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Abstract 
Cloud Analysis is based on simple regression in the logarithmic space of structural response versus seismic intensity for a 
set of registered records. This method is particularly efficient since it involves non-linear analysis of the structure subjected 
to a set of un-scaled ground motion time-histories. The simplicity of its underlying formulation makes it a quick and 
efficient analysis procedure for fragility assessment and/or performance-based safety-checking. Nevertheless, the Cloud 
Analysis has some limitations; such as, the assumption of a constant conditional standard deviation for probability 
distribution of the structural response given intensity. Arguably, with the increasing levels of intensity, the conditional 
dispersion in displacement-based response parameters given intensity may increase. Another complication arises when the 
structure becomes dynamically unstable (or when the analysis software encounters non-convergence problems, or the 
Collapse of the building due to large demands takes place) by subjecting to some of the ground motion records used for 
Cloud Analysis. In such cases, the assumption that structural response given intensity is described by a Log Normal 
probability distribution with constant standard deviation (one of the underlying assumptions of the Cloud Analysis) no 
longer holds. However, the method can still be applied to the portion of Cloud response that does not include cases of 
dynamic instability. Thus, the probability of exceeding a specific structural response value given ground motion intensity 
can be expressed, using the Total Probability Theorem, as the sum of two probability terms. These terms correspond to the 
two mutually exclusive and collectively exhaustive portions of the Cloud response; namely, without cases of dynamic 
instability and with cases of dynamic instability. In such formulation, the probability of dynamic instability given seismic 
intensity can be calculated by using a generalized regression model (e.g., logistic regression). The transverse frame of a 
seven-story existing building in Van Nuys, CA, which is modeled in OpenSees considering the flexural-shear-axial 
interactions, is employed in order to demonstrate this procedure. The critical demand to capacity ratio, corresponding to the 
component or mechanism that leads the structure closest to the onset of limit state (e.g., near collapse), is adopted as the 
structural response parameter. This structural response parameter, that is equal to unity at the onset of limit state, can 
encompass both ductile and fragile failure mechanisms. Moreover, it can register a possible shift in the governing failure 
mechanism with increasing intensity. The results for probabilistic demand assessment based on the Cloud Analysis 
considering the cases of dynamic instability are compared with those obtained based on non-linear dynamic analysis 
methods such as Incremental Dynamic Analysis and Multiple Stripe Analysis. It is demonstrated that, with a careful 
selection of ground motion records, this method leads to reasonably accurate results with considerably reduced analysis 
effort. 

Keywords: Cloud Analysis; Non-linear Dynamic Analysis methods; Generalized Regression Model; Performance-based 
Seismic Assessment; Probability of Collapse 
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1. Introduction 
Many existing reinforced concrete (RC) moment-resisting frame buildings in regions with high seismicity were 
built without adequate seismic-detailing requirements and are particularly collapse-prone buildings. Identifying 
accurately the level of performance can facilitate an efficient seismic assessment and classification of these 
buildings. In this context, analytic structural fragility assessment is one of the fundamental steps in the modern 
performance-based engineering [1]. The structural fragility can be defined as the conditional probability of 
exceeding a prescribed limit state given the intensity measure (IM). There are alternative non-linear dynamic 
analysis procedures available in the literature for characterizing the relationship between engineering demand 
parameters (EDPs) and IM based on recorded ground motions, such as, the Incremental Dynamic Analysis (IDA, 
[2] Multiple-Stripe Analysis (MSA, see [3]) and the Cloud Method [4-10]. The nonlinear dynamic methods such 
as IDA and MSA are suitable for evaluating the relationship between EDP and IM for a wide range of IM 
values; however, their application can be quite time-consuming as the non-linear dynamic analyses are going to 
be repeated (usually for scaled ground motions) for increasing levels of IM.  

The Cloud Method is particularly efficient since it involves the non-linear analysis of the structure 
subjected to a set of un-scaled ground motions. The simplicity of its underlying formulation makes it a quick and 
efficient analysis procedure for fragility assessment [7-10] or safety-checking [6]. Nevertheless, the Cloud 
Analysis has two main limitations: (a) it is assumed that the conditional standard deviation in EDP given IM is a 
constant and does not depend on the intensity level, (b) complication arises when the structure experiences 
global dynamic instability (manifesting itself as very high global displacement-based demands or non-
convergence problems in the analysis software) due to a certain record or records belonging to the suite of 
records used for Cloud Analysis. In the latter, the assumption of describing the EDP given IM as a Log Normal 
probability distribution with constant standard deviation (one of the underlying assumptions of the Cloud 
Analysis) no longer holds. However, the method can still be applied to the portion of Cloud response that does 
not include cases of dynamic instability. Thus, the probability of exceeding a specific level of EDP given IM can 
be expressed as the sum of two mutually exclusive and collectively exhaustive terms using the Total Probability 
Theorem [11], addressing the portion of the Cloud response without cases of dynamic instability and with cases 
of dynamic instability, respectively. Accordingly, the probability of global dynamic instability given IM can be 
calculated by using a generalized regression model (herein, logistic regression). 

As a numerical example, the transverse frame of a seven-story existing RC building in Van Nuys, CA, 
modeled in Opensees by considering the flexural-shear-axial interactions in the columns, is employed. Because 
of the old construction philosophy, column members are sensible to possible shear failure during earthquakes; 
hence, a non-linear model is used to predict an envelope of the cyclic shear response [12, 13]. This envelope 
includes the shear displacement and corresponding strength predictions at the peak strength, onset of lateral 
strength degradation, and loss of axial-load-carrying capacity. The adopted engineering demand parameter 
(EDP) is the critical demand to capacity ratio [14] corresponding to the component or mechanism that leads the 
structure closest to the onset of near collapse limit state. This structural response parameter, that is equal to unity 
at the onset of the desired limit state, can encompass both ductile and fragile failure mechanisms. The results for 
probabilistic demand assessment based on the Cloud Analysis with explicit consideration of the cases of global 
dynamic instability, are compared with those obtained based on IDA. It is demonstrated that, with a careful 
selection of ground motion records, this method leads to reasonably accurate results with considerably reduced 
analysis effort.  

2. Methodology 
2.1. Structural Performance Variable 
The EDP herein is taken to be the critical demand to capacity ratio [10, 14] denoted as YLS and defined as the 
demand to capacity ratio for the component or mechanism that brings the system closer to the onset of limit state 
LS (herein, the near collapse limit state). The formulation is based on the cut-set concept [15], which is suitable 
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for cases where various potential failure mechanisms (both ductile and fragile) can be defined a priori.  YLS , 
which is always equal to unity at the onset of limit state, is defined as: 

 max min
( )

mech l jlN N
LS l j

jl

D
Y

C LS
=  (1) 

where Nmech is the number of considered potential failure mechanisms; Nl the number of components taking part 
in the lth mechanism; Djl is the demand evaluated for the jth component of the lth mechanism; Cjl(LS) is the limit 
state capacity for the jth component of the lth mechansim. The capacity values refer to the near collapse limit 
state in this work, but the procedure can be repeated for any other prescribed limit state. In the context of this 
work, D is the demand expressed in terms of maximum chord rotation for the component, denoted as θmax, and 
computed based on the nonlinear dynamic analysis. C is the component chord rotation capacity denoted as 
θultimate, θyielding-flexure, or θaxial corresponding to the ultimate, flexural yield, and axial capacities, respectively: 

 θultimate corresponds to the point on the softening branch of the force-deformation curve of the member (taking 
into account the nonlinear deformations associated with flexure and shear), where a 20% reduction in the 
maximum strength takes place 

 θyielding-flexure corresponds to the point where the yielding of the reinforcements takes place in the flexural 
force-deformation  relationship of the member. 

 θaxial corresponds to the point associated with the complete loss of vertical-load carrying capacity of the 
component on the softening branch. 

 
In summary, the possible failure mechanisms in this study can be categorized as: 

Table 1 – Potential failure mechanisms 

Failure Type Component(s) Definition / Description 
Ductile column / beam 

θmax>θultimate Brittle column 
Soft-story mechanism all columns of one story  θmax>θyielding-flexure 

Partial mechanism for a number of adjacent stories: all beams + bottom 
and top columns θmax>θyielding-flexure 

Global mechanism for the entire building: all beams + base columns θmax>θyielding-flexure 
*Note that θmax refers to the flexural portion of component chord rotation when compared to θyielding-flexure  

When predicting non-linear response of structures, it is necessary to account for the possibility that some 
records may cause global “Collapse”; i.e., very high global displacement-based demands or non-convergence 
problems in the analysis software. It is obvious that, YLS>1 for the limit state of near-collapse does not guarantee 
the exceedance of collapse limit state. Herein, the cases of collapse are identified explicitly by verifying the 
following criteria for structural collapse: 

Table 2 – Potential global “Collapse” mechanisms 

Collapse Type Component(s) Definition / Description 

Ductile 50% +1 of the columns of one story (adopted somehow 
arbitrarily herein) θmax>θultimate 

Brittle 50% +1 of the columns of one story (see [16]) θmax>θaxial 
2.2. Nonlinear Dynamic Analysis Procedure 
In order to estimate the structural fragility, Cloud Analysis is adopted herein as the nonlinear dynamic analysis 
procedure. For a suite of ground motion waveforms, the cloud data encompass pairs of ground motion IM and its 
corresponding structural performance variable YLS (see Eq. 1) for each record. Herein, IM is adopted as the 
spectral acceleration at the first-mode period, Sa(T). The cloud data can be separated to two parts: (a) NoC data 
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which correspond to that portion of the suite of records for which the structure does not experience “Collapse”, 
(b) C data for which the structure leads to “Collapse” (see Table 2). The fragility, expressed generally as the 
conditional distribution of YLS given Sa, can be expanded with respect to NoC and C data as follow using the 
Total Probability Theorem (see also [3, 7]):  

 ( ) ( ) ( ) ( ) ( )1| 1| , | 1| , |LS LS LSP Y Sa P Y Sa NoC P NoC Sa P Y Sa C P C Sa> = > × + > ×  (2) 

The probability terms in Eq. (2) are described clearly as follows: 

 The NoC term P(YLS>1|Sa,NoC) is the conditional distribution of YLS|Sa given NoC, and can be described by a 
lognormal distribution (a widely used assumption that has been usually verified for cases where the 
regression residuals represent unimodal behaviour, see e.g. [3, 5]): 

 ( ) ( ) | , | ,

| , | ,

ln ln
1| , ln 0 | , 1 LS LS

LS LS

Y Sa NoC Y Sa NoC
LS LS

Y Sa NoC Y Sa NoC

P Y Sa NoC P Y Sa NoC
η η

β β

   −
> = > = − Φ = Φ      

   
 (3) 

where Φ is the standardized Gaussian cumulative distribution function (CDF),  ηYLS|Sa,NoC and βYLS|Sa,NoC are 
conditional median and standard deviation (dispersion) of the natural logarithm of YLS for NoC data. Based on 
the standard Cloud Analysis procedure, these two parameters can be directly obtained by performing a 
logarithmic linear regression on the NoC data. Assuming NNoC be the number of NoC data: 

 ( )
( )2

, ,

ln ln ln( )
ln ln ln ,

2
NoC

LS LS

LS

Y Sa NoC Y Sa NoC
NoC

Y a b Sa
a b Sa

N
η β Ω

− −

= + =
−

∑
 (4) 

 The C term P(YLS>1|Sa,C) is the conditional distribution of YLS|Sa given C  and is equal to unity, i.e. in the 
cases of global dynamic instability (global Collapse), the limit state LS is certainly exceeded. 

 The term P(C|Sa)=1-P(NoC|Sa) is probability of global dynamic instability (Collapse), which can be 
expressed by a logistic regression model (a.k.a., logit) on the Sa values of the entire cloud data: 

 ( ) ( )0 1.

1|
1 Sa

P C Sa
e β β− +

=
+

 (5) 

where β0 and β1 are the parameters of the logistic regression. It is to note that the logistic regression model 
belongs to the family of generalized regression models and is particularly useful for cases in which the 
regression dependent variable is binary (i.e., can have only two values 1 and 0, yes or no, which is the case of 
C and NoC herein). Note that the logistic regression model described above is applied to all records; they are 
going to be distinguished by 1 or 0 depending on whether they lead to C or NoC. 

3. Numerical Application 
3.1. Building Model Description 
The transverse frame of the seven-story existing Van Nuys Hotel building in the San Fernando Valley of Los 
Angeles County, CA [3, 7, 8 17] is re-modeled using OpenSees (http://opensees.berkeley.edu, ver. 2.4.5), 
considering the flexural-shear-axial interactions (see Fig. 1a). The structure was originally designed in 1965 
according to the 1964 Los Angeles City Building Code, and built in 1966. The building was severely damaged in 
the M 6.7 1994 Northridge earthquake. After the 1994 earthquake, the building was retrofitted with new 
reinforced concrete shear walls; however, the modeling features are consistent with the original building prior to 
the 1994 Northridge earthquake. The structural system is cast-in-place RC moment-resisting frame, regular in 
elevation, with non-ductile column detailing according to the new Building Regulations. Lateral force resistance 
is provided primarily by the perimeter moment frames, although the interior columns and flat slabs also 
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contribute to lateral stiffness. The information regarding section dimensions, reinforcement bars, ties, and 
material properties for all the frame elements are summarized in [17]. 

 

Flexural Beam-Column 
with Fiber Section

 

Fig. 1 – (a) Geometric configuration of the transverse frame, (b) Elements used for modeling the 
columns in the Combined Model 

Two different models of the existing frame is developed herein: (a) Flexural Model considers only the flexural-
axial behavior of the beam-column members; (b) Combined Model takes into account the flexural-shear-axial 
interactions of the columns, assuming a total lateral deformation response as the sum of two different 
contributions (i.e., flexure and shear). Although modeling issues are not the primary goal of this paper, they are, 
however, key features in the assessment of an existing building; thus, they should be verified carefully. The 
beams and columns are modeled using force-based beam-column elements considering fiber-sections in 
OpenSees. Plastic hinge integration method (herein, Modified Radau Hinge Integration, [18]) is used to assign 
inelastic actions at the end regions of the element with specified length while the remainder of the element 
behaves linearly elastic. Concrete behavior is simulated using the Concrete01 material with peak strength 
achieved at a strain of 0.002 and minimum post-peak strength achieved at a strain of 0.004. Longitudinal 
reinforcing steel is modeled using the Steel02 material with a post-yield modulus equal to 1% of the elastic 
modulus. Each RC column in the Combined Model is defined using the flexural beam-column and the shear 
spring elements in series, as shown schematically in Fig. 1b. Thus, the total displacement response is the sum of 
the displacement of each element. 

The shear springs are implemented in OpenSees as a zero-length element with a uniaxial hysteretic 
material and the force-deformation following the shear curve in the direction of shear force. For modeling the 
nonlinear shear behavior of columns, the lateral force/shear displacement curve of the columns are estimated 
with three points (see [12]: (a) maximum shear strength and corresponding shear displacement; (b) onset of shear 
strength degradation; (c) shear displacement at axial load failure. The shear strength is calculated using the 
model proposed by [19], which has a factor k to account for ductility-related strength degradation: 

 
0.5

1 0.8
/ 0.5

v y c
n s c g

c g

A f d f PV V V k k A
s a d f A

 
 = + = + +
 
 

 (6) 

where Vs and Vc are the contributions of stirrups and concrete to shear strength; Av is the transverse 
reinforcement area with a spacing s in the loading direction; fy is the transverse reinforcement yield strength; d is 
the section depth; fc is the compressive strength of concrete; a is the shear span of the element; P is the axial load 
of the section; Ag is the gross area of the section; k equals 1.0 for displacement ductility less than 2, to be equal 
to 0.7 for displacement ductility exceeding 6, and to vary linearly for intermediate displacement ductilities. The 
total response of the column due to shear and flexure is obtained herein by on pre-analysis column failure 

(b)   (a) 
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category classification according to [12]. This task is accomplished by comparing the shear strength Vn, the yield 
strength Vy, and the flexural strength Vp of columns. The displacement at the onset of shear failure, ∆v,u, is 
adopted from [20], and is calculated as: 

 , ,(4 12 )n
v u v n

v
fc

∆ = − ⋅ ⋅∆  (7) 

where vn is the shear stress at peak strength (vn=Vn/bd, where b is the column width); ∆v,n is the shear 
displacement at peak strength computed by Response-2000 (http://www.ecf.utoronto.ca/~bentz/home.shtml, 
[21]). The shear displacement at axial load failure, ∆v,f, is calculated as: 

 , , ,v f ALF f f v u∆ = ∆ − ∆ ≥ ∆  (8) 

where ∆ALF is the total displacement at axial load failure and ∆f,f is the flexural displacement at the point of axial 
load failure. It is noteworthy that the bar slip contribution to the total displacement of the element has been 
neglected herein. The total displacement at axial load failure is defined as follows [22]: 

 
24 1 tan

100
tan

tan

ALF

v y c

L
sP

A f d

θ

θ
θ

+
∆ = ⋅

 
+   

 

 (9) 

where tan θ is the angle of shear crack, and dc is the depth of the concrete core. Fig. 2 illustrates the flexural, 
shear, and the combined force-deformation curves for central column in the second story for the Combined 
Model. The three above-mentioned points are demonstrated on the component shear lateral force-deformation 
diagram (Fig2.b): point 1 is the maximum strength point Vn, point 2 shows the onset of shear degradation ∆v,u, 
and finally point 3 is the axial load failure ∆v,f. With reference to the flexural curve, θyielding-flexure corresponds to 
the demand associated with the cyan dot point (Fig2.a). In addition, θultimate is defined with red star on the total 
lateral force-displacement curve (Fig2.c) while the red dot point shows θaxial correspond to the axial failure.  

0 0.02 0.04 0.06 0.08 0.1
0

50

100

150

200

250

300

350

Flexural Displacement (m)

La
te

ra
l l

oa
ds

 (k
N

)

Central Columns 2nd Story

 

 

Flexural curve
Vp
Vy

 
0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

250

300

350

Shear Displacement (m)

La
te

ra
l l

oa
ds

 (k
N

)

Central Columns 2nd Story

 

 

Shear curve
Vn1 2

3

 
0 0.02 0.04 0.06 0.08 0.1

0

50

100

150

200

250

300

350

Total Displacement (m)

La
te

ra
l l

oa
ds

 (k
N

)

Central Columns 2nd Story

 

 

Combined curve
Near collapse limit state
Collapse limit state

 
Fig. 2 – The flexural, shear, and the total force-deformation curves, the Combined Model 

3.2. Ground-Motion Selection 
A set of 35 ground motion records are used based on the Silva Catalog [7, 22] for different sites in California. 
These records were all recorded on stiff soil (Geo-Matrix soils types C and D, Vs

30=259÷569 m/s) and were 
selected from a moment magnitude in the range of 5.0<M<7.5 and “Joyner-Boore” site-to-source-distance 
(defined as the shortest distance from a site to the surface projection of the rupture plane) in the range of 
0.1km<R<115km. It is to note that two specific criteria have been used for records selection: (1) making sure 
that the suite of selected records achieve high a high dispersion in the adopted intensity measure (herein, first-
mode spectral acceleration); (2) making sure that the suite of selected records manages to cover both sides of 
YLS=1 in a roughly balanced manner (in simple terms: making sure that several records lead to YLS>=1). 
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 The nonlinear dynamic analysis methods, presented in the next section, are based on this sample of 35 records. 
Fig. 3 illustrates the spectral acceleration of the suite of 35 records. Note that the spectral acceleration at the 
first-mode period, Sa(T1), is the IM used in this study where T1 is 0.78 sec and 0.89 sec for the Flexural and 
Combined Models, respectively. 
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Fig. 3 – The spectral acceleration of the suite of 35 records used in this study 

3.3. Cloud analysis 
As explained comprehensively in Section 2.2, the Cloud Analysis is a nonlinear dynamic procedure in which the 
structure is subjected to a set of (un-scaled) ground motion records covering a wide range of IM, herein Sa(T1), 
values. The generated cloud data are the pairs of [YLS, Sa] associated with the suite of ground motion waveforms. 
The “Cloud” method provides estimates of the two statistical parameters of YLS|Sa, namely the median and 
standard deviation, by performing a logarithmic linear regression on the cloud data. Accordingly, in cases where 
the “Collapse” or the global dynamic instability of the structure do not take place due to records in the suit of 
ground motions, (i.e., no C data exist), the fragility expressed as P(YLS>1|Sa) can directly be estimated from Eq. 
(3) based on the logarithmic linear regression on the entire cloud data. On the other hand, if C data exist (there 
are records that cause Collapse), the fragility is calculated directly by implementing Eq. (2) using the logarithmic 
linear regression on the NoC data (Eq. 4), and a logistic regression on the entire cloud data (Eq. 5).  

Fig. 5a shows the Cloud data and the associated Cloud regression for the flexural model where no C data 
exist. For each scatter Cloud response (colored squares), the corresponding record ID is shown. Accordingly, 
Fig. 5b illustrates the same results for the Combined Model, where 2 records out of 35 ground motions cause 
global dynamic instability (C data) as shown with red-colored squares. The estimated median and dispersion are 
shown on the figures separately. Moreover, the line YLS=1 corresponding to the onset of Near Collapse limit state 
is shown with red-dotted line on each figure. The lognormal distribution shown in Fig. 5a denotes the 
distribution of YLS given that Sa(T1)=0.15g, while the lognormal distribution shown in Fig. 5b indicates the 
distribution of YLS|Sa(T1)=0.20g. 

In addition, the fragility curves for both models are calculated; for the Combined Model with collapse-
cases, the expression in Eq. (2) considering the collapse-cases explicitly by a Logistic regression model is plotted 
as thick black lines. This curve is compared with the fragility curves calculated from Eq. (3) considering only the 
non-collapse data (dashed grey line). It can be seen that the explicit consideration of collapse-cases based on the 
procedure described in Section 2.2 leads to a slight difference (the fragility shifts to the left which means that the 
structure becomes slightly more vulnerable). 
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Fig. 4 – The Cloud Regression for (a) Flexural Model, (b) Combined Model 
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Fig. 5 – The fragility curves for the Near Collapse limit state (a) Flexural Model, (b) Combined Model 

The fragility function as expressed in Eq. (2) is actually a Complementary CDF (CCDF) for the exceedance of 
Near Collapse limit state where YLS>1. Accordingly, the CDF of YLS|Sa for a given demand yLS can be denoted as 
FYLS|Sa(yLS), and derived as follows [7]: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

|

| ,

| ,

| 1 | , |

ln ln
| , | |

LS

LS

LS

Y Sa LS LS LS LS LS

LS Y Sa NoC
LS LS

Y Sa NoC

F y P Y y Sa P Y y Sa NoC P NoC Sa

y
P Y y Sa NoC P NoC Sa P NoC Sa

η
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= ≤ = − >  
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= ≤ = Φ   
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 (10) 

Eq. (10) can be used in order to calculate the demand value, yp
LS, corresponding to percentile p of the distribution 

FYLS|Sa (i.e., the p% demand value) by setting the left side of the equation equal to p and solving it for yp
LS: 

 
( )

1
| , | ,exp

|LS LS

p
LS Y Sa NoC Y Sa NoC

py
P NoC Sa

η β −
  

= ⋅ ⋅Φ      
 (11) 

where Ф-1 is the inverse function of standardized normal distribution. Fig. 6 shows the 16th, 50th and 84th 

percentiles of the demand response YLS as a function of the spectral acceleration for the Combined model in two 
different cases: (a) considering only NoC data where P(NoC|Sa) becomes 1 in Eq. (11); (b) taking into account 
Collapse information (C data) where P(NoC|Sa) is estimated based on the Logistic Regression model (Eq. 5) for 
different spectral acceleration levels. It is revealed that the percentiles in the two cases are very close up to 
YLS=1. The deviation of the predictions, as can be anticipated, are associated with large demand values YLS>1. As 

         (a) (b) 

(b)          (a) 
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a result, calculation of percentiles by using Eq. (11) considering the Collapse information has the advantage of 
“catching” the flattening of percentile curves associated with the occurrence of global Collapse of the structure at 
high demand values. 
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Fig. 6 – The 16th, 50th and 84th percentiles of performance variable YLS given Sa estimated based on the Cloud analysis 

using only no-collapse data, and also considering Collapse data 

3.4. IDA analysis 
Each IDA curve herein shows the variation in the performance variable YLS for a given ground motion record as 
a function of Sa(T1) while the record is scaled-up linearly in amplitude. Fig. 7 illustrates the IDA curves (in thin 
grey lines) with respect to YLS for the suite of 35 ground-motions defined in Section 3.2, considering both 
Flexural and Combined Models. The vertical red line plotted at YLS=1 demonstrates the dispersion in the spectral 
acceleration values SaY=1 plotted as red-star points. The figure also demonstrates the (Log-Normal) probability 
density function fitted to the SaY=1 values. This probability density is later represented in the form of a CDF to 
define the fragility function associated with IDA results (see also [14]). The horizontal red-dashed line represents 
the median of SaY=1 values (denoted as ηSaY=1) from IDA analysis. In order to facilitate the comparison with 
Cloud Analysis results, the corresponding Cloud data (the squares) and the regression prediction (blue line) are 
also plotted. The spectral acceleration value corresponding to YLS=1 from the Cloud regression prediction 
(derived as ηSaY=1,Cloud = (1/a)1/b) represents the median spectral acceleration capacity corresponding to Cloud 
analysis for the Near Collapse limit state. The horizontal blue dash-dotted line represents ηSaY=1,Cloud, which can 
be compared with the ηSaY=1 from the IDA results.  
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Fig. 7 – IDA curves, Cloud data, and the regression prediction for (a) Flexural Model, (b) Combined Model 
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According to Fig. 7a, for the Flexural model, ηSaY=1=0.58g while ηSaY=1,Cloud=(1/a)1/b=0.67g. The 
difference between the results from Cloud analysis and IDA can be attributed to the fact that there are several 
Cloud data in the range of low Sa and low YLS values while the data around YLS=1 are not very well distributed. 
This seems to shift the Cloud prediction towards higher spectral acceleration values for YLS=1 which leads to 
over-estimation of the structural capacity. However, for the Combined Model in Fig. 7b, the blue-dotted line 
shows the Cloud regression on the NoC data while the blue-solid line reveals the 50th percentile y50

LS (see Eq. 
11). The value y50

LS is the Cloud median prediction including the C data (shown by red squares). Although the 
regression prediction still seems to be governed by many Cloud data close to the origin, the Cloud analysis 
manage to adequately and more densely populate the zone of interest in the vicinity of YLS=1. As a result, the 
Cloud regression with y50

LS lead to median spectral acceleration capacity estimate ηSaY=1,Cloud=0.48g which is very 
close to that obtained by the IDA with ηSaY=1=0.45g. Hence, it is quite important to ensure that the ground motion 
records selected for Cloud Analysis manage to properly distributed around YLS=1. 

In order to have a better insight into the comparison between Cloud analysis and IDA results, Fig. 8 
illustrates the 16th, 50th and 84th percentiles of performance variable YLS given Sa estimated based on both 
nonlinear dynamic procedures and for both Flexural and Combined Models. It can be seen that consideration of 
collapse information (as shown in Fig. 8b) properly manage to capture the trend in IDA results up to YLS around 
1.5. Nevertheless, the results from both type of analyses deviates in case of Flexural model even for YLS values 
less than 1.  

Finally, the resulting Log Normal fragility curves obtained based on IDA analysis for the above-
mentioned two models are also potted as blue-dashed lines in Fig. 9. It can be observed that for the Flexural 
model (Fig. 9a), there is a decrease (shift) in the median of IDA fragility curve compared to the one from Cloud 
analysis (as revealed previously in Fig. 7a), while the dispersion of both fragilities are around 0.20. A better 
match between fragility curves is observed for the case of Combined Model in Fig. 9b, which can be contributed 
to the fact that YLS values are properly concentrated around the zone of interest (i.e., YLS=1) with respect to 
Flexural model. The dispersion of both fragility curves are estimated to be around 0.24 while there is a small 
decrease (shift) in the median associated with the IDA curve. This can also be appreciated by comparing the IDA 
and Cloud results shown in Fig. 7b.  
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Fig. 8 – IDA vs. Cloud analysis, the 16th, 50th and 84th percentiles of performance variable YLS given Sa for (a) Flexural Model, 

(b) Combined Model 
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Fig. 9 – IDA vs. Cloud analysis, the fragility curves for (a) Flexural Model, (b) Combined Model 

4. Conclusion 
The Cloud Analysis is revisited here again by means of an efficient procedure which can account for cases when 
the structure becomes dynamically unstable; i.e. when the analysis software encounters non-convergence 
problems, or the Collapse of the building due to large demands takes place. The procedure allows for linear 
regression analysis on the “No-Collapse” data while a generalized linear regression model (Logistic regression 
herein) predicts the trend in “Collapse data”. The procedure leads to development of fragility curves with the 
Collapse information explicitly included. In addition, the Cloud analysis procedure adopts for the global and 
systemic structural performance variable, denoted as YLS, defined as the demand over capacity ratio and 
calculated based on the reliability “cut-set” concept. Nevertheless, this performance variable is used not only for 
predicting the onset of limit state (when equals to unity), but also account for the possibility that some records 
may cause global Collapse of the building structure. Specifically, it is observed and concluded that: 

 A systematic handling of the collapse cases is provided within the Cloud analysis procedure by mixing a 
simple logarithmic regression model and a logistic regression model. 

 The proposed performance-based variable, YLS, defined based on cut-sets can overcome the need for 
identifying the Collapse cases by setting rather arbitrary thresholds. 

 The Cloud analysis procedure with careful record selection can lead to reasonable results in comparison 
with IDA. This also helps in achieving the softening trend in the percentiles of EDP given IM within the 
Cloud analysis, which can be frequently seen through IDA. 

  The records should be selected in a manner that the Cloud analysis manage to adequately and more 
densely populate the zone of interest in the vicinity of YLS=1. Note that pinning down the range of interest 
with Cloud data might not be achieved with the first round of structural analyses as it might require 
additional iterations involving scaling or modifications in the set of ground motion records.  
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