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Abstract 
Given the significant seismic vulnerability and complex behaviour of unreinforced masonry (URM) structures, detailed 
numerical modelling is necessary to provide better understanding and reliable prediction of their response under earthquake 
loading. However the development of accurate numerical models for URM remains a major challenge, due to the 
characteristics of the material, most notably the strong influence of the mesostructure and of the properties of the 
constituents. In previous research, most approaches employ macroscale or 2D mesoscale models, failing to fully represent 
the material in a generic way. Certain more advanced 3D mesoscale approaches have been developed mostly for monotonic 
loading conditions and their scale of application is restricted by the increased computational cost. This work proposes a 
modelling strategy which allows accurate full 3D simulation of URM under cyclic loading conditions with robustness and 
computational efficiency. A 3D quadratic mesoscale model is employed and a novel cyclic interface constitutive law is 
presented. The model is incorporated in a hierarchic partitioning framework which significantly reduces the computational 
cost broadening its applicability. 
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1. Introduction 
Unreinforced masonry (URM) is a material widely used in historical structures and in a number of modern 
constructions, for example low rise buildings and cladding walls in steel and RC infill frame buildings. Small-
scale buildings with principal structural components made of URM are still constructed, especially in zones with 
limited financial means, many of which exhibit high seismic risk. Thus the accurate FE modelling of the 
behaviour of URM in the pre- and post-peak regime is a crucial tool for design and assessment purposes. In 
general, unreinforced masonry presents a complex anisotropic behaviour due to the interaction among the 
different constitutive components. The mechanical response at structural scale depends on the properties of each 
constituent and is strongly connected to the mesostructure of the material. As a result, the development of a 
generic modelling approach describing URM components with arbitrary geometrical and material characteristics 
remains a major challenge. 

Macroelements are often used to account for the influence of URM components in coupled structures or 
for the modelling of full URM constructions [1-3]. This approach, although practical, is purely 
phenomenological and overly simplified to provide insight into the various parameters that define the wide 
response spectrum of masonry. Macroscale constitutive models [4-6] describe masonry as homogeneous material 
on a structural scale and are often chosen due to their relative simplicity. However, this approach requires a 
cumbersome parameter identification process which is not always possible, and it may lead to inaccurate failure 
mode predictions. Mesoscale modelling approaches allow a more realistic representation and response 
prediction. In this case each constituent is modelled explicitly, hence the identification of the model parameters 
relies on the identification of the basic material properties of each constituent. Most mesoscale approaches 
allowing for degradation of strength and stiffness under cyclic loading are developed in 2D, thus restricting the 
model to in-plane simulations of regular bonding patterns [7-9]. More recently, a few 3D models have been 
developed considering the possibility of cyclic loading [10,11], with their applications being restricted to single 
masonry components – e.g. walls, arches – due to the increased computational cost. 

In this work an advanced computational strategy is proposed as an efficient tool for the investigation of 
masonry structures under earthquake loading. A 3D mesoscale description of masonry is employed. Masonry 
units are modelled with continuum solid elements while mortar and brick-mortar joints are represented with 
zero-thickness interface elements accounting for both geometric and material nonlinearity, as in previous 
research investigating URM structures under monotonic loading up to collapse [12,13]. In order to extend the 
application of the mesoscale model to cyclic loading conditions, a novel cohesive fracture material model for the 
interface elements has been developed. The model is based on coupling multi-surface plasticity and damage and 
aims at capturing the main characteristics of the cyclic behaviour of masonry joints - i.e. permanent strains, 
strength and stiffness degradation and hysteretic behaviour - in a conceptually simple and robust way. The 
computational cost implicated in the above strategy is significantly reduced with the use of a hierarchic 
partitioning framework, extending the applicability of the model to the structural scale. Initial results on 
structural components and numerical-experimental comparisons demonstrate the potential of the strategy for the 
simulation of in-plane and out-of-plane cyclic behaviour of URM. 

2. Partitioned mesoscale modelling of masonry structures 
In masonry structures, bricks and blocks generally experience small deformations, while crack paths initiate and 
develop mainly along the mortar joints. Cracks can also traverse blocks, usually dividing them in two parts 
through a unique failure surface. The existence of predefined potential failure surfaces renders the use of 
cohesive interface elements suitable for the simulation of URM. 

Based on the above observation, the mesoscale model used here for the simulation of the nonlinear 
behaviour of URM combines 3D continuum solid elements – for the discretisation of the blocks – with 2D zero-
thickness cohesive interface elements – representing the mortar joints combined with the brick mortar interfaces. 
In addition, the possibility of block failure in tension and shear is included by arranging zero-thickness interface 
elements in the mid-plane of each block (see Fig.1). The 20-noded solid brick-elements employ a standard linear 
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elastic material model based on Green’s strain. Consequently, the 16-noded interface elements account for both 
the geometric and material nonlinearity of the model. The geometric nonlinearity is treated with the use of a co-
rotational approach, in which the local reference system of the zero-thickness interface element moves together 
with the mid-plane of the element [12,14]. The nonlinear material behaviour is presented in detail in the 
following section. 

          
Fig. 1 – (a) Mesoscale modelling of brick masonry; (b) Deformation of 16-noded interface elements 

  

The 3D mesoscale description allows the realistic representation of any bonding pattern, considering both 
the in-plane and the through-thickness geometry. The only important drawback of the strategy is the increased 
computational cost, due to the size of the FE model. In order to tackle this issue a domain decomposition 
framework is employed. The structure is divided in smaller partitions and each of them is analysed in parallel in 
a different processor, accelerating significantly the procedure. The method employed here [15] uses dual super-
elements, consisting of the nodes on the partition boundaries, as “parent structures”. The super-elements achieve 
a two-way communication between the partitions through an interface displacement frame method at the level of 
the parent structure. They also allow the hierarchic partitioning of the structure, as illustrated in Fig.2, which 
results in further improvement of the performance. 

 
Fig. 2 – Modelling with hierarchic partitioning 

  

3. Interface constitutive model 
The material constitutive law defines the relation between the interface tractions σ (stress measure) and the 
interface relative displacements ε (strain measure). The aim is to model all the principal characteristics of the 
constitutive behaviour of a mortar joint or a dry frictional interface – when mortar is absent – with the simplest 
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possible formulation in order to increase the efficiency and ensure numerical robustness. The most important of 
these characteristics are i) the softening behaviour in tension and shear, ii) the stiffness degradation depending 
on the level of damage, iii) the recovering of normal stiffness in compression and iv) the permanent (plastic) 
strains at zero stresses when the interface is damaged. Additionally, as the nonlinearity of the model is 
concentrated in the interface elements, the effect of masonry crushing in compression is taken into account in a 
phenomenological way, through negative plastic normal strain in the interfaces of the crushed area. 

The stress and strain measures consist of three components corresponding to the normal and the two tangential 
directions of the interface mid-plane, see Fig. 1 (b). The basis of the chosen formulation is the coupling of 
plasticity and damage and the constitutive relation has the following form: 

 𝝈 = (𝑰 − 𝑫) 𝝈� = (𝑰 − 𝑫) 𝑲𝟎 (𝜺 − 𝜺𝑷) (1) 
 

where 𝝈 = �𝜎𝑛  𝜏𝑥   𝜏𝑦�
𝑇 is the vector of nominal stresses, 𝝈� = �𝜎�𝑛  �̃�𝑥  �̃�𝑦�

𝑇 the vector of the effective stresses, I 
the identity matrix, D the diagonal damage tensor, 𝑲𝟎 the diagonal elastic stiffness matrix, 𝜺 = �𝜀𝑛  𝜀𝑥  𝜀𝑦�

𝑇the 
strain vector and 𝜺𝑷 = �𝜀𝑛

𝑝  𝜀𝑥
𝑝  𝜀𝑦

𝑝�𝑇 the corresponding plastic strain vector. As derived by Eq. (1), the plastic 
strains are coupled to the effective stresses. The damage tensor is calculated after the solution of the plastic 
problem as a function of the plastic work produced, and the nominal stresses are obtained by applying the 
damage to the effective stresses. By algorithmically decoupling the implicit solution of the plastic problem and 
the damage evolution – following the idea presented in [16] – increased efficiency and robustness is achieved. 

3.1 Multi-surface plasticity 

For the effective stress-based plasticity problem, a multi-surface limit domain is used, as shown in Fig. 3. The 
domain is defined by the tensile yield surface F1, the shear yield surface F2 and the compressive cap surface F3. 
Surface F2 is the typical frictional yield surface, which well represents the shear behaviour of joints according to 
experimental data [17]. It is defined by the cohesion c and the friction angle φ. Surfaces F1 and F3 are simplified 
linear approximations of the caps in tension and compression, defined by the limit strength of the joint in direct 
tension ft and the limit strength of masonry in direct compression fc. 

 
Fig. 3 – Limit domain of effective stresses  

 

The possibility of hardening is introduced in surface F1 in order to control the amount of plastic strains – 
i.e. control the level of stiffness degradation. The complete multi-surface plasticity problem is described by the 
following set of equations: 

 𝝈� = 𝜥𝟎(𝜺 − 𝜺𝒑,𝟏 − 𝜺𝒑,𝟐 − 𝜺𝒑,𝟑) (2) 

 𝑞 = −𝐻𝜅 (3) 
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 𝐹1 = 𝜎�𝑛 − (𝑓𝑡 + 𝑞) ≤ 0 (4) 

 𝐹2 = ��̃�𝑥2 + �̃�𝑦2 + 𝜎� tan𝜑 − 𝑐 ≤ 0 (5) 

 𝐹3 = −𝜎�𝑛 + 𝑓𝑐 ≤ 0 (6) 

 �̇�𝒑,𝟏 = �̇�1
𝜕𝐹1
𝜕𝝈�

,      �̇�𝒑,𝟐 = �̇�2
𝜕𝐺2
𝜕𝝈�

,      �̇�𝒑,𝟑 = �̇�3
𝜕𝐹3
𝜕𝝈�

 (7-9) 

 �̇� = �̇�1
𝜕𝐹1
𝜕𝑞

= −�̇�1 (10) 
 

Non-associated plasticity is used for the plastic strain 𝜺𝒑,𝟐 to control the level of dilatancy. The plastic 
potential G2 has the same form as F2 but a different friction angle tanφg, generally smaller or tending to zero 
according to experimental evidence on the dilatancy of masonry joints under shear [17]. 

The hardening modulus H controls the level of stiffness degradation in the normal direction, according to 
the logic demonstrated in Fig. 4. In this figure we denote as 𝜀𝑓 the normal strain for which the damage in the 
normal direction becomes equal to 1. 

 
Fig. 4 – Control of stiffness degradation in the normal direction through hardening 

 

The value of H depends on the material parameter μ which is equal to the ratio of the plastic (permanent) 
normal strain 𝜀𝑛

𝑝,1 if the unloading begins from the point of full damage (𝜀𝑛 = 𝜀𝑓) divided by 𝜀𝑓. H is given by 
the following equation: 

 𝐻 = 𝐾0,𝑛𝜀𝑓(1−𝜇)−𝑓𝑡
𝜀𝑓 𝜇

 (11) 

Regarding the tangential direction, there is no hardening associated with F2, hence the amount of stiffness 
degradation is simply coupled to the level of damage and is bound by the permanent strains produced in the 
elastic-perfectly-plastic evolution of the effective stresses. This simplification is justified by the experimental 
data on cyclic shear behaviour of masonry joints which reveal that stiffness degradation is not a prevailing factor 
in shear and that it is limited to a low level [17-18]. 

3.2 Damage 

The damage of the interface is defined by three scalar damage variables – 𝐷𝑡 for the normal direction in tension, 
𝐷𝑐 for the normal direction in compression and 𝐷𝑠 R for the two tangential directions – which compose the 
diagonal damage tensor 𝑫 = 𝒅𝒊𝒂𝒈{𝐷𝑛,𝐷𝑠,𝐷𝑠}, where 𝐷𝑛 = 𝐷𝑡 if 𝜎� ≥ 0 and 𝐷𝑛 = 𝐷𝑐 if 𝜎� < 0. The 
decomposition of 𝐷𝑛 results in the recovering of the normal elastic stiffness in compression. 
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The behaviour of the interface is defined by three main deformation modes – tension, shear and 
compression – each one corresponding to one of the yield surfaces F1, F2 and F3 respectively. 𝑫 is a function of 
the ratio of the plastic work 𝑊𝑐𝑟,𝑖 produced in the interface for each mode i divided by the fracture energy 
corresponding to the same mode 𝐺𝑐𝑟,𝑖.  

 0 ≤ 𝑊𝑐𝑟,𝑖
𝐺𝑐𝑟,𝑖

= 𝝈�∙𝜺𝒑,𝒊

𝐺𝑐𝑟,𝑖
≤ 1 (12) 

Physically, the damage of the interface in tension or shear influences the behaviour in both the tensile and 
shear mode, but it has no significant influence in the crushing mode. On the contrary, the behaviour in shear is 
influenced by the crushing in compression. Based on the above assumptions, the damage variables depend on the 
plastic work of each mode as follows:  

 𝐷𝑡 = 𝑑𝑡(𝑊𝑐𝑟,1
𝐺𝑐𝑟,1

,𝑎𝑡
𝑊𝑐𝑟,2
𝐺𝑐𝑟,2

) (13) 

 𝐷𝑐 = 𝑑𝑐(𝑊𝑐𝑟,3
𝐺𝑐𝑟,3

) (14) 

 𝐷𝑠 = 𝑑𝑠(𝑊𝑐𝑟,1
𝐺𝑐𝑟,1

,𝑊𝑐𝑟,2
𝐺𝑐𝑟,2

,𝑎𝑠
𝑊𝑐𝑟,3
𝐺𝑐𝑟,3

) (15) 
 

The form of the functions 𝑑𝑡, 𝑑𝑐 and 𝑑𝑠 defines the shape of the softening branch of the σ-ε relation. In 
this formulation, a second order polynomial function with respect to the ratio 𝑊𝑐𝑟,𝑖 𝐺𝑐𝑟,𝑖⁄  is used for 𝑑𝑡 and 𝑑𝑠, 
while a sinusoidal function is employed for 𝑑𝑐.  

3.3 Residual shear stresses 

A frictional interface completely damaged in shear holds a residual shear stress under compression which 
depends on the level of the normal compressive stress – as described by the Coulomb criterion. A good 
approximation of this shear stress residual is given by the surface Flim in Fig. 3. 

 𝐹𝑙𝑖𝑚 = �𝜏𝑥2 + 𝜏𝑦2 + 𝜎 tan𝜑𝑟 (16) 
  

In order to obtain this residual in the nominal shear stresses, the fully damaged state (𝐷𝑠 = 1) in the 
compressive region corresponds to a nominal shear stress on 𝐹𝑙𝑖𝑚 instead of zero, see Fig. 5. The angle φr 
represents the residual friction angle of the damaged joint which is usually considered equal to the initial friction 
angle φ. However, it can assume a lower value if deemed appropriate, for example in the case of dry joints [18]. 

 
Figure 5 – Shear stress residual based on Coulomb friction 
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4. Numerical analyses of URM components 
In this section the modelling approach introduced above is used for the analysis of URM structural elements 
under different types of loading. A wide range of URM behavioural characteristics is explored and the accuracy 
and potential of the numerical model is shown through a series of numerical-experimental comparisons. All the 
analyses were performed using ADAPTIC [19]. 

4.1 In-plane cyclic behaviour of URM pier wall 

The study of the in-plane cyclic response is based on the experiments performed at the Joint Research Centre of 
the European community in Ispra, Italy [20]. In order to examine the variation in the failure modes and the cyclic 
in-plane behaviour characteristics of walls of different aspect ratios (height/width), quasi-static cyclic tests were 
performed for two walls with aspect ratio 1.35 and 2.00.   

Table 1 – Walls in-plane: material parameters of mortar joints in mesoscale model 

Kn 

(N/mm3) 

Kt  

(N/mm3) 

ft  

(N/mm2) 

c  

(N/mm2) 

tanφ tanφg fc  

(N/mm2) 

Gf1 

(N/mm) 

Gf2 

(N/mm) 

Gf3 

(N/mm) 

48.00 21.00 0.04 0.23 0.58 0.00 6.2 0.05 0.10 1.00 

 
The dimensions of the walls are 1000×1350 mm2 and 1000×2000 mm2 respectively with 250 mm 

thickness. The walls were built with brick-block units of 250×120×55 mm3 arranged in a two-wythe thick 
English bond pattern. The thickness of the joints is 10 mm. The bottom of the walls is connected to the fully 
fixed “ground” through a bed joint. A steel beam which was prevented from rotating was placed on top of each 
wall, transferring a uniform compressive pressure of 0.6 MPa and providing a slab support. Horizontal in-plane 
displacement cycles of increasing magnitude were then imposed to the beam. 

The boundary and loading conditions were modelled in detail, as described above. The material 
parameters of the mesoscale model were chosen based on the results reported in [21] from experiments 
performed on the materials used for the construction of the walls. The values of the parameters for the mortar 
joints are summarised in Table 1. 

 
Figure 6 – Numerical-experimental comparison of short wall (left) and tall wall (right) under in-plane cyclic 

loading 
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Fig.6 shows experimental and numerical comparisons of the horizontal force-displacement diagrams for 
the two walls. The displacement refers to the horizontal displacement imposed to the top beam. Fig.7 presents 
the failure modes observed in the two walls under monotonic loading (for clarity) in stages of the numerical 
analysis with advanced damage.   

 
Figure 7 – Deformed shapes and damage developed at the interfaces in the short and the tall wall for monotonic 

loading 

 The predicted damage and failure modes for the two walls compare well against the distinct cracking 
patterns observed during the experiments [20]. The short wall presents diagonal cracking along its height, 
horizontal cracks and crushing close to the corners. Meanwhile, the damage of the tall wall is flexural and is 
mainly concentrated at the top and bottom bed joints, which are fully damaged in the tensile direction; the cyclic 
response of the tall wall is a type of rocking behaviour. Regarding the force-displacement diagrams, the load at 
the onset of damage and the peak load are reproduced with accuracy in both cases. The hardening envelope of 
the cyclic response of the tall wall is accurately captured. The softening envelope of the short wall is reproduced 
well in the negative quadrant, but is not fully captured in the positive quadrant in the first displacement cycles. 
Furthermore, progressively increasing stiffness degradation is observed at structural level for the short wall. The 
amount of degradation is less than that obtained experimentally in the first displacement cycles, but the 
difference is significantly reduced as the damage progresses. Both the strength and stiffness degradation are 
related to the fracture energy parameters, which might not be well identified. While a parametric study is out of 
the scope of this paper, it will be a topic of further investigation. 

4.2 Out-of-plane flexure and rocking of URM wall 

A study of certain characteristics of the static and dynamic out-of-plane behaviour of simply supported URM 
walls has been investigated by Griffith et al. [22] and presented in more detail in [23]. Walls with and without 
pre-compression – representing correspondingly the load bearing and non-load bearing type – were tested under 
static monotonic loading and dynamic excitations in the out-of-plane direction. A distinction was made between 
“uncracked” and “cracked” walls, the later having sustained damage in previous rounds of the experimental 
testing. A database with the distinct out-of-plane response in each of the above cases was collected. 

Table 2 – Walls in out-of-plane flexure and rocking: material parameters of mortar joints in mesoscale model 

Condition 
Kn 

(N/mm3) 

Kt  

(N/mm3) 

ft  

(N/mm2) 

c  

(N/mm2) 

tanφ tanφg fc  

(N/mm2) 

Gf1 

(N/mm) 

Gf2 

(N/mm) 

Gf3 

(N/mm) 

new 250.00 105.00 0.163 0.24 0.75 0.00 13.40 0.05 0.10 1.00 

damaged 10.00 5.00 0.01 0.01 0.75 0.00 13.40 0.01 0.01 1.00 
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We have investigated the capacity of the presented model to reproduce certain key characteristics of the 
out-of-plane monotonic and rocking behaviour observed experimentally. The wall of 110 mm thickness, with 
slenderness ratio (height/thickness) of 13.6 has been modelled. The height of the specimens is 1500 mm and the 
width 950mm, with brick units of dimensions 230×110×76 mm3. The material properties provided in [23] are 
limited and refer to masonry at a macroscopic level. Therefore, the parameters used for the mesoscale model 
were derived based on average values of constituents’ properties in newly constructed masonry and on 
previously suggested relations between the macroscopic and the microscopic properties of masonry [24]. The 
tensile strength of the mortar joints ft, which is the key parameter for the out-of-plane resistance of the walls, has 
been calculated by the flexural strength of masonry through the simple relation ft=1/3∙fmt, following the 
suggestion of Milani [24]. For the analyses of the cracked walls, the bed joints at the bottom and at mid-height of 
the wall have been considered severely damaged. This is achieved by applying low tensile yield stress, low 
fracture energy and low elastic stiffness parameters in the material model of the corresponding interface 
elements. A summary of the parameters employed is provided in Table 2. 

The bottom of the walls is supported in the direction of the loading at the level of the bottom bed joint. 
The top boundary conditions of the non-load bearing wall consist of simple translation supports in the direction 
of the loading. In the load bearing walls, in addition to the same simple support, a stiff beam has been added on 
top. The beam is in unilateral contact with the wall, transferring the vertical loads and providing a slab support. 
In the experimental setting the compressive load is applied through springs. As a result, the level of the load 
increases as the wall deforms [22]. This condition was modelled by adding spring elements in the vertical 
direction on top of the slab.  

 
Figure 8 – Walls in out-of plane flexure: experimental numerical comparison of pushover curves 

 

Initially, the static pushover test was reproduced. Displacements were imposed at the mid-height of the 
wall to obtain the complete pre- and post-peak force-displacement curve. The results, shown in Fig.8, 
demonstrate the potential of the mesoscale FE model to accurately predict the pushover envelopes given the 
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different boundary and material conditions. Accurately reproducing both the peak lateral loads – i.e. ultimate 
strength – and the corresponding displacements, the model gives a complete picture of the flexure response 
overcoming the limitations of the classical simplified theories of linear elastic and rigid body analysis, as 
highlighted in [22]. 

Subsequently, the real earthquake tests that were performed in the shaking table were simulated. The top 
and bottom of the walls are subjected simultaneously to the same accelerations, which correspond to Ground 
Motion Records (GMR) of two earthquakes – the 1940 El Centro and the 1994 Pacoima Dam earthquake – 
multiplied by the factors 0.66, 0.80 and 1.00. The displacement records produced in the shaking table during the 
experiment, as reported in [22], are relatively close to the displacement GMR of the earthquakes but do not 
coincide. For the dynamic analyses, an additional modelling consideration – the influence of which is 
highlighted in [22] – is the damping. The model has an “internal” source of stiffness-dependent damping in the 
joints, due to the nonlinear material model. Additionally, the mass-dependent part of the Rayleigh damping 
model is considered at structural level. Based on the comments in [22] and [25], damping levels of 3% and 5% 
are tested. 

 
Figure 9 – Rocking out-of-plane: experimental-numerical comparison of PWD for different excitations (EC=El 

Centro, PD=Pacoima Dam) 

Fig.9 presents a comparison of the peak wall displacements (PWD) – i.e. the out-of-plane drift at the mid-
height of the wall – obtained experimentally and numerically for each level of excitation. It is reported that the 
walls collapse in the cases of 80% and 100% El Centro excitation. Collapse was also obtained in the 
corresponding numerical simulations. It can therefore be concluded that the numerical predictions of the PWD 
and the final capacity of the walls in real earthquake scenarios – which is dictated by the displacement demand 
as suggested in [22] – compare well to the experimental observations. Based on this study, a constant damping 
parameter of ζ=0.03 is recommended for the numerical simulations. 

4.3 Two-way bending of URM walls 

In real URM structures the boundary conditions around a pier loaded out-of-plane during an earthquake are often 
more complicated than the ones considered in the example above. Commonly, the sides of a wall panel are 
connected with lateral URM walls. This two-way bending configuration has been experimentally tested by 
Griffith et al. [26]. A numerical simulation has been performed in order to examine the potential of the presented 
modelling approach for the simulation of larger structural elements, with boundary conditions and interactions 
that are difficult to take into account with more simplified models. 

 The specimen modelled (specimen 2) consists of a main wall of 4000×2500 mm2 without openings and 
480 mm long return walls on both sides. They are built with clay brick units of 230×110×76 mm3. The material 
properties are similar to the ones in the previous section – see Table 2-new – except for the elastic stiffness 
parameters of the mortar joints. In order to obtain the elastic modulus of masonry reported in [26], the above 
parameters have the following values: Kn=80N/mm3 and Kt=36 N/mm3. The main wall is simply supported 
along the top and the bottom edge in the direction of the loading. Additionally, restraints are imposed to the 
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moments and displacements along the vertical edges of the return walls. In the static round of testing, modelled 
here, uniform pressure is applied at the external face of the main wall, until the ultimate load is exceeded. 

 Fig.10 shows the experimental-numerical comparison of the pressure-displacement curves and the damage 
developed in the interfaces of the wall specimen. The ultimate loading obtained numerically is in good 
agreement with the experimental results, but the corresponding displacement is significantly lower. This is 
potentially related to an inaccurate estimation of the elastic parameters of the model constituents and/or the 
values of the fracture energy, properties which are not provided in [26]. The identification of those properties 
and the analysis of their influence in the out-of-plane behaviour of URM walls will be a topic of further studies.  

 

 
Figure 10 – URM in two-way bending: experimental –numerical comparison of pressure-displacement curve 

(left) and damage developed in the interface elements at the end of the analysis (right) 

 

Regarding the cracking pattern developed in the model, it consists of diagonal cracking in the central area 
and around the corners of the main wall, cracking at the bottom bed joint and along some bed joints at mid-
height of the main wall and vertical cracking in the return walls close to the connection with the main wall. This 
pattern is in close agreement with the experimental observations. 

5. Conclusion 
A detailed FE modelling strategy has been proposed for the simulation of the nonlinear behaviour of URM 
structures under cyclic loading conditions. A mesoscale approach has been used in which the nonlinearity is 
concentrated in the mortar joints and the potential failure surfaces of the bricks. The constitutive behaviour of the 
interfaces is modelled with a novel material model which reproduces the key defining characteristics of the 
physical behaviour in a simple and robust way, based on the idea of decoupling of plasticity and damage, as 
proposed by Grassl et al. [16]. The use of a hierarchic partitioning framework has largely increased the 
efficiency of the strategy and reduced the computational cost. Experimental-numerical comparisons have 
demonstrated the potential of this approach for the simulation of URM under quasi-static and dynamic loading 
conditions. The few limitations that have been observed will be further investigated, as the conceptual simplicity 
of the approach allows further localised enhancements without compromising its robustness. It can be safely 
concluded that the proposed strategy can be a useful tool for the investigation of the behaviour of URM 
structures under earthquake loading. 
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