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Abstract 

Theoretical research works and past experience have proven seismic hazard assessment using time-dependent 

model provides  more realistic results than using time-independent models for large magnitude events. The earthquakes 

having large magnitudes follow elastic rebound theory of earthquake occurrence; hence their probability of occurrence 

increases with the time since the last seismic event. The Himalaya belt formed by two converging plates has differential 

convergence rate over the entire arc, which results into a non-uniform seismic behavior over the entire mountain chain. 

One of the examples is the Nepal region spreading over one-third of the Himalayas (or about 800 km from 2500 km 

long arc) and is a prominent part of the Himalaya has experienced many earthquake events which sometime do not 

follow the classical approaches and models of seismic hazard. It is one of the most seismically prone countries of the 

world. The Nepal, from its western to eastern end, comprises different geology and tectonics and therefor behaving 

differently in earthquake occurrence terms. It is in this context that the Nepal region of the Himalaya has been chosen 

for the present study. The Time-dependent seismic hazard analyses have been conducted for the Nepal region to have a 

better understanding of the processes going on there.  

In the present work, to study Nepal Himalayas with respect to time-dependent models, two stochastic models 

have been selected viz. Weibull distribution and Log-normal distribution. The distributions have distinguishable 

properties that can be used to interpret the seismic behavior for more clear understanding of the physical phenomenon 

of the area based on its adoption towards a particular distribution. The probabilities of earthquakes have been calculated 

for earthquakes having moment magnitude greater than 5.5, 6.0, 6.5, and 7.0. The model adoption has been selected 

using goodness of fit tests. The Nepal region is segregated into two seismogenic source zones (i.e. Western Nepal and 

Eastern Nepal) on the basis of seismicity and tectonics. Fitting of different type of model for different magnitude range, 

for same region interprets that the region has got different types of sources that are generating various sizes of 

earthquakes there.  
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1. Introduction 

 

Nepal is a part of the Himalaya, approximately 800 km in length situated at its central segment. It is one of 

the most seismically prone countries in the world. Since, the Himalaya has witnessed many varied sizes 

earthquakes; many of them occurred in Nepal. The great earthquakes of Nepal which had magnitudes greater 

than 7.5 occurred in years 1255, 1408, 1505, 1833, 1934 and 2015 [1]. Among the major historical 

earthquakes, the 1934 Bihar-Nepal earthquakes (Mw=8.4) was most disastrous among the historical events of 

Nepal with a maximum intensity of X (MMI), caused extensive damage in the eastern half of Nepal and 

resulted in more than 8500 deaths and hugeloss to buildings [2]. This caused extensive damage to human 

lives and huge economic loss to Nepal. The damages from future earthquakes are expected to rise due to 

tremendous rise in population and structures. Recent earthquakes that have affected the country significantly 

are 1980 event having surface wave magnitude (MS) 6.6, 1988’s of MS 6.8, 2011 of magnitude 6.8 and 2015 

having moment magnitude 7.8 and 8.1 as surface wave magnitude. The event affected more than 7,90,000 

buildings of Nepal that were fully or partially damaged, caused 8778 fatalities and 22,303 injuries 

(Government of Nepal, 2015, http://drrportal.gov.np/) [3]. The earthquake of 2011 occurred on September 18 

and affected five countries, namely Nepal, India, Bangladesh, Bhutan and China. Similarly 2015 Nepal event 

also caused significant loss of life and property in these countries. Several fault studies [e.g., 4, 5, 6, 7, 8, 9, 

10] have identified four major longitudinal faults (STDS, MCT, MBT, and MFT), a longitudinal Bari Gad 

fault, and a number of transverse faults as well as their associated minor faults in Nepal. Such faults caused 

higher seismicity in the Himalaya [11](Sharma and Arora, 2005). To reduce the impact of catastrophic 

seismic events that can occur due to movement along these faults, it is very important to evaluate the 

potential location, predicted exposure level and distribution of earthquake events using various techniques. A 

comprehensive understanding of the geodynamic processes in the Himalaya is the corner stone of such 

intrinsic efforts, where the ultimate goal is to establish a framework within the Himalayan environment that 

facilitates sustainable development of the mountain chains. 

The classical mathematical models applied to carry out both Deterministic and Probabilistic Seismic 

Hazard Assessment (DSHA and PSHA) assume that the seismicity rate is Time-independent i.e., the rate of 

seismicity remains constant in a finite time period. Various such studies have been done for Himalayan 

region [12, 13, 14, 15](Sharma, 2003; Sharma and Shanker, 2001; Sharma and Linholm, 2012; Sharma and 

Dimri, 2003)some of which were done specifically for Nepal Himalayan region [16, 17, 18](Shrestha, 2014; 

Thapa et al., 2017; stevens et al, 2018). This assumption, albeit used for mathematical simplicity, has indeed 

been a stark contrast to the physical process of strain release through earthquake occurrence [19, 20, 21]. 

This is therefore imperative to examine the current level of seismic hazard in the Himalaya through the prism 

of Time-dependent hazard models. İn this work the Time dependent probabilities for various magnitude 

ranges have been estimated using two statistical distributions namely, Weibull and Lognormal. These models 

have distinguishable properties that can help to understand a seismic source in a better way. The 

compatibility of the intercurrence data of earthquakes with a statistical distribution is tested with a “goodness 

of fit test”. The Kolmogorov-Smirnov test has been used for the selection of the most suitable model for a 

specific seismic zone. 

 

 

 

 

 

 

 

 

10c-0003 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 10c-0003 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

3 

2. Study area and Data 

The Nepal region considered for this study is given in Fig. 1. The seismic and tectonic features of 

Nepal are shown in the figure. 

 

 

Fig. 1: Seismicity and Tectonic map of Nepal 

Data and Resources 

A homogeneous and complete earthquake catalogue is one of the most important ingredients for the 

assessment of seismic hazard of an active region of the world.  In the present study, it has been compiled for 

the time period 1255-2017 using different national and international seismological agencies e.g., India 

Meteorological Department (IMD), India, International Seismological Centre (ISC), U.K., Global Centroid 

Moment Tensor catalogue of Harvard (GCMT) National Earthquake Information Centre (NEIC) of United 

States Geological Survey (USGS) and other published literatures. The earthquake events for the period 1964-

2017 are collected from India Meteorological Department (IMD), National Earthquake Information Centre of 

USGS and ISC of UK (United Kingdoms). For the time period 1890-1964, earthquake events have been 

collected from a published catalogue of Gutenberg & Richter [22]; Gutenberg [23]; and Rothe [24] and 

others. Main contributors for the period prior to 1890, that is for the non-instrumental or historical period, are 

Baird-Smith [25], Oldham [26], Milne [27], Lee et al. [28], Quittmeyer & Jacob [29] and others.  

The compiled earthquake catalogue was available in variable magnitude scales viz. moment magnitude 

(Mw), surface wave magnitude (Ms), body-wave magnitude (mb) and local magnitude (ML). In order to use 

the catalogue for the study, it is made suitable using catalogue homogenization, declustering, and 

completeness analysis. For homogenization of magnitude scales, all magnitudes were converted into moment 

magnitude (Mw) using established empirical relations between different magnitude scales. Earthquake 

magnitudes in pre-instrumental data have been converted using empirical conversion relations given by 

Gutenberg [30]; Chung & Bernreuter [31] and Hanks & Kanamori [32]. Conversion equations for magnitude 

scale Ms and mb with Mw given by Scordilis [33] for the instrumental period has been used in the present 

study.  Once homogenization is done, the catalogue has been declustered using the windowing method of 

Uhrhammer [34] to obtain main shocks and independent events by removing all the foreshocks and 

aftershocks from the catalogue.  The time period for which data is complete was estimated using the Stepp 

method [35]. The completeness year for the catalogue is given in Table 1. 
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Table 1: Completeness year 

Sr. No. Magnitude Year 

1 5.5-6.0 1900 

2 6.0-6.5 1795 

3 6.5-7.0 1750 

4 ≥7.0 1680 

3. Methodology 

The conditional probability technique has been applied in the past in different regions of the world for 

various seismogenic zones and faults to assess the seismic hazard [36, 37, 38, 39 etc.]. The evaluation of 

seismic potential can be performed as a function of probability for occurrences of an earthquake event during 

a specified time period in a particular seismogenic zone. The conditional probability means the probability of 

occurrence of the next earthquake event during a specified time interval after certain elapsed time from the 

previous event [40]. The conditional probability of earthquake occurrence is computed using statistical 

distributions, in which the recurrence time‘t’ (i.e. a vector of random variables), represents the time interval 

between two successive earthquakes of a particular magnitude. If τ is small time interval from t in which the 

conditional probability of earthquake occurrence is to be computed, then the equation for conditional 

probability computation is given as (
𝑥+𝑑𝑥

𝑥
)  =  

𝐹(𝑥+𝑑𝑥)−𝐹(𝑥)

1−𝐹(𝑥)
 . Where, F (t) is Cumulative Distribution Function 

(CDF) of a specific distribution that is used. The conditional probability is estimated using the equation for 

the time interval from t to (t + τ) assuming that no earthquake has occurred after the last occurrence. It is 

observed that the conditional probability depends on the shape of the curve as well as on the width of time 

interval τ. A brief description of some of the models given by Utsu [41], which have been applied in the 

present study for the estimation of earthquake occurrences, is given below. The most suitable model for the 

region is selected on the basis of the Kolmogorov-Smirnov test. 

 

Kolmogorov-Smirnov Test 

It is one of the most widely used statistical tests for estimating the goodness of fit [42]. In this test, the 

difference between observed and theoretical cumulative probabilities is calculated and the maximum 

difference between these should be less than the critical value. The critical value is relied on the size of the 

sample and on significance level (α) (which is taken as 0.05 in this study). If F (t) is observed CDF and F1 (t) 

is observed CDF for a used model: the equation for the K-S test can be expressed as 

𝐷𝑛 = max |𝐹1(𝑡) − 𝐹(𝑡)|   (1) 

where Dn is the maximum difference between the observed and theoretical CDFs’. If Dnα is assumed to 

be the critical value, then to accept a model following equation should follow 

𝐷𝑛 = max |𝐹1(𝑡) − 𝐹(𝑡)|   (2) 

3.1 Weibull Model 

This distribution was introduced in 1951 by Waloddi Weibull [43] suggested that this model can be used to 

assess the earthquake recurrences. The general form of two parameters with parameters β (dimensionless), 

shape parameter and α, scale parameter the Weibull probability density (f(x)) and distribution (F(x)) 

functions for variable x ≥ 0 is given as: 
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𝑓(𝑥) =  
𝛽

𝛼
(𝑥/𝛼)𝛽−1𝑒−(𝑥/𝛼)𝛽

   (3) 

𝐹(𝑥) = 1 −  𝑒−(𝑥/𝛼)𝛽
   (4) 

The parameters β and α can be estimated using graphical procedures viz. mean rank, median rank or 

symmetrical CDF method or analytical procedures viz. Maximum Likelihood Estimation (MLE), Method of 

Moments (MOM) or Least-Square (LS) method. Here, the MLE method is used to calculate the Weibull’s 

parameters. The shape and scale parameters can be calculated as 𝛽 =  
1

∑(𝑥𝑖𝛽𝐿𝑛(𝑥𝑖))

∑𝑥𝑖𝛽 −
1

𝑛
∑𝐿𝑛(𝑥𝑖)

 and   𝛼 =  
∑𝑥𝑖𝛽

𝑛
 . 

Where, x is a random sample of size n. 

3.2 Log normal Model 

The most widely used distribution in statistics is the normal distribution. It sustains for the whole 

range of the axis (– inf., + inf.) hence it is not a lifetime distribution. Two modified forms of this distribution 

for positive variables are: the Log normal distribution and the truncated normal distribution. The lognormal 

distribution of a random variable ‘x’ having size ‘n’ is closely related to the normal distribution if the natural 

logarithm of x follows a normal distribution. PDF and CDF for the distribution are given as: 

𝑓(𝑥) =  
1

𝜎𝑥√2𝜋
𝑒𝑥𝑝

−(𝑙𝑛𝑥−𝜇 )2

2𝜎2    (5) 

𝐹(𝑥) =  𝜑 (
ln(𝑥)−𝜇

𝜎
)   (6) 

Where, ϕ is the CDF of the normal distribution, and σ and µ are the mean and the standard deviation of the 

logarithm of x. The MLE has been used for estimating the parameters of this distribution that are given as, 

𝜇 =  
𝛴𝑖 𝑙𝑛(𝑥𝑖)

𝑛
  and 𝜎2 =  

𝛴𝑖(𝑙𝑛(𝑥𝑖)−𝜇)2

𝑛
 . 

 

4. Results 

The earthquake data for Mw ≥ 5.5 used in the present study is listed in Table 2 (a) and (b) for SSZ 1 and 2, 

respectively. Considering the completeness of the prepared catalogue, the data for Mw ≥ 5.5, Mw ≥ 6.0, Mw 

≥ 6.5 and Mw ≥ 7.0 are taken from the year 1900 to 2017, 1795 to 2017, 1750 to 2017 and 1685 to 2017, 

respectively, to estimate the conditional probability in the seismogenic zones of the Nepal region found for 

this study. The statistical distributions, namely Weibull and Log-Normal, show varying hazard rates with 

time, and their applicability in a specific region may throw light on the physical process, which shows cyclic 

accumulation and release of energy in the form of earthquakes. In this work two distributions have been 

applied and tested in two seismic source zones (SSZ), and the model fitting best for a specific zone is 

estimated using the K–S test.  

For the computation of probabilities of earthquakes of Mw ≥ 5.5, a total of 33 events (32 recurrence intervals) 

are used in zone 1 during 1911–2016, 23 events (22 recurrence intervals) in zone 2 during 1903–2016. The 

suitability of the models is estimated based on the K–S results, revealing that the model that fits best in zone 

1 and 2 is the Log-Normal. The model parameters are estimated using the MLE method. The CDF curves for 

F(x) (1 − ∫ 𝑓(𝑥)𝑑𝑥)
𝑥

0
, where x is the time interval, are shown in Fig. 2 (a) and (b) for two zones. These graphs 

indicate that the cumulative probability takes almost 7 and 10 years to reaches 90% in SSZ 1 and 2 

respectively. The conditional probability P(t/s) estimates the probability of occurrence of future earthquakes 

in a particular time interval (t) for different elapsed times (s) since the last occurrence in a region. P(t/s) is 

computed for each zone using the best-fit models for all the combinations of s and t using estimated model 

parameters. Graphs of the conditional probability for all combinations of s and t for Mw ≥ 5.5 are shown in 
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Fig. 3(a) and (b). The curve in bold in Fig. 3 is for the present scenario, for which “τ” equals the time 

between the last occurrence and the year 2019. These results indicate that both the zones are having higher 

probabilities for this magnitude earthquake. 
 

  
(a) (b) 

Fig. 2: CDF for Mw≥5.5 

 
 

  
(a) (b) 

Fig. 3: Conditional probabilities for (a) SSZ 1 and (b) SSZ 2 for Mw≥5.5. 
 

 

For the computation of probabilities of earthquakes of Mw ≥ 6.0, a total of 16 events (15 recurrence intervals) 

are used in zone 1 during 1720–2015, 17 events (16 recurrence intervals) in zone 2 during 1681–2015. The 

suitability of the models is estimated based on the K–S results, revealing that the model that fits best in zone 

1 and 2 is the Log-Normal. The model parameters are estimated using the MLE method. The CDF curves for 

F(x) (1 − ∫ 𝑓(𝑥)𝑑𝑥)
𝑥

0
, where x is the time interval, are shown in Fig. 4 (a) and (b) for two zones. These graphs 

indicate that the cumulative probability takes almost 75 years and 60 years to reaches 90% in SSZ 1 and 2 

respectively. Graphs of the conditional probability for all combinations of s and t for Mw ≥ 6.0 are shown in 

Fig. 5(a) and (b). The curve in bold in Fig. 5 is for the present scenario, for which “τ” equals the time 

between the last occurrence and the year 2019. These results indicate that both the conditional probability is 

reaching 80% in 50 to 60 years in SSZ 1 and it is taking almost 10 to 15 years in SSZ 2 to reach its 80%. 
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(a) (b) 

Fig. 4: CDF for Mw≥6.0 

 

  
(a) (b) 

Fig. 5: Conditional probabilities for (a) SSZ 1 and (b) SSZ 2 for Mw≥6.0. 
 

 

For the computation of probabilities of earthquakes of Mw ≥ 6.5, a total of 8 events (7 recurrence intervals) 

are used in zone 1 during 1720–1980, 10 events (09 recurrence intervals) in zone 2 during 1681–2015. The 

suitability of the models is estimated based on the K–S results, revealing that the model that fits best in zone 

1 and 2 is the Weibull. The model parameters are estimated using the MLE method. The CDF curves for F(x) 

(1 − ∫ 𝑓(𝑥)𝑑𝑥)
𝑥

0
, where x is the time interval, are shown in Fig. 6 (a) and (b) for two zones. These graphs 

indicate that the cumulative probability takes almost 95 and 65 years to reaches 90% in SSZ 1 and 2 

respectively. Graphs of the conditional probability for all combinations of s and t for Mw ≥ 6.5 are shown in 

Fig. 7(a) and (b). The curve in bold in Fig. 7 is for the present scenario, for which “τ” equals the time 

between the last occurrence and the year 2019. The conditional probabilities are reaching 80% in 55-60 years 

in SSZ 1 and 30 to 40 years in SSZ 2. This indicates that SSZ2 is more earthquake prone than SSZ1.   
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(a) (b) 

Fig. 6: CDF for Mw≥6.5 

 

  
(a) (b) 

Fig. 7: Conditional probabilities for (a) SSZ 1 and (b) SSZ 2 for Mw≥6.5. 
 

 

For the computation of probabilities of earthquakes of Mw ≥ 7.0, a total of 4 events (3 recurrence intervals) 

are used in zone 1 during 1720–1936, 7 events (6 recurrence intervals) in zone 2 during 1681–2015. The 

suitability of the models is estimated based on the K–S results, revealing that the model that fits best in zone 

1 and 2 is the Log-Normal. The model parameters are estimated using the MLE method. The CDF curves for 

F(x) (1 − ∫ 𝑓(𝑥)𝑑𝑥)
𝑥

0
, where x is the time interval, are shown in Fig. 8 (a) and (b) for two zones. These graphs 

indicate that the cumulative probability is taking more than 100 years to reaches 90% in both the zones. The 

conditional probability graph for all combinations of s and t for Mw ≥ 7.0 are shown in Fig. 9(a) and (b). The 

curve in bold in Fig. 9 is for the present scenario, for which “τ” equals the time between the last occurrence 

and the year 2019. These results indicate that for SSZ 1, the conditional probabilities are taking almost 200 

years to reach 70% and for SSZ 2, it is taking 60-70 years for reaching 80%.  
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(a) (b) 

Fig. 8: CDF for Mw≥7.0 
 

  
(a) (b) 

Fig. 9: Conditional probabilities for (a) SSZ 1 and (b) SSZ 2 for Mw≥7.0. 
 

 

Table 2: Earthquake catalogue for (a) Zone 1 and (b) Zone 2 
(a) (b) 

Long Lat year month date mag 

3 29.5 1505 6 6 8.2 

80 30 1720 7 25 7.5 

80 30 1803 5 22 6.4 

81 30 1816 8 28 7.5 

79.6 29.4 1833 5 30 6 

80.28 30.76 1911 10 14 6.5 

83 30 1913 3 6 6.6 

80.75 29.73 1916 8 28 7.2 

82 30.5 1918 4 28 6 

80.05 30.5 1926 7 27 6 

80.5 30.5 1927 10 8 6 

80.4 29.6 1935 3 5 5.8 

Long Lat year month date Mw 

85.37 27.72 1255 6 7 8.4 

86.8 27.1 1260 1 1 6.9 

87.5 27.5 1344 1 1 7.7 

86 27.9 1408 8 1 8 

87.1 27.6 1681 1 1 7.9 

85.5 28 1767 7 1 7.9 

85.33 27.7 1826 10 29 6 

85.7 27.7 1833 8 26 7.7 

88.3 27 1843 8 10 5.7 

88.3 27 1849 2 27 6 

88.3 27 1852 5 18 6.4 

88.3 27 1863 3 29 5.7 
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83.28 28.35 1936 5 27 7 

81.5 30 1937 4 30 5.6 

81.5 30 1940 4 10 5.5 

80 30.3 1945 6 4 6.4 

82.2 27.9 1952 11 8 5.5 

82.2 27.9 1953 8 29 6 

83.83 28.17 1954 9 4 5.5 

79.95 29.99 1958 12 28 6.5 

80.9 29.5 1963 1 30 5.5 

80.46 29.96 1964 9 26 6 

83.06 28.59 1965 6 1 5.5 

80.79 29.62 1966 12 16 5.9 

81.57 29.24 1970 2 12 5.5 

81.38 29.32 1974 12 23 5.5 

81.46 29.33 1976 5 10 5.5 

80.27 29.93 1979 5 20 5.8 

81.09 29.63 1980 7 29 6.5 

81.79 29.52 1984 5 18 5.8 

83.74 29.47 1987 8 9 5.6 

81.61 29.51 1991 12 9 5.8 

81.9 28.94 1992 6 2 5.5 

80.5 29.8 1997 1 5 5.7 

82.26 29.56 2001 11 27 5.5 

81.42 30.57 2002 6 4 5.6 

81.65 29.4 2015 12 18 5.6 

80.63 29.98 2016 12 1 5.5 
 

85.3 27.7 1866 5 23 7 

85.3 27.7 1869 7 7 6.5 

88.3 27 1899 9 25 6 

87.5 27.5 1903 9 5 7.7 

86.76 26.77 1934 1 15 8.1 

86.5 28.5 1939 6 4 5.7 

86.69 28.93 1951 5 28 5.5 

85.7 27.8 1952 10 19 5.5 

86.9 28.8 1958 11 23 5.5 

88 28.3 1961 9 29 5.5 

85 28 1962 1 11 5.5 

87.84 27.4 1965 1 12 6 

86.38 28.7 1967 3 2 5.5 

87.95 27.93 1971 12 4 5.5 

85.51 28.59 1974 9 27 5.7 

85.94 27.82 1978 10 4 5.5 

88.8 27.4 1980 11 19 6.2 

86.63 26.72 1988 8 20 6.8 

88.11 28.15 1990 1 9 5.7 

87.33 29.03 1993 3 20 6.2 

85.34 28.03 1997 1 31 5.5 

86.97 28.38 2000 9 6 5.5 

87.13 28.77 2001 4 28 5.5 

88.15 27.8 2011 9 18 6.9 

84.79 28.28 2015 4 25 7.8 

86.53 27.8 2016 11 27 5.6 
 

 

5. Discussions 

The present work is done to understand the pattern of earthquake occurrence in seismically active Nepal 

region. Using the goodness of fit test Log-Normal was found to be the most suitable for both the zones for 

Mw≥5.5, Mw≥6.0 and Mw≥7.0. Adaptability towards Log-Normal distribution can be interpreted as the 

probability immediately after an earthquake event is smallest and this probability increases upto the mean 

occurrence time and if an earthquake event hasn’t occurred, the probability starts decreasing. The probability 

is largest after a particular time of last occurrence. For Mw≥6.5, the most suitable model is Weibull which 

means the earthquake probabilities keeps on increasing with time after occurrence of a seismic event. Both 

the zones are showing same characteristics toward adapting a renewal model. Adaptability towards different 

models for a specific magnitude range indicates the presence of different types of sources which are 

generating such events. There a number of transversal faults present in Nepal region which have played an 

important roles in generating seismic events and also dissect the regional features and therefore forcing the 

individual blocks to behave differently in releasing strain energy. The earthquake occurrences estimated 

using classical approach is not in compliance with the real scenario (Bajaj and Sharma, 2019). The 

probabilities are the result of many cycles but some of it must be reflected in the catalogue and which can be 

best understood with the use of Time-Dependent models.  
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