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Abstract 
Classical damping constitutes an infinitely small subset of all possible dissipation distributions and, as such, it is never the 
best fit to the actual mechanism. The model is, however, widely adopted because the information needed to specify a non-
classical distribution is seldom available in the design phase. From a practical perspective the question is not, therefore, 
whether the damping is classical or not, but whether errors attributable to adopting the classical model may be important. A 
result that has been known for many years but which is not widely recognized is the fact that if the poles of the dominant 
modes are well separated the off-diagonal terms of the damping in modal coordinates have a small effect in the response. 
For closely spaced frequencies, however, the specifics of the distribution are important and response predictions using the 
classical model can be in significant error. Needless to say, the matter takes special relevance when the ratio of effective 
motion duration to fundamental period is large since damping is most important in these cases. Other than recognize that 
uncertainties arising from the damping model are particularly large when frequencies are close, there is usually little that 
can be done about this matter (within practical constraints) at the design stage. This paper includes analytical work 
clarifying the role of the frequency gap and exemplifies the analytical observation in numerical simulations.  

Another issue sometimes raised regarding the suitability of the damping model pertains to the discrepancy between 
the (essentially) frequency independent dissipation observed in tests and the linear dependence associated with viscosity. 
Could this matter be such that the identified apparent damping shows dependence on the spectral characteristics of the 
excitation? Although the strict answer is yes, and the paper shows this to be so in an academic example, analytical 
examination and numerical results show that the identified damping for realistic input motions is the one that matches the 
rate of dissipation at resonance. The paper also takes a look at the question of the fictitiously high damping that is 
sometimes attributed to the mass proportional term in the Rayleigh model when base isolation is used and shows that this 
“undesirable feature” does not arise if the added terms in the augmented terms of the damping are adequately formulated.  

The paper includes a summary from a study where first mode damping ratios were identified for a large number of 
steel, concrete, masonry and wood structures and used to obtain predictive equations. It is shown that in steel and concrete 
the regressor with the most predictive ability is building height and it is contended that this is so because this parameter is a 
surrogate for the ratio of building volume to footprint, and thus to energy loss at the soil-structure interface. In masonry and 
wood structure the optimal regressor is shown to be the 5% damped pseudo-acceleration spectral ordinate. The limits that 
information theory impose on the variance with which damping can be identified from earthquake response is discussed and 
it is shown that for typical conditions the lower bound of the coefficient of variation is 25 to 50 times larger than for natural 
frequency.  
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1. Introduction 
The energy input from an earthquake is the work done by the forces acting at the soil-structure interface.  Energy 
balance considerations show that this work is equal to the sum of the kinetic and the strain energies plus the 
running integral of the work of the non-conservative forces. In practice it is customary to separate the non-
conservative work into the work done by hysteresis in the structural system plus the work of a collection of 
unspecified mechanisms that are aggregated an referred to as “the damping”. This aggregate is not generally 
viscous but viscosity, i.e. damping forces proportional to velocity, is commonly assumed on grounds of 
mathematical convenience. This paper reviews the formulation of the equivalent viscous model and presents a 
summary of results obtained in a study where first mode damping ratios were identified from measured data in a 
large number of buildings. 
 

2. The Classical and Non-Classical Damping Viscous Model 
Accepting equivalent viscosity and finite dimensionality the damping model, either explicitly or implicitly, 
consists of a damping matrix, C nxnR∈  , where n is the number of degrees of freedom in the model. Specifying 
the damping matrix as classical is tantamount to stating that C is diagonalized by a congruent transformation 
using the un-damped mode shape matrixΦ , namely, that 
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where j jandω ξ  are the un-damped frequency and damping ratio of the jth mode. A necessary and sufficient 
condition for the damping to be classical is that the eigenvectors of M-1K and M-1C coincide. Since matrices with 
common eigenvectors commute the necessary and sufficient condition for a damping matrix to be classical is 
that M-1K and M-1C commute. It is a simple matter to show that any classical damping matrix can be written in 
terms of the mass normalized mode shapes as 

                                           
1

n
T

j j j
j

C M Mγ φ φ
=

 
=   

 
∑                             (2) 

where 2j j jγ ω ξ= .  An alternative expression that does not require computation of the mode shapes, known as 
the Caughey series [1,2] is 
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where b are integers. It can easily be shown that the coefficients ab are related to the damping ratios by  
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A widely used special form, known as Raleigh or proportional, writes 

                                                                         C M Kα β= +   (5) 

where α and β are constants. It is a simple matter to show that the damping ratios in this model vary with 
frequency according to the expression   
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which can be used to compute the { },α β  constants by specifying the damping ratio at any two frequencies.  

A Weighted Least Square Alternative 

Although damping ratios can be easily prescribed at all desired frequencies using Eq.2, the Rayleigh model is 
popular in earthquake engineering and discussion on which two modes to select have appeared through the 
years: first and second, first and last, etc.; the objective being to keep the damping close to the desired target in 
the “important modes” while ensuring that the damping of other modes do not distort the results. Here we note 
that instead of selecting which modes to target, explicitly, the target damping can be specified at all frequencies 
of interest and the constants solved in a weighted least square sense. The solution is 
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where W is the weighting matrix, which can be taken as ( )v v v
a b qW diag ω ω ω− − −=   with the exponent v 

controlling how the difference between the target damping ratio and the value realized is affected by frequency.  
For v = 0 one gets the standard least square solution, which, due to the form of L, is dominated by the high 
frequencies, v = 1 leads to residuals that are independent of frequency and for v>1 the lower frequencies are 
more heavily weighted. 

 

2.1 Base Isolation 
Consider a structure for which the damping matrix has been assembled on a fixed base condition and one is 
interested in examining what happens to the damping ratios when a soft spring is added at the base. The isolation 
will, of course, also add a localized damping contribution but the present discussion can be carried out 
neglecting this added damping. The argument made in [3] is that the damping of the first mode in the isolated 
case, which should be very small because the mode shape approximates rigid body motion, becomes 
unreasonably large if the initial damping matrix has a mass proportional contribution. While this is the case if the 
added partitions are taken as zero, it is not so if the damping matrix of the originally fixed base model is 
expanded as Eq.9 indicates. Namely, designating the fixed base matrix as Cf it follows from equilibrium 
considerations that the enlarged matrix after the isolation is added is 

 
( )

f f
T TI

f f

C C r
C

C r r C r
− 

=  − 
  (9) 

where r = pseudo static displacement vector, which in the 2D model typically used to discuss buildings is a 
sequence of ones for horizontal input. Inspection of Eq.9 shows that the dissipation is zero for rigid body motion 
and, as can be seen, this result is independent of the form of Cf. We take the opportunity to note that the mass 
proportional damping contribution vanishes (from the Rayleigh model) if the damping is assembled in the 
unrestrained condition and the rigid body modes are assigned zero dissipation. 
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2.1 Non-Classical Damping 

Classical damping matrices are isolated points in parameter space and as such the probability that the dissipation 
is best described by a classical distribution is zero. The model is ubiquitous, however, since it can be 
economically specified, namely, it requires only n damping ratios and, with the possible exception of systems 
with small eigenvalue gaps, it can provide a good approximation to the dissipation. To analytically illustrate the 
relative unimportance of deviations from classical when poles are not too close we examine a 2-DOF system 
with an arbitrary non-classical viscous dissipation. Transferring the equations of motion to the coordinates of the 
undamped modes and accepting all the usual assumptions one gets 
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where 1 2
T Cτ φ φ=  and where it’s evident that we’ve assumed the modes to be mass normalized.  With j,k ={1,2} 

or j,k={2,1} one has 
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Taking a Fourier transform of Eq.11 and solving for the modal amplitude gives 
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 which, after some simple rearrangement can be written as  
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In the classical model 0τ =  and the modal response (in frequency) is the first term on the rhs of Eq.13. Error 
from deviations from classical depend, therefore, on how large is the (absolute value) of the second term in the 
lhs parenthesis, compared to one, and on how large the second term in the rhs is compared to the first. The term 
in the parenthesis is 
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where j
j

ω
β ω=  . This ratio takes its largest values when the numerator is large and the denominator small. 

Accepting that the damping ratios are small it is reasonable to inspect the expression at resonance, for 1 1β =  one 
has 
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Accepting an upper bound onτ  of 50% of the first entry in the diagonal of the C matrix in Eq.10, and 
taking 1 2ξ ξ ξ= =  one has 
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where we’ve eliminated the subscript from β . Since we used the first frequency to arrive at Eq.16 it follows that 
β >1. As can be seen from Fig.1, the ratio examined is small relative to one, except in cases where the frequency 
of the second mode is close to the first. Specifically, for 2% and 5% damping the bound is less than 0.1 for β 
>1.04 and 1.12, respectively. 

 

               
1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

0

0.05

0.1

0.15

0.2

0.25

β

22(1 )
ξ
β−

ξ=0.02

ξ=0.05

 
              Fig.1 (Quasi) upper bound of Eq.16 vs the ratio of undamped frequencies. 

 

Examination of the importance of the second term in Eq.13 compared to the first can be carried out in the 
same fashion as before, namely, taking the ratio of the second term to the first, assuming that a1 and a2 are equal, 
that the damping ratios are small, and taking the bound on τ as stated previously one gets that this ratio is  

               2( 1)
ξ

β −
                 (17) 

which is simply twice the value plotted in Fig.1; the term is no larger than 0.1 if β > 1.1 and 1.25 for 2% and 5% 
damping respectively. It’s opportune to note that the closeness of the frequencies as the critical factor in the 
relevance of the deviations of damping from classical was pointed out early on by Rayleigh [4], who showed that 
the first order approximation of the complex mode shape, zj, is given by 
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where xj is the real mode shape and Ckj are the off-diagonal coefficients of the damping matrix in the undamped 
modal coordinates . 

Numerical Illustration 

We test the previous assertions using a 2-DOF system in two different configurations, one where the frequencies 
are very close and the other where they are reasonably separated. To better isolate the effect of the frequency gap 
the parameters are chosen so that the difference between the actual damping matrix and the approximation given 
by the classical model has the same norm in both instances. The system, initially considered in [5] is depicted in 
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Fig.2a: when 1k cθ θ= =  there is a nearly repeated pole at 0.073 1.50i− ±  and in the configuration, 
2, 1.55k cθ θ= =  the undamped frequencies are 1.46 and 2.17 rad/sec. Responses for both configurations are 

obtained for the SCT record of the Mexico City earthquake of 1985 and the repeated pole configuration is also 
driven by a signal recorded at the base of CSMIP station 13214 during the ChinoHills earthquake. The SCT 
record is narrow band with duration for the central 90% of the Arias intensity of around 41 secs while 
ChinoHills is wide band and has duration of around 24 secs.  

Figs2b-d depict the response at coordinate #2 computed with the exact damping and with the classic 
approximation obtained by neglecting the off-diagonal terms in the modal basis. In the case of the repeated pole 
and the SCT record the results, which are shown in (b) show there is an underestimation of the positive peak of 
around 45%, which is significant. For the configuration with the separated frequencies in (c) the max error is, 
however, only 13%.  Finally, as shown in (d) for the case of the repeated pole, the large error of Fig.2b virtually 
vanishes when the ChinoHills record is used because the peak response occurs on the first pulse and is thus little 
affected by damping.     
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Fig.2 a) System considered (m1=1, m2=2, k1=2.68θk , k2 =4.29, c1 =0.078θc , c2 = 0.102), b-d) displacement 
response at mass #2. 

2.2 Damping Ratio 

The rate of decay of the homogeneous response of a SDOF system (or of a complex mode in phase space) is 
determined by the real part of the pole and the frequency of vibration by the imaginary. The pole λ  is typically 
written as 

                                                             21iλ ωξ ω ξ= − ± ⋅ −                 (19) 

from where it follows that  
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          Rλξ
λ
−

=                           (20) 

It is important to keep in mind that ω in Eq.19 coincides with the un-damped natural frequency ONLY 
when the damping distribution is classical. To clarify consider a 2-DOF shear building with m={1,1} k={50,50} 
c={a,0}. The smallest value of the dashpot constant “a” for which one of the system poles is purely real is a = 
17.678 and for this case one finds, from Eq.20, that the “damping ratios” are {0.25,1}. Assume now that one 
reduces “a” to “0.05a”. Since the damping matrix has uniformly decreased to 5% of the original, one may expect 
that the damping ratios would be 5% of the previous ones, namely {0.0125, 0.05} but what is obtained, however, 
is {0.028, 0.028}. The interpretation of damping ratio as a fraction of the minimum level required to suppress 
harmonic terms in the homogeneous solution applies only when the damping is classical, otherwise the meaning 
is simply that it is the value given by Eq.20. 

3. Hysteretic Damping 
The energy dissipated per cycle in a SDOF system with viscous damping that executes harmonic motion is 
proportional to the frequency and to the square of the amplitude. Experimental evidence shows that the square 
amplitude dependence is closely realized but dependency on frequency is typically small. The idealized 
mathematical model where dissipation is frequency independent is known as hysteretic. The relation between the 
damping force and the response in the hysteretic model is 
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where η is a constant. Recognizing that the Hilbert transform of the function f(t) is defined by 
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Fundamental examination shows that the viscous and the hysteretic models dissipate the same energy 

under harmonic motion if 
                 cη = Ω                           (24) 

 

where Ω is the imposed motion frequency. Although the hysteretic model can be implemented without difficulty 
in the frequency domain, in the time domain, as would be needed to perform nonlinear analysis, the model is 
cumbersome because (as Eq.21 shows) the damping force is in this case non-causal, i.e., the force at time t 
depends not only on the displacement past, but also on its future.  
 

3.1 Frequency Content of the Motion 

Although strict frequency independence violates causality and cannot, therefore, be the exact mathematical form 
of the dissipating mechanism, the hysteretic model is often a reasonable approximation and for the purpose of 
this section we take it as valid. On this premise, and since the hysteretic and viscous models can only be made 
equivalent at a single frequency, a reasonable question is whether the frequency content of the excitation may 
play a role on the (equivalent) damping that is identified from data. If the damping is hysteretic and the 
excitation is harmonic at frequency Ω  the viscous damping with the same dissipation rate 
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is ( )( )0.5 kξ η ω= Ω . From theory, therefore the answer appears to be yes, and to test it we consider two 
excitations: A =broad band (white noise) and B = (very) narrow band obtained by passing the white noise signal 
through a bandpass filter that retains components only in the vicinity of 11π (rad/sec).  We compute the response 

of SDOF system with 0 2ω π=  and hysteretic damping given by 0.1k
η =  and use the simulation results to 

identify the equivalent damping using a subspace algorithm [6]. For motion B the pure harmonic based 
prediction is ( )( )0.5 0.1 2 11 0.009 0.9%ξ π π= = ≅  and what the identification algorithm gave is 0.8%, which is 
quite close. For the A motion the expectation is that the identified damping will correspond to equivalence at 
resonance, i.e. to 5% and what was obtained was 4.96% - confirming the expectation. 

 
The previous result validates the theoretical argument but is rather contrived because the motion 

considered is “unreasonably narrow band”. A study using the SCT record from the 1985 Mexico City 
earthquake, which is a strongly narrow band, real motion, showed that the identified damping was in all cases 
the value that, at resonance, matched the hysteretic dissipation. The conclusion appears to be, therefore, that real 
records are not sufficiently close to pure sinusoids to make the issue of damping dependence on the input 
spectrum one of practical relevance. 

 

4. Accuracy Limits on Damping Estimation 

Discussion of identified damping values in the literature are often confused because the results are interpreted as 
“real” and not as estimates under noise subject to limitations on variance error imposed by information theory. 
To illustrate qualitatively why the variance on identified damping is high let there be a region around the true 
(albeit unknown) pole where, given the noise, the identification algorithm places the pole. Assume the region of 
uncertainty is a circle of radius R, where R is a fraction of the pole magnitude, say R β λ= where β is small 
(e.g., 0.02). To determine if the circular assumption is reasonable we performed Monte Carlo simulations with a 
6-DOF system identified for a given ground motion using 1000 different random realizations of the noise. As 
can be seen in Fig.3, which shows the results for the first and the second pole, the circular premise is not 
unreasonable. Examination of the geometry shows that the estimated frequencies, for the large majority of the 
data, will be in the interval [ ](1 ) (1 )ω β β− + , while the damping ratios fall in the interval [ ]( ) ( )ξ β ξ β− + . If 
β is 0.02, for example, the frequency error is no more than 2% but the damping ratio can be over or under 
estimated by 0.02. Namely, if the true damping is 5% one can easily get values as large as 7% and as low as 3%. 
 
 
 
 
    
 
    
 
 
 
 
   

   
 

Fig.3 Real and imaginary parts of the 1st and 2nd pole in a 6-DOF system identified using white excitation and 
5% additive noise. 
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4.1 Fisher Information and the Crámer-Rao Lower Bound  

It is instructive to derive an expression for the theoretical limit of the ratio of the coefficient of variation of 
identified damping to identified frequency. For any distribution of the noise affecting the input and the output the 
information on a set of parameters, θ, is quantified by the Fisher Information (FI) matrix, )(I θ  and the lower 
bound of the covariance Σ  of any estimator of these parameters is given by its inverse, known as the Cramér-
Rao Lower Bound (CRLB) [7]. The Fisher information matrix and, as a consequence, the CRLB, depend only on 
the statistical distribution of the noise and on the sensitivity of the data to the parameter but not on the estimator. 
The FI can be defined in terms of the gradient or the Hessian of the probability distribution with respect to the 
parameters as 
 

            
2

) log ( | )( f YI θ θ
θ
∂ =  ∂ 

E                (26) 

where ( | )f Y θ  is the likelihood function of the observed data Y given the parameter θ. If the sensitivity of the 
likelihood to the parameter is high the derivative in Eq.26 is large and so is )(I θ . In practice the likelihood 
function ( | )f Y θ  is in general unknown so other quantities derived from the data are typically used to 
estimate )(I θ .  For example, if the data Y can be used to generate a vector X whose distribution is a member of 
the linear exponential family having a mean ( )γ θ  and a covariance Σ  then the FI of the parameter θ  contained 
in X can be obtained as [8] 
 

                                              1) ( ) ( )( TI θ θ θ−= ΣJ J    where   ( ) γθ
θ
∂

=
∂

J              (27) 

 
To illustrate the significance of Eq.27 in a simple setting let the “true” value of Y be deterministically 

dependent on θ as depicted schematically in Fig.4 Assume one wants to know the value of θ based on noisy 
values of Y. From the sketch in the figure it is evident that the statistical accuracy of θ depends on the slope of 
the functional relation at the location of the estimate and it is not difficult to see that the variances are related by 
the square of the local slope. Eq.27 is the generalization of this concept to the multivariate situation. 
 

                            

High local sensitivity

Low local sensitivity

Measurement pdfY

High variance estimate

Low variance estimate

( )Y f q=

q  
Fig.4 Schematic illustration of Eq.23 in the scalar case. 

 
The Pole as a Feature 
Denoting λΣ  as the CRLB of the real and imaginary parts ( )λℜ  and ( )λℑ  of a pole λ , the FI of the frequency 
and the damping follows from Eq.27 as 
                                                          1

, ,( , ) f f
TI f ξ λ ξξ −= ΣJ J                 (28) 
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where the sensitivity of the pole with respect to damping ratio and frequency is given by 
 

                                 1,
2 22

( ( ), ( )) 2
( , ) (1 ) 1

f

f

f f
ξ

ξλ λ π
ξ ξ ξ ξ

−

− − ∂ ℜ ℑ  = =
∂  − − − 

J              (29) 

 
Assuming that the uncertainty region around the complex poles is circular the ratios between the COVs are 
shown in Fig.5. As can be seen, the uncertainty on the damping ratios is around 50 times higher than that for the 
frequencies at 2%ξ = , and the ratio is near 25 for 5%ξ = . These results are consistent with the findings in [9], 
where maximum likelihood estimation of modal parameters from ARMA models was considered. 

                                        
Fig.5 Range of the ratio of the coefficient of variation of damping and frequency when the uncertainty region 

around the pole is circular. 
 

5. Regression Analysis on Real Building Data 
It has been traditional to specify damping ratios as 2 % for steel and 5 % for concrete. Efforts to determine 
expressions that reduce the variance associated with this practice have been carried out in the past few decades. 
Here we review recent results obtained in a study whose details are summarized in [10]. With ϑ as the regressors 
and θ as the vector of model parameters one has, in general  
 
 ( , )gξ θ ϑ   (30) 

where ξ  are damping ratios estimated from data. The functional relationship g is not suggested by theory in the 
case of damping so it must be selected from inspection of the data. The regressors considered in [10] were: the 
peak ground motion parameters (PGA, PGV and PGD), the spectral ordinates (SA, SV and SD), the building 
height, H, the modal frequency, f, and the effective duration t0.9. This last entry defined as the time interval 
between the attainment of 5 and 95 % of the total integral of the acceleration squared [11]. Not included due to 
lack of information, but potentially important, are parameters related to the soil and the foundation and to the 
type and density of partitions. Building material is not a parameter in the regression because the buildings were 
pre-classified by material type. The parameters θ are obtained by minimizing a norm of the discrepancy between 
the model predictions and the data. Selecting the square of the two-norm of the residual as the objective function, 
J, one has 
 ( ) 2

2
( , )i i iJ gω θ ϑ ξ= ⋅ −   (27) 

where ωi are weights. Ideally the weights should be taken as inversely proportional to the standard deviation of 
the estimates and in this regard it is shown in [10] that this deviation can be taken as 
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0.9f tξ

κσ =
⋅

  (28) 

where κ is a constant that is immaterial in the optimization. Two functional forms were selected: one for cases 
where the damping decreases and the other for when the damping increases with the regressor. With the 
parameters as { }0 1 2, ,a a aθ =  or { }0 1 2,b ,bb and the regressors as ϑ  these are 

 2
0 1

aa a e ϑξ −= +   (29) 

 
2

0

11 b

b
b e ϑξ −=

+
  (30) 

The regression was carried out for identified first mode damping ratios of 122 cases of concrete buildings, 
81 steel, 26 masonry and 10 wood. The cases were selected from the CSMIP database as those for which the 
ground acceleration was no less 5% of gravity and the intensity was such that significant inelastic behavior could 
be ruled out. The regressor that led to the smallest variance for steel and concrete buildings proved to be the 
building height, H, and for masonry and wood the 5% damped spectral acceleration at the first mode period. 
With the height in meters and the spectral acceleration in g’s the best fit expressions at expectation are; 

 

 0.0131.2 4.26 ( )He steelξ −= +      (31a) 

             0.0193.01 3.45 ( )He concreteξ −= +             (31b) 

              8.84

1 ( )
0.11 0.23 AS masonry

e
ξ −=

+
             (31c) 

    3.37

1 ( )
0.09 0.17 AS wood

e
ξ −=

+
            (31d) 

with a standard deviation on the expectation model for steel and concrete of approximately 0.8% . It is believed 
that the reason why the height proved the best regressor in the steel and concrete buildings (for which the range 
of heights was significant) is because this variable is a good surrogate for dissipation at the soil-structure 
interface, i.e. as buildings gets taller the ratio of the footprint to the building volume decreases and the interface 
dissipation decreases. Note that the foregoing is not an argument about SSI, which speaks about differences 
between fixed base and compliant foundations, but rather between “fixed base” and “floating”, the latter being a 
situation where the apparent damping would be smaller than the values we measure.    

Discussion 

For steel buildings the height provided the best correlation with damping ratio by a significant margin while for 
concrete buildings the expression based on SA was only slightly poorer. For masonry and wood buildings the 
correlation with SA was clearly the superior choice and this matches what one expects from qualitative 
reasoning. Examinations not shown here due to space constraints but which can be found in [10] show that 
dependence on SA saturates very quickly in steel and less so in concrete. A question that comes to mind is 
whether a multivariate regression using both H and SA would lead to notable improvements in the predictive 
formulas. This was tried and the answer proved negative because the correlation between these two parameters is 
significant. Indeed, as the height increases the period lengthens and the spectral accelerations, except for short 
buildings, decrease.  
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6. Closing Commentary 
The traditional argument for the Rayleigh model is expediency, namely, the fact that the model is specified by 
only two parameters. This argument, however, has lost much of its strength since coding of arbitrary classical 
damping is not, at present, a significant computational burden, even for models with thousands of DOF. Another 
argument often mentioned is that arbitrary classical damping leads to a full matrix, which does not reflect the 
“actual connectivity”. This argument is also less than compelling since connectivity is not a physical reality but a 
model property (divide every element in two and the “connectivity changes”).  The paper shows that the classical 
model, albeit never realized, is a reasonable simplification because the distribution details do not have an 
important effect in the response, except when there are closely spaced poles. In cases where the system has 
closely spaced frequencies (in the relevant bandwidth) there is usually little that can be practically done, other 
than to keep in mind that the uncertainties in predictions are larger than when the frequencies are well separated. 
The paper shows that the variance with which damping can be identified from earthquake response is much 
larger than that of frequency and that, as a consequence, the variability often observed in instrumented structures 
is not intrinsic but reflects this high variance. The expressions for the first mode damping ratio presented in the 
paper were obtained from a relatively large ensemble and are believed to provide some reduction in variance 
over the 2% and 5% damping traditionally used for steel and concrete structures. 
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