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Abstract 
The purpose of this study is to obtain a ''reasonable ensemble'' of one dimensional shear wave velocity models that explain 
an observed surface wave dispersion curve with its corresponding measurement errors. The difficulty of finding this set of 
models lies in the definition of what is to be considered ''reasonable'' on one hand and that we are unaware of the correct 
velocity depth function description to be used. Therefore we need to be able to compare different velocity depth model 
parameterizations among each other in a correct way. This particular problem is approached by testing all perceived 
velocity depth model parameterizations until complexity (related to number of free parameters) doesn't allow the 
exploration of the model space (curse of dimensionality) and using a bias correction term (here AICc) for comparing the 
model fit to the data. Having found the overall best earth model, we can predict the maximal acceptable threshold for the 
misfit (including bias correction) of the mean curve. Consequently, we present a strategy for deriving a combined trans 
dimensional model ensemble using data uncertainties resulting in site characterization defined as a distribution of most 
likely models explaining our data. 
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1. Introduction 
In applied geophysics we may use the microtremor array method to measure Dispersion Curve (DC) of surface 
waves and then derive the shear wave velocity profile. Given the nonlinear relation between ground model 
parameters and observation, directed Monte Carlo search techniques are common approaches for obtaining 
solutions to the inverse problem. Compared to linear methods, the goal is not necessarily to find a 'best fitting' 
ground model to the data, but a set of models explaining the data within its uncertainty bounds. Parameterization 
of the model space has a significant influence on the resulting misfit and the capabilities of different inversion 
algorithms to fit to the data: what should then be the criteria for ranking different model ensemble related to 
different parameterization? For answering this issue, we use the corrected Akaike criteria (AICc) [1] that 
incorporates the Degrees of Freedom (DoF) of the parameter space for bias-free comparison of model fits.  

A synthetic model was considered in order to study the variability of shear wave velocity profiles obtained 
from inversion. In the current paper we are investigating the effect of the different model selection after the 
calculation of a different number for different degrees of freedom for a model decision using the corrected 
Akaike criteria [1], for the special case of a least-squares estimation with normally distributed errors. Based on 
this we attempt to define a strategy in order to calculate a model ensemble using data uncertainties and a global 
search algorithm (Monte-Carlo), for site characterization.  

2. Data and Parameterizations Used 
The Dispersion Curve (Fig. 1) used is the theoretical curve corresponding to an earth model with a boundary between loose 
sediments and rock at 180 meters. A Dispersion Curve (DC) with sixty-five data points is used ranging from 1 to 20 Hz.  

 
Fig. 1 – Synthetic Dispersion Curve used in this study 

For our test four different parameterization groups (Fig. 2) are used as for the shear-wave velocity.  Uniform layers 
were used as the simplest case. However, since in most of the sedimentary environments the upper shallow layers are not as 
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much consolidated as the deeper ones we considered that a power-law and a linear increase for the shear wave velocity is a 
good approximation for the first layer. Between the first layer and the Half-Space (HS) an increasing number of uniform 
layers is added each time for each group of parameterizations until we reach a maximum number of nine layers over HS.  

The four different groups of parameterizations correspond to: (a) uniform layers, (b) one power law layer over 
uniform layers, (c) a linear increase layer over uniform layers, and (d) uniform layers like in (a) but with the depth interval 
of each layer to be defined by a geometrical progression based on the wavelength range. In the later case the thickness of the 
first layer is set to a quarter of minimum wavelength and the depth of the last layer is set to half of the maximum 
wavelength. For groups (a)-(c) the Bottom Depth of each layer was varying from 3-300m, as this results from the 1/3 of the 
min and max wavelength of the DC.  

In all parameterization, the compressional wave velocity follows the same model as for the shear wave velocity and 
the depth for its layer is linked to the shear wave velocity layer. Only for group (d) the compressional wave velocity follow 
a linear increase, with five sub layers until the Half-Space. The shear wave velocity is varying for all layers from 50 to 2500 
m/sec, except for the half space that is between 150 to 3500 m/sec. The compressional wave velocity is varying from 200 to 
5000 m/sec. The density is uniform for all the layers and equals to 2000 kg/m3.  

 
Fig. 2 – Four groups of parameterizations used for the inversion. Uniform layers are used except for the first 
layer, that is either uniform (a) and (d), either follow a power law with depth (b), or a linear increase (c). The 
depth is varying for each layer from 3-300m, as defined from minimum and maximum wavelength divided by 

three. Only for (d) the depth is progressively increasing 
 

 

3. Method  
A direct search algorithm was used for the surface-wave inversion [2,3]. This scheme is based on a 
neighborhood algorithm (NA) that is a stochastic direct-search method for finding models of acceptable data fit 
inside a multidimensional parameter space [4]. Pseudo-random samples are generated in the parameter space 
(Vp, Vs, density and depth) and the dispersion curves are computed for all these models. The comparison of the 
resulted dispersion curve for each model of the parameter space with the measured dispersion curve provides one 
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misfit value that indicates how far the generated model is from the true solution. Like most of the direct search 
methods NA make use of previous samples for guiding the search in order to get improved models. Once the 
data misfit function is known at all previous samples (forward computations), the neighborhood algorithm 
provides a simple way of interpolating an irregular distribution of points, making use of Voronoi geometry to 
find and investigate the most promising parts of the parameter space. In order to check the robustness of the 
method four different seeds where used since one could claim that your resulted models depend on the random 
seed used in the inversion.  

The misfit value is evaluated using the uncertainty of the real data, 

 𝑚𝑖𝑠𝑓𝑖𝑡 = �∑
(𝑥𝑑𝑖−𝑥𝑐𝑖)2

𝜎𝑖
2𝑛𝐹

𝑛𝐹
𝑖=0  (1) 

where xdi is the phase velocity of the data curve at frequency Fi, xci is the velocity of the calculated curve at 
frequency i, σ i is the uncertainty of the frequency samples considered and nF is the number of frequency samples 
considered. The misfit value described here will be referred as Normalized Misfit (NM) in the text. 

Subsequently we used an information criterion, in order to conclude to the best model estimate for 
different parameterizations, and also investigate the uncertainty due to the number of models estimated for the 
specific data set described before. Akaike Information Criteria (AIC) is an estimator for such a problem that also 
includes the DoF (number of parameters) of a model into the best model criteria. As inferred in [1], in the case of 
Least Squares estimation supposing normally distributed errors for all our models AIC can be expressed as, 

 𝐴𝐼𝐶 = 𝑛𝐹𝑙𝑜𝑔𝑒(𝑚𝑖𝑠𝑓𝑖𝑡) + 2𝐾 (2) 
where, K is the number of parameters, i.e. DoF. Since in our case n/K < 40 the AICc is used where similar 

to AIC is expressed as, 

𝐴𝐼𝐶𝑐 = 𝑛𝐹𝑙𝑜𝑔𝑒(𝑚𝑖𝑠𝑓𝑖𝑡) + 2𝐾 + 2𝐾(𝐾+1)
(𝑛𝐹−𝐾−1) (3) 

In Figure 3 we present the AICc values for an increasing number of DoF for 65 data points (nF) and a 
given misfit function (blue line), 

 𝑚𝑖𝑠𝑓𝑖𝑡 = √𝐷𝑜𝐹
101.5∗𝐷𝑜𝐹 (4) 

The AICc values that correspond to one standard deviation are shown with a dashed black line. The blue 
dashed line point the DoF with the lowest AICc value and it is also crossing the one standard deviation line. The 
area prescribed between the dashed black line and the blue line bounds AICc values between one standard 
deviation and minimum AICc for different DoF.  One should select a model ensemble out of the total models 
calculated through an inversion scheme. Of course the models with the lower AICc values are the lower limit 
line but one should include all possible models that fit the data to one, two or to even three times the standard 
deviation. In that case the ensemble will include a numerous amount of models. However, could one suppress 
the models based on an AICc limit?  Even if we select as an upper boundary the one standard deviation limit one 
should not use the complete ensemble. Of course one could use different AICc upper boundaries, presented with 
red color lines in Figure 3. But still, one should not accommodate the models having a high DoF removing away 
the most complex ones (Occam's razor). For this reason, we suggest to use as an upper AICc limit the AICc 
value that correspond to misfit equal to one for the parameterization with the lowest AICc value among all tested 
models. This limit is denoted with a continuous red line in Figure 3. 
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Fig. 3 –  Evolution of AICc with Degrees of Freedom (blue curve) for a misfit function along with the AICc for 
misfit of 1 (black dashed curve). The blue dashed curve points the minimum AICc value and the corresponding 
AICc value for misfit of 1. The area prescribed between the dashed black line and the blue line show the models 

of different DoF that has misfit equal to one standard deviation and minimum AICc values. The red lines 
correspond to different AICc ceilings with the continuous line matching the AICc value of one standard 

deviation of the lowest AICc value for all DoF. 
 

4. Model Ensemble Calculation 
Extensive calculation was implemented for each run (4 runs for each set of parameterization) using the 
Neighborhood Algorithm with increasing number of calculations for high Degrees of Freedom until the misfit 
converged to its lowest value. This resulted in at least 4 million model calculations for each parameterization 
reaching a value of up to 64 million models in some cases to reach convergence. The evolution of Minimum 
misfit and corrected Akaike with the Degrees of Freedom for different parameterizations are presented in 
Figures 4a and 4b, respectively. As expected for the Minimum Misfit plot after a considerable number of 
increasing degrees of freedom the minimum misfit values are very similar with small dependence on the 
parameterization selected for the inversion. However, for the AICc evolution, as expected there is a lowest AICc 
value that is different for each group of parameterizations. The lowest AICc value corresponds to a different 
parameterization (DoF) than the Minimum Misfit value. The AICc is favoring the simplest models since 
although parameterizations of high DoF manage to have a low misfit they are over-interpreting the data [5]. 
 

Among all tested models the one with seven uniform layers over half space with the depth interval of each 
layer to be defined by a geometrical progression, is the most preferable parameterization that succeed in 
resolving the lowest AICc (Figure 4b). The corresponding AICc value for misfit equal to one is also denoted 
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with a dashed magenta line for this parameterization, along with an upper limit as of AICc value that 
corresponds to that misfit (magenta line). 

 

 
Fig. 4 – Minimum Misfit (a) and AICc (b) Plots with the Degrees of Freedom (DoF) for the different 

parameterizations used. Results for the parameterizations of uniform (red), power-law (blue), linear-increase 
(green), and uniform with progressive depth limits (black) are shown.  

 
 

5. Discussion and Conclusions 
It is obvious from the information presented that the AICc could be used in order to select not only the best 
solutions for different parameterizations but also a model ensemble that sufficiently describes the Dispersion 
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Curve. As expected an intensive number of iterations can provide lowest misfit values even for 
parameterizations of higher degrees of freedom.  

We suggest to utilize a model ensemble including the models with the lowest AICc for each parameterization up 
to the AICc value that corresponds to a misfit equal to one (misfit=1) for the parameterization with the lowest 
AICc value among all tested models. However, further investigation is needed on comparing the SH response of 
these models with the one of the starting model used during this exercise. 
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