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Abstract 

A hysteresis model for seismic response analysis called “deformation history integral type model (DHI model) has been 

proposed for reproducing hysteresis of high damping rubber bearing by some of the authors. But formula of this model was 

complex and required many parameters. Therefore the model has been improved for simplicity. The improved model is very 

simple because only 3 parameters are required in the model. Furthermore no switching condition in the algorism, so the 

calculation can be executed straightforward. But this model well describes the hysteresis characteristics of horizontal 

deformation of isolators including natural rubber bearings (NR), high damping rubber bearings (HRB), and so on. In this 

paper, we show applicability of the DHI model for high damping rubber bearing of various sizes. This model well describes 

the experimental behavior of isolators including two-directional loading as well as one-directional loading at the wide range 

of shear strain. This model can well reproduce the horizontal restoring force for random loading including two-directional 

loading as well. In addition, we show flexibility of DHI model by applying various types of high damping rubber bearings. 

Keywords: High damping rubber bearings, Hysteresis model, Time history response analysis 
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1. Introduction 

Seismic isolation has gained popularity as one of countermeasures for seismic protection of structures in these 

decades [1]. The seismic isolation is an aseismic design concept to reduce the seismic force transmitted to the 

structure by supporting it with a flexible element - elastomeric isolators - at the base or sometimes middle story 

of the buildings, to elongate the natural period of the structure and thereby decouples it from the ground. 

Basically, seismic isolation systems provide functions of restoring force and energy dissipation. The elastomeric 

isolator, made up with layers of alternating rubber and steel plates is the most popular device for providing 

restoring force and damping characteristics. 

 Generally, seismic response analysis of seismically isolated buildings are conducted by time history 

analysis, and the restoring force characteristics of isolation bearings are simplified as an analytical model which 

consists of shear springs with non-linear hysteretic characteristics, without any consideration for geometric 

configuration. In previous studies, many analytical models of HRB, such as either normal or modified two-

directional model which takes shear strain dependency into account, Ramberg-Osgood model or Kikuchi-Aiken 

model [2], have been proposed. These models express properties of HRB under one-directional horizontal 

loading. As examples of analytical models which express properties of HRB under two-directional shear loading, 

Yamamoto model [3], Wen model [4], Abe model [5, 6] or Grant model [7] are given. 

 In the past, new hysteresis model called “deformation history integral type model (DHI model)” was 

proposed by some of the authors [8]. There are mainly four merits of using DHI model. First, DHI model 

originally developed for finite element analysis (FEA) model, so same values of parameters can be used for FEA 

model and hysteresis model. Second, DHI model well describe the behavior of isolators including two-

directional loading at the wide range of shear strain. Third, DHI model seems complex at first glance, however, 

calculation algorithm of DHI model is much simple because calculation algorithm of DHI model has no branch 

and if-statement is not needed in calculation program. Forth, DHI model can describe the hysteresis loop of 

HDR with only three material parameters.  

 Construction of this paper is as follows; First, background of development of DHI model and outline of 

DHI model are shown. Second, computing algorithm of DHI model is shown so that structural engineer can 

easily perform time history analysis using DHI model. Third, we clarify the physical meanings of DHI model. 

Fourth, we show applicability of the DHI model for high damping rubber bearing of various sizes. In addition, 

we show flexibility of DHI model by applying various types of HRBs. Finally, example of time history analysis 

using DHI model is shown. 

2. Background of Development of DHI model 

In this section, we show background of development of DHI model. First motivation was that accurate material 

model which can trace two-dimensional loading test of HRB as well as one-dimensional loading was needed. 

Furthermore, it is desirable that the same parameter values can be used for FEA model and hysteresis model of 

HRB for seismic response analysis. Motivated by the need, firstly we searched material model proposed in the 

past which can accurately trace the behaviors for two-dimensional loading test, and it was found that Simo’s 

viscoelasticity model can trace the two-dimensional loading test for wide range of shear strain. Since Simo’s 

model is material model for FEA, the model define the relation between rank-3 stress tensor and rank-3 strain 

tensor. Therefore the model has six degrees of freedom. Simo’s model, however, can describe the behaviors of 

HRB under limited loading rate only. Because loading rate dependence of Simo’s model is larger than that of 

real isolator. For these reasons, hysteresis characteristic of HRB ordinary is modeled by not viscoelastic model 

but elastic-plastic model such as bilinear model [8]. Therefore we developed new model by replacing time in 

Simo’s viscoelasticity model with accumulated value of shear strain increment Γ. The model is just DHI model. 

We have checked the validity of DHI model for seismic response analysis of base isolated building, and it is 

found that the model well describes the behavior of isolators including two-directional loading as well as one-

directional loading at the wide range of shear strain. 
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 Parallel, we check whether the model can be adoptive to hysteresis model of HRB. First, we derive the 

two-dimensional hysteresis model by reducing six degrees of freedom to two degrees of freedom under the 

assumption that horizontal deformation of laminated rubber bearings behave as simple shear. We have checked 

the validity of DHI model for hysteresis model as well in the privious paper [9]. 

 DHI model does not exhibit velocity dependece, however, real rubber material has velocity dependence 

more or less. 

3. Outline of DHI model 

Simo’s viscoelastic model is shown in Eq. (1). The model is consisted of three components.  
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Where, 
lvoW and devW are the volumetric and deviatoric parts of elastic stored energy function. 0W  is strain 

energy density function for deviatoric deformation related to viscosity.  S is second Piola-Kirchhoff stress, C is 
right Cauchy-Green tensor, n  is relaxation time of n -th viscoelastic element. DHI model was derived from 
Simo’s viscoelastic model as shown in Eq. (2) by replacing time dependence to accumulated value of equivalent 
strain increment   dependence. Because accumulated value of shear strain is proportional to time. 
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For understanding of the meaning of the third term of Eq. (1) and Eq. (2), we rewrite this term into 
differential equation form. Eq. (3) is plastic term of DHI model of differential equation form, on the other hand, 
Eq. (4) is viscoelastic model when 1n . Similar to viscoelastic model, in DHI model of Eq. (3) stress after step 
loading is relaxed by increasing accumulated value of equivalent strain increment.  
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Fig.1 shows a conceptual rendering of viscoelastic model and DHI model. Basic elastoplastic model 

cannot describe hysteretic loop of HRB, because real hysteretic loop slightly has roundness in unloading 

direction. But if the stress S obeys Eq.(3), the hysteretic model can be reproducing the roundness in unloading 

direction. 

 

 

Fig.1 – Hysteretic term of viscoelastic model and DHI model 

DHI model of two-dimension described by relation between shear stress and shear strain is given by 

Viscoelastic model 

DHI model 
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where Ge, g1,...,gn, l1,...,l2, and n are the model parameters. The first and second term of Eq. (5) represents the 

elasticity and plasticity respectively. Ge represents the spring constant of the linear spring. n is number of 

multiple plastic element. If number of multiple plastic element n is 1, g1 and l1 are rewritten simply g and l 

respectively in this paper. gi governs the magnitude of energy dissipation and li represents the unloading stiffness 

curvature of hysteresis curve at i-th plastic element. Γ is defined as curvilinear integral along the deformation 

orbit C on γx-γy plane. (e.g. In the case of 1 cycle of circle orbit with shear strain (γx
2
+γy

2
)

1/2
=γ, Γ becomes 2πγ.) 

We call Γ accumulated value of shear strain increment. 

 The hereditary integral in Eq. (5) needs to be discretized to numerically calculate. In order to discretize the 

integral, some functions F and G are defined as follows; 
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 where Fxi(γx, γy) and Fyi(γx, γy) are the hereditary integral of i-th plastic element in Eq. (5). Values of these 

functions are treated as state variables in calculation program. By doing Taylor expansion of first order, 

discretized hereditary integral in Eq. (5) is obtained as follows; 
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where γx
N
, γy

N
, τx

N
, τy

N
, Fxi

N
, Fyi

N
 and Gi

N
 denotes γx, γy, τx, τy, Fxi, Fyi and Gi of N step. Δγx and Δγy are defined as 

Δγx=γx
N
-γx

N-1
 and Δγy=γx

N
-γx

N-1
 respectively. 
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 In the case of applying DHI model for isolator, relation between horizontal force fx, fy and horizontal 

displacement ux, uy is given by, 
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where A is effective area of isolator and Tr is total rubber thickness. 

4. Physical meaning of material parameters 

In this section, again we show the meaning of the material parameters by deriving exact solution for one-

directional DHI model of Eq. (5) and (6). Usually, it is sufficient that number of plastic element is 1. Hence, n=1 

is considered, meaning only one rigid plastic element used and l1 and g1 are simply described as l and g 

respectively in this paper. 

 First, dependence of hysteresis loop behavior for each material parameter Ge, l and g is shown in Fig.2(a), 

(b) and (c) respectively. These hysteresis loops are analytical result under one-directional horizontal loading at 

maximum shear strain γmax=0.5, 1.0 and 2.0. Each material parameter of analysis results in Fig.2 is shown in 

Table 1.  
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(a) Dependence of Ge (b) Dependence of l (c) Dependence of g 

Fig. 2 – Dependence of hysteresis loop for material parameters 

Table 1 – Material parameters of analysis results in Fig.2. 

 
Ge 

(N/mm
2
) 

l 

 

g 

(N/mm
2
) 

(a) 0, 0.6, 1.2 0.1 5 

(b) 0.6 0.03, 0.1, 0.3 5 

(c) 0.6 0.1 0, 5, 10 
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 In order to clarify the physical meaning of material parameters Ge, l and g, we show exact solution of one-

directional DHI model. In the case of monotonic loading under one-directional DHI model, Eq. (5) is calculated 

as, 
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In the case of occurring unload at shear strain γmax from initial load, exact solution after unloading is calculated 

as follows: 
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 From Eq. (12) and (13), if loading direction of the γ is positive (i.e. dγ/dt>0), τp asymptotically approaches 

a quadratic curve represented by second term in Eq. (12).On the other hand, if loading direction of the γ is 

negative (i.e. dγ/dt<0), τp asymptotically approaches a quadratic curve represented by second term in Eq. (13). 

This asymptotic behavior does not depend on the deformation history in the past. Namely, τp is always 

asymptotic to the second term in the Eq. (12) or (13) depending on signal of dγ/dt. Hence, one-directional DHI 

model has asymptotic curve represented by quadratic curve, and form of quadratic curve depends on material 

parameter l and g. 

 As can be seen from the Eq. (12) and (13) as well as Eq. (5) and (6), Ge represents the spring constant of 

the linear spring and lg represents the magnitude of energy dissipation. Hence g governs the magnitude of energy 

dissipation together with parameter l. Hysteresis loop of τ is divided into elastic part τe (first term in Eq. (12) and 

(12)) and plastic part τp (second term in Eq. (12) and second and third terms in Eq. (13)). Each behavior of 

hysteresis curves τe, τp and τ =τe +τp are shown in Fig.3. 
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Fig. 3 – Behavior of hysteresis curve 

 From second term of Eq. (12) and third term of Eq. (13), shear stress approaches asymptotic curve 

exponentially and material parameter l characterizes the approaching rate. The smaller l is, the more instantly τp 

approaches to asymptote. That is, l has two physical meaning. First, l governs the magnitude of energy 

dissipation mentioned above. Second, l characterizes the manner of curvature variations and represents the 

unloading stiffness curvature of hysteresis curve. Hysteresis curve behaves perfect rigid at the limit of l→0. 

Comparison between asymptotic curve and hysteresis curves with different values of l are shown in Fig.4. As 

τe 

τe+τp 

 
τp 
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can be seen from Fig.4, if l is sufficiently small, intercept of hysteresis loop equals to gl(2l
2
+1) or -gl(2l

2
+1). 

Summary of physical meaning of material parameters is indicated in Table 2. 

Table 2 – Physical meaning of material parameters. 

Ge Spring constant of linear spring. 

l 

(1) Constant which characterizes the manner of curvature variations and represents the unloading 

stiffness curvature of hysteresis curve. 

(2) Constant of proportionality for magnitude of energy dissipation. 

g Constant of proportionality for magnitude of energy dissipation. 
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Fig. 4 – Hysteresis curves with different values of l in the case of gl=1 

5. Applicability and flexibility of DHI model 

In this section, we show applicability of the DHI model for high damping rubber bearing of various sizes. In 

addition, we show the flexibility of DHI model by comparing analysis result with test result of two types of HRB. 

The one has 0.620MPa of shear modulus and 0.24 of equivalent damping ratio, the other has 0.392MPa of shear 

modulus and 0.22 of equivalent damping ratio. We call the former as HRB(0.6) and the latter as HRB(0.4). 

HRB(0.4) has smaller stiffness and smaller damping ratio compared with HRB(0.6). Material parameters for 

HRB(0.6) and HRB(0.4) are shown in Table 3. 

 Comparison of hysteresis loop between test result of HRB and analysis result is shown in Fig.5 and Fig.6. 

Test specimens are indicated in Table 4 and test conditions for HRB(0.6) and HRB(0.4) are shown in Table 5 

and 6 respectively.  As can be seen from Fig.5, analysis result shows good agreement with test result including 

two-directional random loading test independent of size. This applicability is one of the merits of using DHI 

model. In addition, as can be seen from Fig.5 and Fig.6, analysis result shows good agreement with test result 

independent of rubber type. So, DHI model can apply HRB independent of its stiffness or damping ratio. This 

flexibility is one of the merits of using DHI model as well. 

 

Table 3 – Determination results of model parameters 

 Ge (N/mm
2
) g (N/mm

2
) l (-) 

HRB(0.6) 0.38 0.85 0.28 

HRB(0.4) 0.25 0.50 0.40 
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Table 4 – Test specimens 

Test specimen No. No.1 No.2-5 No.6 No.7-8 

Rubber type HRB(0.6) HRB(0.6) HRB(0.6) HRB(0.4) 

Outer diameter (mm) 158 225 1800 158 

Inner diameter (mm) 0 0 90 0 

Thickness of rubber (mm) 1.26 1.6 11.1 1.26 

Number of layers 31 28 29 25 

Thickness of insert plate (mm) 0.8 1.0 5.8 0.8 

 

Table 5 – Test conditions of HRB(0.6) 

Test No. Compressive 
stress(N/mm2) Wave form (Orbit) *1 *2 Test specimen No. 

H6-No.1 10.7 γxmax=2, 1cycle, f=0.01Hz, γymax=1, 2cycle, f=0.02Hz  (sinusoidal) No.1 

H6-No.2 15.0 Orbit obtained from seismic response analysis result for Tokachi-Oki 
earthquake recorded at Hachinohe in 1968. No.2 

H6-No.3 15.0 Orbit obtained from seismic response analysis result for Tokachi-Oki 
earthquake recorded at Kushiro in 2003. No.3 

H6-No.4 15.0 Orbit obtained from seismic response analysis result for Tokachi-Oki 
earthquake recorded at Tomakomai in 2003. No.4 

H6-No.5 15.0 Orbit obtained from seismic response analysis result for Hyougo-Ken 
Nanbu-Oki earthquake recorded at Takatori in 1995. No.5 

H6-No.6 15.0 Orbit obtained from seismic response analysis result for Tokachi-Oki 
earthquake recorded at Tomakomai in 2003. No.6 

H6-No.7 15.0 Orbit obtained from seismic response analysis result for Hyougo-Ken 
Nanbu-Oki earthquake recorded at Takatori in 1995. No.6 

*1 Each orbit is shown in Fig.5. *2 f represents frequency. 

 

Table 6 – Test conditions of HRB(0.4) 

Test No. Compressive 
stress (N/mm2) Wave form (Orbit) *1 *2 Test specimen 

No. 

H4-No.1 11.0 
Uni-directional loading (γy=0, sinusoidal wave) 

 γxmax=1 (3cycle and f=0.1Hz), 2 (3cycle and f=0.1Hz), 3 (1cycle and f=0.1Hz) 
No.6 

H4-No.2 11.0 

Elliptical orbit (sinusoidal wave) 

γxmax=1 (3cycle and f=0.1Hz), 2 (3cycle and f=0.1Hz), 3 (1cycle and f=0.1Hz) 

γymax=0.5 (3cycle and f=0.1Hz), 1 (3cycle and f=0.1Hz), 1.5 (1cycle and 
f=0.1Hz) 

No.7 

*1 Each orbit is shown in Fig.6. *2 f represents frequency. 
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Fig. 5 – Loading orbit and comparison with test result of relation between shear stress and shear strain (HRB(0.6)) 
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Fig. 5 – Loading orbit and comparison with test result of relation between shear stress and shear strain 

(HRB(0.6)) 
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Fig. 6 – Loading orbit and comparison with test result of relation between shear stress and shear strain 

(HRB(0.4)) 

6. Example of time history response analysis for one mass system model 

In this section, we show an example of numerical simulation. Simulation model is two-directional one mass 

system with high damping rubber bearing modeled by DHI model. Equation of motion is given by, 
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                                 (14)                         

where m is mass of upper structure, ux and uy are displacement for x and y direction respectively, τx and τy are 

shear stress of isolator for x and y direction respectively, A is effective area of isolator, Tr is total rubber 

thickness and  αx and αy and are acceleration by earthquake for x and y direction respectively. In this example, we 

calculate Eq. (14) by Euler method for simplicity. Discretized Eq. (14) whose both sides divided by m for Euler 

method is given by, 
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                 (15) 

where vx and vy denote velocity for x and y direction respectively, Δt is time increment and N is step number of 

calculation. We choose high damping rubber as HRB(0.6). Earthquake acceleration and other parameters are 

shown in Table 7. As can be seen from Table 7, we select acceleration function as sinusoidal wave. However, 

frequency is different for each direction. 

 A result of time history analysis using HDR modeled by DHI model is shown in Fig.7. Example of 

program for Fortran is shown in Appendix. As can be seen from Appendix, program has no branches and so 

simple. This simplicity is one of the merits of using DHI model. 

Table 7 – Parameter values and analysis condition 

parameter unit value or function 

m kg 1500000 

A m
2 

1 

Tr m 0.2 

αx m/sec
2 

10 sin(2πt) 

αy m/sec
2 

10 sin(3πt) 

Time increment Δt sec 0.001 

Total time sec 10 
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Fig. 7 – Result of time history analysis. 
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7. Conclusions 

In this paper, we clarify the physical meanings show the computing algorithm of DHI model and time history 

analysis using the model. By comparing various test results, we show the applicability and flexibility of DHI 

model. In addition, we show computing algorithm of DHI model. Thus, by using DHI model, structural 

engineers can become designing seismically isolated structure more accurately. 
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9. Appendix 

In this appendix, an example of program of time history analysis using DHI model for Fortran is shown. In this 

program, SI units are used. Parameters m, A, Tr, Ge, g, l, dt and pi denotes m, A, Tr, Ge, g, l, Δt and π 

respectively. Variables ux, uy, vx, vy, dux, duy, dvx, dvy, t, F_Fx, F_Fy and F_G denotes ux, uy, vx, vy, ux
N+1

-ux
N
, 

uy
N+1

-uy
N
, vx

N+1
-vx

N
, vy

N+1
-vy

N
, t, Fx, Fy and G respectively. This program outputs time t, displacement for x-

direction ux and displacement for y-direction uy. 

      implicit logical (a-z) 
      integer i 
      real*8 ux,uy,vx,vy,dux,duy,dvx,dvy,dt,m,a,Tr,Ge,g,l, 
     &       F_Fx,F_Fy,F_G,pi,t 
c =====Definition of Parameter===== 
      m=1500000.d0 
      A=1.d0 
      Tr=0.2 
      Ge=380000.d0 
      g=850000.d0 
      l=0.28 
      dt=0.001d0 
      pi=3.14159265d0 
c =====Definition of Initial Value 
      ux=0.d0 
      uy=0.d0 
      vx=0.d0 
      vy=0.d0 
      F_Fx=0.d0 
      F_Fy=0.d0 
      F_G=0.d0 
c =====Start of Time History Analysis by Euler Method 
      do i=0,10000 
       t=dble(i)*dt 
c =====Calculation of Incremental Displacement and Velocity Using Eq. (11) 
       dux=dt*vx 
       duy=dt*vy 
       dvx=dt*(-Ge*A*ux/Tr/m-g*F_Fx*A/m-2.d0*dsin(2.d0*pi*t)) 
       dvy=dt*(-Ge*A*uy/Tr/m-g*F_Fy*A/m-2.d0*dsin(2.d0*pi*1.5d0*t)) 
c =====Update of Fx, Fy and G using (5) and (6) 
       F_Fx=F_Fx-F_Fx/l*dsqrt(dux*dux/Tr/Tr+duy*duy/Tr/Tr) 
     &  +((ux*ux/Tr/Tr+uy*uy/Tr/Tr)/3.d0-2.d0*F_G/3.d0+1.d0)*dux/Tr 
       F_Fy=F_Fy-F_Fy/l*dsqrt(dux*dux/Tr/Tr+duy*duy/Tr/Tr) 
     &  +((ux*ux/Tr/Tr+uy*uy/Tr/Tr)/3.d0-2.d0*F_G/3.d0+1.d0)*duy/Tr 
       F_G=F_G-F_G/l*dsqrt(dux*dux/Tr/Tr+duy*duy/Tr/Tr) 
     &  +ux*dux/Tr/Tr+uy*duy/Tr/Tr 
c =====Update of Displacement and Velocity 
       ux=ux+dux 
       uy=uy+duy 
       vx=vx+dvx 
       vy=vy+dvy 
c =====Output of Result 
       write(*,*)t,ux,uy 
      end do 
      end 
 


