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SUMMARY

With good time-frequency discrimination ability and flexible time-frequency windows, wavelet
transform is now widely used to analysis various signals in time and frequency domain
simultaneously. Because of the simple relation between wavelet spectra and local (evolutionary)
power spectra of a signal, a new method based on wavelet transform to estimate the local power
spectra of earthquake ground motions is put forward. With the local power spectra (LPS) acquired,
the LPS of structural response are calculated by numerical integral and the dynamic reliability of
the structure based on the first passage criterion is estimated. It is proved that the local power
spectra estimated by wavelet transform are accurate to reflect the time-frequency characteristics of
earthquake ground motions. Wavelet transform may improve the traditional spectrum analysis to
time-frequency analysis.

INTRODUCTION

In earthquake engineering, the strong non-stationary characteristics both in time domain and frequency domain,
i.e. amplitude and frequency, of earthquake ground motion are well known and difficult to tackle in applying the
ground motion as input to acquire structure responses. Usually, the non-stationary amplitude is dealt with by
uniformly modulated stationary process [Caughey and Stumpf 1961; Lin 1963; Hammond 1968; Corotis and
Marshall 1977; Gasparini and DebChaudhury 1980]. And the frequency non-stationary characteristic is not or
seldom considered explicitly. Both the former and the latter will influence the dynamic reliability of structure
when the structure subjected to the ground motion excitations [Yeh and Wen 1990; Papadimitriou and Beck
1992; Conte 1992; Li et al. 1998]. But the existing random vibration theory can not consider them accurately and
simultaneously, so the stationary stochastic excitation transfer method has been adopted in reliability analysis in
spite of the non-stationary characterization.

As a new method with obvious advantage for time-frequency analysis, wavelet transform is now applied in many
fields of study. Howbeit, it is not so popular in civil engineering research. As we can see, seldom papers on this
question are issued until now. In this paper, the earthquake ground motion is taken for a non-stationary process,
and coped with by wavelet transform to acquire its local power spectra (LPS). Because of the good time-
frequency   discrimination   ability   and  flexible  time-frequency    windows     of       wavelet

transform, the LPS estimated by wavelet transform reflect precisely the unstable characteristics both in time
domain and frequency domain of the non-stationary process. With the aid of evolutionary process theory
[Priestly 1967], the LPS of elastic unsteady structural response are calculated by numerical integral and so the
influence of non-stability in time and frequency of the non-stationary process is considered adequately. The
seismic structure is modeled as a MDOF (multi-degree-of-freedom) system with concentrated mass and its
dynamic reliability based on the first passage criterion is estimated with the LPS acquired.
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WAVELET TRANSFORM

Wavelet transform is a very new mathematical tool that cuts up signals into different frequency components, and
then studies each component with a resolution matched to its scale [Daubechies 1992]. The so called “scale”
means the frequency band of the wavelet. The wavelet series used to analysis signals are expanded or shrunk by
the mother wavelet automatically. The small scale, which can be regarded as a narrow time window, means high
frequency band corresponding to shrunk wavelet and vice versa. Because of the characteristics of automatic
changing windows according to the frequency being analyzed, wavelet transform has very good time-frequency
discrimination ability. There are many mother wavelets (basis) to be chosen, however, and so it is with the
transform method. One must choose an appropriate mother wavelet and transform method on basis of characters
of signals to be analyzed. Through comparisons and studies [Cao 1999], the Littlewood-Paley (L-P) basis and
the direct wavelet transform [Chen 1998] are thought as relatively adapt to analyzing the earthquake waves, for
the tight support in frequency domain of the L-P basis and the same length of components gotten by the direct
wavelet transform. The direct wavelet transform means that to get the components by direct convolution of
wavelets and signal, and so it is time-consuming and with lower precision comparing to indirect wavelet
transform. It is referenced in [Chen 1998]. To overcome the disadvantage, some changes are carried out. The
first is implementing convolutions by FFT (Fast Fourier Transform). The second and more important is to utilize
the formulation in frequency domain of L-P basis. The main merits of the changes are as follows: FFT runs
much faster than the direct convolution; FFT with the formulation in frequency domain is much more precise
than that in time domain; characters of tight support in frequency domain of L-P basis can help to prevent
leakage, so can promote the precision all the more. Details can be found in [Cao 1999]. So the dyadic discrete
formulation of L-P basis in time and frequency domain are expressed as
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The wavelet spectra Wm(b) of a signal Y(t) are as
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And Y(t) can be reconstructed by Wm(b) as
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�Y(ω) is the Fourier transform of Y(t), m means scale and b means time in the above equations. The scheme of
changed direct wavelet transform is that: transform the signal Y(t) form time domain into frequency domain to

get �Y(ω) with FFT; get the product of  �Y(ω) and the �ψ(ω) ;then transform the product into time domain with
IFFT to get Wm(b).

LOCAL POWER SPECTRA OF GROUND MOTIONS

The integral of the product of Y(t) and G(t) can be obtained by their wavelet spectra as follows [Daubechies
1992]
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if G(t)=Y(t), then
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by using Parseval’s identity, one can get
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The above equations are expressed for one signal, or say, one earthquake wave. On the viewpoint of random
vibration theory, an earthquake wave is just one realization of earthquakes, i.e. a sample of a nonstationary
random process. So to characterize the process, the average over an ensemble should be made. Thus the expected
total energy of the process is
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In equations (5) to (8), WY(a,b) are the wavelet spectra of Y(t) gotten by continuous wavelet transform. They
should be discretized to implement numerical calculation. Let am=2m, and bk=(k-1)�b, then the dyadic discrete
version of Eq. (8) is
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If the summation over m in Eq. (9) is taken out, the energy corresponding to the mth frequency band is obtained
as
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As well as, the energy of the process in time t=bk, i.e. the instantaneous mean-square value of the process, is
gotten from equation (9) as
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Eq. (10) can be discretized with time bk like Eq. (11) to obtain the expected energy of the process corresponding
to the mth frequency band in time t=bk as
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The formulation in the left of Eq. (12) is usually called as the instantaneous power spectra of the process.
Nevertheless, the true instantaneous energy distribution of the process or a sample can not be acquired by any
time-frequency analysis method for the reason of the spectral uncertainty principle or Heisenberg ‘s uncertainty
principle [Priestly 1967]. In fact, it represents the local energy distribution over frequency of the process. Hence
on the viewpoint of the author, it is more exact to call it as the local power spectra (LPS). As we can say, a
simple relation between the LPS and the wavelet spectra of the process exists as shown in Eq. (12). So the LPS
of the process can be easily estimated by wavelet transform.

It is well known that the earthquake ground motion is a nonstationary random process as mentioned previously.
To characterize a nonstationary random process, infinite samples are needed in mathematics sense. In practice, it
is impossible. A volume of samples, e.g. 30, is usually used. Thirty waves are adopted here to construct a sample
base, which describes an earthquake ground motion process in some extent. These samples are simulated with
the method suggested by [Cao 1999] using the LPS of a famous actual wave, EL centro NS record. In addition,
the normalized acceleration responses of these artificial waves are all resembled in order to correctly represent
the process in random vibration theory sense. Firstly each sample is decomposed into wavelet spectra by wavelet
transform method aforementioned and then all the wavelet spectra are square-averaged over the ensemble, i.e.
the sample base. According to Eq. (12), the LPS of the process can be obtained by the square-averaged wavelet
spectra of the samples. Thus, the LPS estimated by wavelet transform are used to characterize the nonstationary
process.
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STRUCTURAL RESPONSES TO NONSTATIONARY EXCITATIONS

As introduced previously, structural responses to nonstationary excitations are difficult to be acquired with the
existing theory. So an uniformly modulated process or a stationary process is often used as the earthquake
excitation. But now, the LPS of a nonstationary process can be applied to obtain structural responses with the aid
of evolutionary process theory.

With the use of the evolutionary process theory [Priestly 1967], a nonstationary process Y(t) can be expressed as
the Fourier-Stieltjes integral of a stationary process X(t) and a deterministic function A(t,ω) as
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in which dZ(ω) is a zero-mean orthogonal-increment relevant with X(t) having property

E[dZ(ω1)dZ*(ω2)]=SXX(ω1)δ(ω2−ω1)dω1dω2                                                                             (14)

where the superscript * denotes the complex conjugate operator and SXX(ω) is the power spectral density
function (PSDF) of X(t). Then the time-dependent (evolutionary) PSDF of Y(t) can be denoted by

SYY(t,ω)=���t�ω���SXX(ω)                                                             (15)

The ith modal displacement response Ri(t) of a MDOF structure to the excitation Y(t) is available with the
Duhamel integral as
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where hi(t) is the unit impulse response function of the ith mode and mi(ω,t) is the time-frequency modulated
function of the ith modal displacement response, mi(ω,t) is expressed as

∫ −= − t i
i

ti
i deAthetm

0
),()(),( τωττω ωτω                                                (17)

So the cross-correlation function of Ri and Rj can be expressed as

∫
∞

∞−
+=+= ωτωωωττφ ωτ detmStmtRtREt i

jXXijiRR ji
),()(),()]()([),( **                   (18)

If τ=0, Eq. (18) reduces to
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where

SXX(ω,t)=���ω,t��SXX(ω)���ω,t�                                                         (20)

is the evolutionary cross PSDF of the ith and jth modal response. It is obvious to see if ���ω,t��and ���ω,t��can
be found, SXX(ω,t) is available. But the integral in Eq. (17) is often difficult to implement, mainly because of the
adaptive formulation of ��t,ω�� is hard to get. Nevertheless, if SXX(ω) is regarded as 1 forever, ��t,ω� can be
expressed as follows according to Eq. (15)

��t�ω���SYY(t,ω))1/2                                                                 (21)

Though the formulation of SYY(ω,t) is usually more difficult to find than that of ��t,ω�, the SYY(ω,t) can be
obtained by wavelet transform as the LPS, and with numerical integral method the integral in Eq. (17) can be
carried out without problem. The LPS of the nth structural layer displacement response hence can be obtained as
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in which φi
n and φj

n is the nth component, αi and αj is the participant coefficient of the ith and jth mode
respectively. And, it is easy to deduct the LPS of the nth inter-layer displacement response as
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Therefore, the elastic nonstationary structural responses to the nonstationary process excitation are characterized
by the LPS of the response process.

STRUCTURAL DYNAMIC RELIABILITY

The structural dynamic reliability considered here is based on the first passage criterion and has been studied by
many researchers for a long time. One of the reliability formulae adopted in this paper is put forward by [Corotis
et al. 1972]
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and the other is suggested by [Wu 1989]
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where v0(t), vb(t) and vb
e(t) is the instantaneous expected up-crossing rate for the random process to cross 0, to

cross level b, and the instantaneous expected up-crossing rate for the envelope of the random process to cross
level b respectively, and expressed as follows
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in addition, another formula of vb
e(t) can be used in Eq. (25), that is vb

e’(t) [Wu 1989]
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a0(t), a1(t), a2(t) and a4(t) in above equations are the various order moment of the evolutionary PSDF, which
found to be
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Let the evolutionary PSDF in Eq. (30) be the LPS of structural responses obtained previously, the not passage of
level b reliability of each layer’s inter-layer displacement is available by above equations.

Eq. (24) and (25) are expressed for nonstationary process, i.e. the nonstationary structural response process. For
comparison, formulae for stationary process are also employed here, which given by [Davenport 1964]
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and by [Corotis et al. 1972]
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in which a0, a1 and a2 are various order moment of PSDF of the stationary process, having the same formulation
of Eq. (30), except for they are now time-independent, so  the Sxx(ω,t) should be replaced by Sxx(ω). The
structural response process is actually nonstationary, however, it is the aim of this paper to compare the results of
Eq. (24), (25), (31) and (32). By the way, the time-independent PSDF Sxx(ω) of the structural response process
can be acquired by traditional Fourier transform and modal analysis method. Things have been discussed are just
for the reliability of structure of one-degree-of-freedom. About a MDOF structure with N layer, the formula
suggested by [Ou 1984] can be used

∏
=

=
N

i
sis TPTP

1

)()(                                                                   (33)

where Psi is reliability of the ith layer which can be obtained by the above equations. Eq. (33) means that the
whole reliability of the structure is the product of reliability of each layer.

NUMERICAL EXAMPLE

The structure considered here is modeled as a concentrated mass MDOF shear-beam type fixed-base, five-story
building, with critical damping ratio being 5%. The mass and story stiffness and height of each layer is 847,
268.4, 108.1, 130.6 ,224.5 kN and 4.5, 1.64, 3.5, 4.4, 2.07×104 kN/m, and 3.5, 3.5, 3.2, 3.0, 4.6 m, from the
lower to the upper layers respectively. The natural frequencies of this building are computed to be 3.55, 9.96,
18.38, 27.27 and 32.27 rad/s.

Under the excitation of the nonstationary process characterized by its LPS aforementioned, the LPS of each
structural layer inter-layer displacement response are obtained by Eq. (23). The LPS of the excitation and the
first layer displacement response is shown in Fig.1 and Fig.2 respectively. The mean-square value history of the
first displacement response is also acquired with the LPS and Eq. (30), and shown in Fig.3. Contemporarily, the
mean-square value history is calculated using the time-history analysis method (step by step integral method)
with the 30 samples described earlier as the inputs, and square-averaging the results over the ensemble, shown in
Fig.3 as well. Let b be the H/450 (H is the height of each layer), the dynamic reliability can be gotten by Eq.
(24), (25), (31), (32) and (33), with the acquired LPS of each structural layer inter-layer displacement response.
The last results are shown in Fig.4, in which, Stationary 1 means the result by Eq. (31), Stationary 2 by Eq. (32),
Nonstationary 1 by Eq. (24), Nonstationary 2 by Eq. (25) with vb

e(t), Nonstationary 3 by Eq. (25) with vb
e’(t). Eq.

(33) is used for all things to get the whole reliability.

CONCLUSIONS

A method to estimate the LPS of a nonstationary process with a fast and accurate wavelet transform devised by
the author is introduced in this paper and applied to acquire the LPS of a structural elastic unstable response
under the excitation of the process. With the LPS acquired, the reliability of the structure is determined based on
the first passage criterion.
In Fig.3, the mean-square value history of layer displacement gotten by the LPS transfer is well compatible with
those by the time-history analysis. It is proved that the LPS of the process estimated by wavelet transform
describe its nonstationary characteristics accurately and the LPS transfer has enough precision. So it can be said
that wavelet transform is a good tool adaptive to time-frequency analysis in earthquake engineering. It is shown
that in Fig.4, except for Nonstationary 3, the results obtained by nonstationary methods are bigger than those by
stationary methods. That is, the latter is more conservative than the former. It is consistent with the foregone
knowledge. And it is accordant with the conclusions of [Wu 1989] for the abnormality of Nonstationary 3.
Anyhow, it is possible that with good time-frequency discrimination ability, wavelet transform can improve the
studies of earthquake engineering from conventional frequency spectrum analysis to more accurate time-
frequency analysis.
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