

section 1 and section 2 of the anchor cable. The above expression implies a change of magnitude in 𝐿1 and 𝐿2 

lengths during the bridge movement regarding the substructure. Only the sum 𝐿1 + 𝐿2 will remain constant and 

equal to the initial length of the cable. 

Eq. (1) is satisfied when cable slips at point A’ with increasing bridge displacements. When the movement 

changes direction cable slip at point A’ does not occur immediately. Initially, only the cable section 2 recovers 

elastically. When 𝑇2 reaches the value given in Eq. (2), slip at point A’ will start, and cable section 1 will start 

recovering. 

 𝑇2 = 𝑇1𝑒−𝜇𝜃 (2) 

In Eq. (1) and Eq. (2), 𝑇1 and 𝑇2 are the forces on the anchor cable in sections 1 and 2, respectively: 

 𝑇1 = 𝐾1𝛿1 ,     𝑇2 = 𝐾2𝛿2 (3) , (4) 

where 𝐾1 and 𝐾2 are cable stiffness in sections 1 and 2, respectively, and they are given by: 

 𝐾1 =
𝐴𝐸

𝐿1
 ,     𝐾2 =

𝐴𝐸

𝐿2
 (5) , (6) 

The spring force is given by: 

 𝑇1 = 𝐾𝑜𝛿𝑠  (7) 

Initial deformations due to prestressing force 𝑇𝑜 in cable and spring are, respectively: 

 𝛿𝑐𝑜 =
𝑇𝑜(𝐿1 + 𝐿2)

𝐴𝐸
 ,     𝛿𝑠𝑜 =

𝑇𝑜

𝐾𝑜
 (8) , (9) 

The total deformation of anchor cable in sections 1 and 2 are, respectively: 

 𝛿1 = 𝛼𝛿𝑐𝑜 + 𝛿𝑐1 ,     𝛿2 = (1 − 𝛼)𝛿𝑐𝑜 + 𝛿𝑐2 (10) , (11) 

where 𝛿𝑐1 and 𝛿𝑐2 are deformations in sections 1 and 2 of anchor cable due to horizontal displacement ∆ℎ: 

 𝛿𝑐1 =
(𝑇1 − 𝑇𝑜)𝐿1

𝐴𝐸
 ,      𝛿𝑐2 =

(𝑇2 − 𝑇𝑜)𝐿2

𝐴𝐸
 (12) , (13) 

The total deformation of the spring is defined as: 

 𝛿𝑠 = 𝛿𝑠𝑜 + 𝛿𝑠1 (14)  

where 𝛿𝑠1 is the spring deformation due to horizontal displacement ∆ℎ: 

 𝛿𝑠1 =
(𝑇1 − 𝑇𝑜)

𝐾𝑜
  (15) 

Finally, the horizontal force produced by displacement ∆ℎ is given by: 

 𝐹ℎ = 𝑇2 𝑠𝑖𝑛 𝜃  (16) 
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2.2 Constitutive model of a particular seismic anchor cable system 

In order to obtain a constitutive relation of a particular system anchor cable, the geometry in Fig. 4 is considered, 

which consists in a superstructure with diaphragms high ℎ1=1.65m and clear distance between diaphragm and 

bearing seat ℎ2=0.45m. The parameters listed in Table 1 for anchoring system were assumed. 

Table 1 – Constitutive model parameters for seismic anchor cable 

 

 

Fig. 4 – Geometry of seismic anchor system 

Solving the problem for 𝑇1 and 𝑇2, and considering a displacement ∆ℎ increasing in one direction, the 

relationships 𝑇2 vs ∆ℎ, and 𝐹ℎ vs ∆ℎ for the anchor cable system is obtained. In Fig. 5(a) the axial tension in the 

free portion of the cable as a function of the horizontal displacement, are shown. It is observed that system starts 

with initial force of 𝑇0=47kN and then it describes a non-linear behavior until it reaches the yield strength equal 

to 233kN for a horizontal displacement equal to 0.1965m. 

  

Fig. 5 – Constitutive model of seismic anchor cable: (a) 𝑇2 vs ∆ℎ, (b) 𝐹ℎ vs ∆ℎ 

Fig. 5(b) shows the 𝐹ℎ vs ∆ℎ relationship and represents the constitutive model of pretensioned anchor 

cable system. The curve "A" corresponds to loading phase of system in the positive direction, wherein both 1 

and 2 cable sections are deformed. The segment "B" represents the unloading starting. In this region there is no 

slip, only an elastic recovery occurs in the cable section 2. In curve "C" an inversion in the direction of frictional 

forces take place and cable starts to slip relative to point A’. The system returns to initial state when ∆ℎ=0, and 

has not exceeded yielding in phase A. It is noted that under small displacements the system is very flexible. As 
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displacement increases, the system has greater lateral stiffness. In turn, the system is slightly rigid during loading 

phase and more flexible during unloading. 

In order to compare the lateral stiffness of proposed system against the model stablished in the Highways 

Manual (MOP), it is considered the geometry of Fig. 4 eliminating the spring length 𝑙0 and prestressing force 𝑇𝑜, 

so that ℎ1 =1.65m and ℎ2=0.45m. In this case the system consists in bars Grade 420 𝜙𝑠=22mm in diameter. 

Thus, 𝐴=380mm2, 𝐹𝑦=420MPa and 𝑃𝑦=160kN; a friction coefficient 𝜇=0.5 is assumed. The force-deformation in 

Fig. 6 reveals that seismic bars reach the yield stress at very low displacements so they do not provide sufficient 

transverse stiffness to seismic loads.  

           

          Fig. 6 – Constitutive model of seismic bars according to MOP: (a) 𝑇2 vs ∆ℎ, (b) 𝐹ℎ vs ∆ℎ 

This fact is supported by research conducted by A. Martinez [6], who tested three specimens consisting in 

concrete elements to represent the diaphragm and the bearing seat, connected by two seismic bars. Each 

specimen was subjected to displacement cycles between 1mm and 150mm of amplitude. In all cases the bars 

reached yielding to displacements below 70mm, concluding that seismic bars proposed by MOP offer no 

restriction to horizontal displacement of the superstructure. 

            Fig. 7 illustrates the advantage of anchor cable proposed system over ordinary steel bars system by MOP, 

reflected in a considerable increment in the restitution force and the maximum displacement tolerated before 

yielding occurs. 

 

Fig. 7 – Comparison between system required by MOP and anchor cable proposed model: (a) Overview of 

response curves, (b) Zoom of left portion of curves. 

The main factors that determine these differences are the cable strength over ordinary steel bars, the 

prestressing force and the spring flexibility, as shown in Fig. 8. The high cable strength and spring flexibility 

allow the superstructure reaches large deformations before the cable yields. Prestress introduces an additional 

restitution force that limits the residual displacements. On the other hand, a greater cable length in its free 

portion increases the magnitude of displacement before the anchoring system can develop significant restitution 

forces. 
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Fig 8(a) shows the variation of spring stiffness for ℎ2/𝐻=0.20 relationship and Fig 8(b) indicates the 

effect of ℎ2/𝐻 relationship for spring stiffness equal to 20% of cable section 1 stiffness. 

          

     Fig. 8 – Factors affecting anchor cable system: (a) Spring stiffness, (b) ℎ2/𝐻 relationship. 

 

3. Elastomeric bearings 

3.1 Behavior of elastomeric bearings under cyclic shear loading 

The elastomeric bearings are designed as elements to resist the vertical loads and accommodate translational and 

rotational movements of the bridge. Several studies have analyzed the bearings behavior under shear stresses, 

concluding that they provide stable hysteretic behavior with large energy dissipation.  

Steelman et al. (2013) [7] investigated the slip response of laminated elastomeric bearings under shear 

stresses. For this purpose a set of specimens were subjected to shear strains between 25% and 400% of total 

thickness of elastomer. Tested bearings exhibited an approximately linear elastic behavior until the moment 

which the bearing slip starts. Slip initiating was directly proportional to the axial load and occurred for shear 

deformations between 125% and 250% of elastomer height. Rubilar (2015) [8] studied nonlinear behavior of 

elastomeric bearings under seismic loads. They used specimens with typical configurations of elastomeric 

bearings used in chilean bridges which were subjected to displacements on the order of 25% to 160% elastomer 

height with similar results to those of Steelman et al. 

Both Steelman et al. (2013) and Rubilar (2015) demonstrated that elastomeric bearings have an 

approximately elastic linear behavior before sliding occurs. To overcome friction a peak is originated because of 

the change in friction coefficient of static to dynamic and the bearing begins to slip on the substructure 

maintaining approximately constant force, as shown in Fig. 9. For small deformations bearings exhibit a linear 

behavior and then, to overcome the friction force, the load is stabilized, so that if the peaks at the start of slip are 

ignored, it can be assumed an elastoplastic behavior of the bearing.  

                       

Fig. 9 - Experimental model of elastomeric bearings for cyclic stresses: (a) Steelman et al. (2013) [7],               

(b) Rubilar (2015) [8] 
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3.2 Constitutive model of elastomeric bearings 

For the particular example being analyzed, the elastomeric bearings properties in Table 2 are considered. The 

vertical load on each bearing is 𝑁=550kN, the friction force which slip is initiated with, is 𝐹𝑟=𝜇𝑠𝑁=275kN, that 

produces the maximum deformation 𝛿𝑏 𝑚𝑎𝑥=55.9mm corresponding to 80% of elastomer height. Assuming a 

perfect elastoplastic behavior, the 𝐹ℎ vs ∆ℎ relationship of the elastomeric bearing is shown in Fig.10. 

Table 2 – Constitutive model parameters for elastomeric bearing. 

 

 

Fig. 10 – Constitutive model of elastomeric bearing 

 

4. Constitutive model of elastomeric bearing + pretensioned anchor cable system 

This model is obtained by superimposing the behavior in Fig. 5(b) with Fig. 10. As a result, the behavior shown 

in Fig. 11(b) is obtained. This model follows a substantially linear path until the maximum deformation of the 

elastomer, 𝛿𝑏 𝑚𝑎𝑥. Thereafter, the bearing slips on the substructure and takes the nonlinear characteristic curve 

of anchor cable. 

           

Fig. 11 – Constitutive model of elastomeric bearing and pretensioned anchor cable system 
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Nonlinear Time History analysis was made by the Newmark’s method of average acceleration [10] using the 

Matlab R2013a software [11], except for the fixed bearing system, in which case the linear method was used. 

 

Fig. 12 – “Constitucion” Record, Maule Earthquake 2010 

 

5.1 Case 1: Fixed elastomeric bearing  

The system consists of an elastomeric bearing anchored to the beam and the substructure with the characteristics 

indicated in Table 2. Considering a SDOF system with a linear stiffness 𝐾𝑏 =4.92 kN/mm, the period is 
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Fig. 13 – Fixed elastomeric bearing: (a) SDOF Model, (b) 𝐹ℎ vs ∆ℎ relationship, (c) Displacement response,    

(d) Acceleration response 
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5.2 Case 2: Unbonded elastomeric bearing 

In this case the elastomeric bearing was considered connected at its top surface to the heel of the beam but is not 

anchored at its base at the substructure. So, slip will start when the shear stress exceeds the friction force 

𝐹𝑟=275kN. The period is the same as in the previous case equal to 𝑇 =0.67s. The system stiffness is according to 

the model of Fig. 10. The results show that when system reaches the friction force, the bearing slips on the 

substructure until a displacement equal to 0.241m. If the elastomeric bearing was not fixed to the heel of the 

beam, it could move along the bearing seat, to be removed completely and fall, as happened in several cases 

during the 2010 Maule earthquake (Fig. 2). Around 50 seconds the slip of the system on the bearing seat ends, 

and only the elastomer deforms elastically. After the excitation, bearing remains displaced approximately 0.13m 

from its original position as seen in Fig. 14(c). The maximum acceleration demand in this system is much lower 

compared with case 1, with a value equal to 9.84m/s2 (Fig. 14(d)) equivalent to approximately 1g. 

                                                         

 

Fig. 14 – Unbonded elastomeric bearing: (a) SDOF Model, (b) 𝐹ℎ vs ∆ℎ relationship, (c) Displacement response,       

(d) Acceleration response 
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Fig. 15 – Unbonded bearing + pretensioned anchor cable: (a) SDOF Model, (b) 𝐹ℎ vs ∆ℎ relationship,                 

(c) Displacement response, (d) Acceleration response 
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conjunction with pretensioned anchor cable. Each case was modeled as a SDOF and the seismic behavior of the 

bridge was studied. It was observed that case 1 induces large shear stresses in the elastomeric bearing that 

obligate to replace it by seismic isolators with the increased cost associated. In case 2 slipping of the bearing on 

the substructure provides energy dissipation, and the response in terms of displacement and acceleration is 

significantly reduced compared to the case 1. Its main drawback is the lack of control of the displacements of the 

bridge that can lead to the collapse of the superstructure as happened in several cases during the 2010 Maule 

earthquake. Case 3 that adds to the previous case an anchoring system with pretensioned anchor cable-spring, 

limits these displacements; base shear demand is similar to the case 2 and the shear demand of elastomeric 

bearings remains in the elastic range of them. Placing a small friction interface between the elastomeric bearing 

and the bearing seat may further enhance the effectiveness of the proposed system. 

The pretensioned seismic anchor cable system provides a similar performance to a classic isolation but at 

a significantly lower cost. It is important that future research include experimental studies to validate the model 

proposed here. 
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