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Abstract 

The classical theory of elastica, which describes the geometrical nonlinearity of a column under the critical axial 

loading with the supposition of material linearity, provides us some analytical predictions about the post buckling 

behavior of the column under large displacement. The axial load is supposed to increase as the deformation of the 

column develops. This is one of those well-known results from the model of elastica. This paper reviews the 

suppositions of the classical theory of elastica with the purpose of extending it into the material nonlinear model. There 

is an identical nonlinear eigenvalue problem behind the elastica model and the material nonlinear buckling model, 

which denotes the inelastic model in the latter part of this paper. Once this identity is accepted, the same nonlinear 

differential equation describes the tow different physical phenomena: the elastic buckling and the inelastic buckling. 

Authors start creating a supposition in the beginning and proceed to the theoretical development with the logically 

rigorous nonlinear buckling model. At the end of this paper, we come to understand that the buckling load becomes 

smaller as the deformation of the column develops, even if the material property is constant and elastic. A small 

modification is necessary for creating the compatibility between the elastic and the inelastic models.  

Keywords: Elastica, Elliptic function, Eigenvalue, Material nonlinearity, Stability 

1. Introduction

Authors start reviewing the model of elastica as is shown in Fig.1 where the deformation curve with several 

notations is illustrated. There are boundary conditions and geometrical parameters defined in Fig.1. The 

previous studies [1, 2, 3] are compatible with the following definitions and Fig. 1 and 2 are referred to [1, 2].  

𝑀(𝑠) = 𝑁0𝑥(𝑠) + 𝑄0𝑦(𝑠)  (1) 

𝑀(𝑠) = 𝑁𝑐𝑟𝑥(𝑠)      (2) 

𝑑𝑥

𝑑𝑠
= 𝑠𝑖𝑛𝜃  (3) 

𝑑𝜃

𝑑𝑠
= 𝜑(𝑠)  (4) 

𝑀(𝑠) = −𝐸𝐼𝜑(𝑠)  (5) 

The classical theory of elastica sets four suppositions. The first supposition is the definition of bending 

moment given by Eq. (1), which represents the equilibrium at P(s). The equilibrium of the column with 

reactions at both ends in Fig.1 gives us Eq. (1), from which we naturally derive Eq. (2) that prescribes the 

definition of buckling load. As the axial reaction or No increases, the horizontal reaction or Qo approaches to 

zero. When it comes to zero, the axial reaction reaches the buckling load or Ncr. Therefore it is quite natural 

that we define the buckling load by Eq. (2). The second supposition is the geometrical nonlinearity. The 

rigorous relation between the coordinate  x(s) and the rotarional angle (s) is represented by Eq. (3). The 

third supposition is the definition of curvature (s) given by Eq. (4), which describes the curvature of the 
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column curve under large deformation. The last supposition is the material elasticity, which is defined by   

Eq. (5). The bending stiffness is a constant valure EI, or equivalently the Young’s modulus E times by the 

geometrical moment of inertia or I.  Supposition of Eq. (2) and Eq. (5) yields Eq. (6). This means that the 

theory of elastica has nothing to do with function M(s). In summary, there are three equations necessary to 

derive the elastica differential equation (7), if and only if the bending moment function does exist. There are 

no constraints imposed on M(s) by the classical theory of elastica. Starting from four suppositions but 

satisfying only three equations for three variables implies that the solution of elastica might have some room 

for extension of improvement. 

 

−𝐸𝐼𝜑(𝑠) = 𝑁𝑐𝑟𝑥(𝑠)                                                                            (6) 
 

     
𝑑2𝜃

𝑑𝑠2
+

1

 𝜆2
𝑠𝑖𝑛𝜃 = 0                                                                    (7) 

 

𝑤ℎ𝑒𝑟𝑒         
1

 𝜆2
=  

𝑁𝑐𝑟

𝐸𝐼
                                                                                        (8) 

 

 

S :  Distance parameter from the origin to P(x, y)     

)(s :  Rotational angle caused by bending moment      

)(sx : coordinate of P(x, y)                                             

)(sy : coordinate of P(x, y)                                             

)(sM :  Bending moment at P(x, y)                                  

oQ : Horizontal reaction at the end                               

oN :  Axial reaction at the end                                      

oM :  Bending moment reaction at the end                   

H : Lateral deformation of the column                       

h : Height of the column after loading                       

 l : Length of the column after loading                       

ol : Initial length of the column before loading           

                      

 

Fig. 1   Deformation of the column under axial loading and boundary conditions 

 

 

)(kK : Complete elliptic integral of the first kind             

)(kE : Complete elliptic integral of the second kind        

l(k)  : Length of the column under buckling load            

h(k) : Height of the column under buckling load             

(k) : Unit length of the column                                       

k : modulus of the elliptic integral                               

max : rotational angle at the origin                                    

 

 

 

 

 

 

Fig. 2   Deformation of the column under buckling load 
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The well-known nonlinear differential equation (7) has the solution given by Eq. (9) and (10) that satisfy 

the boundary condition or equivalently Eq. (11) in common, where K(k) is the complete elliptic integral of 

the first kind.                                                                                                                                                                                                                                                                                                                                                                                                                                        

 

    𝑠𝑖𝑛 (
𝜃

2
) = 𝑘  𝑠𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))                                                               (9)  

 𝑐𝑜𝑠 (
𝜃

2
) = 𝑑𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))                                                                   (10) 

     2𝜆(𝑘) 𝐾(𝑘) = 𝑙(𝑘)                                                                   (11) 

 

We can verify the above solution by substituting Eq. (9) and (10) into Eq. (7). In fact, we obtain Eq. (12) 

from Eq. (7).  Integrating Eq. (12), we obtain Eq. (13). 

 

     
𝑑2𝜃

𝑑𝑠2
+

2𝑘

 𝜆2
𝑠𝑛 (

𝑠

𝜆
+ 𝐾(𝑘)) 𝑑𝑛 (

𝑠

𝜆
+ 𝐾(𝑘)) = 0                                              (12) 

 

   𝜑(𝑠) =
𝑑𝜃

𝑑s
=

2𝑘

𝜆 
𝑐𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))                                                          (13) 

 

The modulus k of the elliptic function is determined by Eq. (14) shown in Fig.2. Considering the rotational 

angle at the origin, we obtain Eq. (14) that determines the parameter k for Eq. (9), (10), and (11).    

 

    𝑠𝑖𝑛 (
𝜃𝑚𝑎𝑥

2
) = 𝑘                                                                      (14)  

 

Substitution of Eq. (11) into Eq. (8) yields Eq. (15) from which we would predict how the buckling load 

influenced by the modulus k.  

 

𝑁𝑐𝑟(𝑘) =   
𝐸𝐼

 𝜆2
=

4𝐸𝐼

 𝑙2
 𝐾2(𝑘)                                                               (15) 

 

𝑤ℎ𝑒𝑟𝑒    𝐾(𝑘) =   
𝜋

2
(1 +

1

4
𝑘2 + 

9

64
 𝑘4  + ⋯ )                                                (16) 

 

Under the condition that the length of the column is supposed to be constant or lo, the buckling load Ncr 

increases as the deformation of the column develops. We could numerically estimate Ncr , if the complete 

elliptic integral of the first kind is approximated by Eq. (16).  

 

𝑁𝑐𝑟(𝑘) =   
𝜋2𝐸𝐼

 𝑙𝑜
2  (1 +

1

2
𝑘2 +  

11

32
 𝑘4  + ⋯ )                                                 (17) 

 

As far as the author knows, the past study paid little attention to the rest of the variables such as x(s), M(s), 

and (s). Once we obtained (s) from the nonlinear differential equation (7), we can determine (s) from 

Eq. (13). As far as material is linear according to Eq. (5), M(s) is the same function as (s). In other words, 

M(s) should be Eq. (18). We apply the same logic to x(s) for modeling it as Eq. (19). However, we have not 

yet proved that there is compatibility between Eq. (17) and Eq. (18), because the theory of elastica has 

nothing to do with M(s). We would continue the discussion whether M(s) does exist to be consistent with 

Eq. (17) in the following chapters.  
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𝑀(𝑠) = −𝑀𝑜(𝑘) 𝑐𝑛 (
𝑠

𝜆
+ 𝐾(𝑘))                                                        (18) 

𝑥(𝑠) = −
1

2
𝛿𝐻(𝑘) 𝑐𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))                                                       (19) 

2. Eigenvalue problem required for the elastica theory 

In the previous chapter, we reviewed the supposition of elastica and the theoretical predictions about the 

critical load or equivalently the buckling load under large deformation. The theory tells us that the buckling 

load gradually increases as the deformation develops. There is one required condition: the bending moment 

M(s) does exist. In this chapter, we would consider the required condition for the existence of bending 

moment M(s). We have reached the exact solution for x(s) as Eq. (19) from which we can obtain the 

derivative of x(s) with respect to s.  

𝑑𝑥

𝑑s
=

1

2𝜆
𝛿𝐻(𝑘) 𝑠𝑛 (

𝑠

𝜆
+ 𝐾(𝑘)) 𝑑𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))                                          (20) 

 

Substitution of Eq. (9) and (10) into Eq. (20), we obtain another geometrical boundary condition.  

 
1

2𝜆
𝛿𝐻(𝑘) = 2𝑘        𝑜𝑟       𝛿𝐻(𝑘) = 4𝑘𝜆(𝑘)                                              (21) 

 

Taking the derivative of both sides of Eq. (20), we obtain Eq. (22).  

 

     
𝑑2𝑥

𝑑𝑠2
+

1

 𝜆2 ( 1 −  𝑉(𝑠))𝑥(𝑠) = 0                                                           (22) 

      where            𝑉(𝑠) = 2𝑘2𝑠𝑛2 (
𝑠

𝜆
+ 𝐾(𝑘))                                                (23) 

 

We could recognize Eq. (22) as a time independent Schrödinger equation with the potential function of V(s). 

It is quite natural that we should consider the elastica as an eigenvalue problem with the potential function 

of Eq. (23). Indeed, Eq. (19) is the solution of Eq. (22), where we have the freedom to select the amplitude 

of x(s) because this is the solution of eigenvalue problem. Once x(s) is determined, M(s) should satisfy  
Eq. (18), which means that M(s) should satisfy the same eigenvalue problem of Eq. (22) and (23).  

The theory of elastica requires the existence of M(s). If it does exist, it should be the solution of nonlinear 

eigenvalue problem specified by Eq. (22) and (23). In other words, M(s) should be Eq. (18). No constrains 

are imposed on M(s) for the theory of elastica. Because it required three suppositions that impose no 

constrains on the selection of M(s), which means Mo (k) can be any number. The variable x(s) and M(s) 

should satisfy the identical eigenvalue problem and expressed as the same elliptic function. The amplitude 

of x(s), however, should be Eq. (21) that is one of those boundary conditions. At the same time, the 

amplitude of x(s) should be any number, because it is the solution of eigenvalue function. We still have the 

freedom to select the constant value k, which is the modulus of elliptic integral and determines the 

amplitude of x(s) as well.  

As far as the geometrical variable x(s) and (s) are concerned, we have the freedom to select their 

amplitude by means of k. It, however, has no influence on M(s), because it is not a geometrical variable but 

a stress variable. Here arises a problem, because we suppose that material linearity is compatible with       

Eq. (5). As a result, Mo (k) is one of those boundary conditions that should be geometrical parameters such 

as H (k) should be consistent with Eq. (21). This means that we have no more guarantee to select an 

appropriate Mo (k) to be consistent with the rest of the boundary conditions including Eq. (17).  
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3. Modified theory of elastica  

There should be one more required condition for the existence of bending moment of M(s). At least 

we should be more careful to select the bending moment M(s), even if the material is elastic. This is 

the motivation of the author to select four fundamental equations to solve the elastica problem 

instead of three. Instead of solving the set of three equations in the theory of elastica, we would set 

four equations for material nonlinear buckling model. The geometrical nonlinearity Eq. (3), the 

definition of buckling state Eq. (2), the definition of curvature of the column Eq. (4) are identical to 

those in the previous chapter. We would replace material linearity Eq. (5) by Eq. (24) and (25). The 

illustration in Fig.3 describes the physical meaning of Eq. (25). Additional equation provides us one 

more freedom to determine the boundary condition compatible with the four fundamental equations. 

We introduce one parameter , which represents the nonlinearity of the bending stiffness KB (). 

Even if the bending stiffness depends on Mo (k), it does not depend on the variable s. This situation 

is similar to the buckling load Ncr (k) on which the modulus k has a significant effect.  

 

𝑀(𝑠) = −𝐾𝐵(𝛼)𝜑(𝑠)                                                                      (24) 

 

−𝐸𝐼
𝑑2𝑥

𝑑𝑠2
= 𝑀(𝑠) + (

𝛼

𝑀𝑜
)

2

𝑀(𝑠)3                                                            (25) 

 

𝑑2𝑀

𝑑𝑠2
+

𝑁𝑐𝑟

𝐸𝐼
(1 +  (

𝛼

𝑀𝑜
)

2

𝑀(𝑠)2) 𝑀(𝑠) = 0                                                    (26) 

 

The nonlinear differential equation of (26) has the rigorous solution as Eq. (27), which is consistent with Eq. 

(18). We can prover it by substituting Eq. (27) into Eq. (26). The derivative of Eq. (27) is Eq. (28) followed 

by the second derivative of Eq. (29). It is quite interesting that the nonlinear eigenvalue problem of Eq. (29) 

is identical to Eq. (22) in the previous chapter. We have reached the same equation, even if we began from 

two different starting points. One is geometrical nonlinearity while the other one is material nonlinearity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Material property between M(s) and x(s) 
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𝑀(𝑠) = −𝑀𝑜(α) 𝑐𝑛 (
𝑠

𝜆
+ 𝐾(𝑘))  (27) 

𝑑𝑀

𝑑s
=

1

𝜆
𝑀𝑜(α) 𝑠𝑛 (

𝑠

𝜆
+ 𝐾(𝑘)) 𝑑𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))  (28) 

𝑑2𝑀

𝑑𝑠2
+

1

𝜆2
(1 − 2𝑘2𝑠𝑛2 (

𝑠

𝜆
+ 𝐾(𝑘))) 𝑀(𝑠) = 0  (29) 

The solution of Eq. (26) should be Eq. (27), which means that Eq. (29) is identical to Eq. (26).  This 

requirement is equivalent to the following condition.  

𝛼2 =  
2𝑘2

1 − 2𝑘2
 (30) 

1

𝜆2
=

𝑁𝑐𝑟

𝐸𝐼(1 − 2𝑘2)
=

𝑁𝑐𝑟

𝐾𝐵(𝛼)
 (31) 

Final goal of this chapter is to prove that the four solutions of M(s), x(s), (s), and (s) are consistent with 

the four suppositions along with the required boundary conditions. The solution of x(s) is consistent with 

Eq. (2). This requirement forces us to select x(s) equivalent to Eq. (19). Derivative of Eq. (19) is 

equivalent to Eq. (20) along with the boundary conditions of Eq. (21). Supposition of Eq. (3) requires that 

the solution of (s) should be Eq. (9) and (10). Finally, the curvature of(s) should be Eq. (13).  

 𝜑(𝑠) =
𝑑𝜃

𝑑s
=

2𝑘

𝜆 
𝑐𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))  (13) 

𝑥(𝑠) = −
1

2
𝛿𝐻(𝑘) 𝑐𝑛 (

𝑠

𝜆
+ 𝐾(𝑘))  (19) 

We set a new supposition that is different from the classical elastica model. If the new supposition of Eq. 

(24) is consistent with the rest of the boundary conditions, the introduced modification of the theory of

elastica leads us to a different conclusive result. As the modulus of k increases, the bending stiffness

decreases as is expressed in Eq. (32). The complete elliptic integral of the first kind K (k) is substituted by

Eq. (16) and we would expect the buckling load Ncr (k) comes down as the modulus k increases in Eq. (33).

𝑁𝑐𝑟(𝑘) =  
𝐾𝐵(𝛼)

 𝜆2
=

𝐸𝐼(1 − 2𝑘2)

 𝜆2
=

4𝐸𝐼(1 − 2𝑘2)

 𝑙2
 𝐾2(𝑘)  (32) 

𝑁𝑐𝑟(𝑘) =
4𝐸𝐼(1 − 2𝑘2)

 𝑙2
 𝐾2(𝑘) =  

𝜋2𝐸𝐼

𝑙𝑜
2  (1 −

7

4
𝑘2 − 

23

64
 𝑘4 − ⋯ )  (33) 

It is surprising to know that the buckling load comes down as the modulus k increases. This conclusion 

totally contradicts Eq. (17). Here arises a very interesting question about the validity of the classical theory 

of elastic buckling of a column under axial loading.  
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4. Summary of the inelastic nonlinear buckling model  

We started creating a new buckling model from material nonlinearity and reached a nonlinear differential 

equation to identify the bending moment function M(s) along with other geometrical variables x(s), (s), 

and (s). There are four different variables that are x(s), (s), (s), and M(s) so that we need four 

equations to specify each one of them. Three variables share the same function but they have different 

amplitudes: x(s), (s), and M(s). In other words, there are two constant necessary to specify the ratios 

between any two functions. This requirement forces us additional two equations as Eq. (2) and Eq. (24). 

The two constants are bending stiffness KB () and buckling load Ncr (k), which means that there are two 

parameters such as k and  instead of KB and Ncr . We need two more equations for explicitly identify four 

variables. There should be two differential equations necessary for this purpose, because there are two 

different physical properties. Three variables are geometrical functions while the rest one is a stress 

function: x(s), (s), (s) are geometrical functions while M(s) is a stress function. We adopted two 

nonlinear equations for this purpose, which are Eq. (3) and (25). Eq. (3) needs one parameter or k for 

expressing geometrical nonlinearity, while Eq. (25) needs another parameter or  for expressing material 

nonlinearity. It is rather surprising that these two equations came to one identical nonlinear eigenvalue 

problem, which clarified the relation between k and . There are four equations necessary for identifying 

four functions, but two equations are nonlinear so that there are two more equations necessary for 

identifying two parameters. One equation is derived from the fact that two nonlinear equations are identical 

each other. There is the last condition necessary for the set of four functions along with two parameters. 

Question left over is whether four variables and two parameters are compatible for each other or not. We 

would answer this question in the rest of this chapter.  

The first task is to check the range of modulus k that guarantees the existence of M(s). The modulus k 

satisfies Eq. (30), which means that it also satisfies the following inequality.  

 

 0 < 𝑘2 <  
1

2
    ⇔           0 <  𝑘 <  0.707                                             (34) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Moment reaction Mo (k) with respect to k   
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The geometrical boundary conditions for the functions of x(s), (s), (s) are Eq. (11), (14), and (21), 

which come from the previous chapters as below.  

 2𝜆(𝑘)𝐾(𝑘) = 𝑙(𝑘) = 𝑙𝑜  (11) 

 𝑠𝑖𝑛 (
𝜃𝑚𝑎𝑥

2
) = 𝑘  (14) 

 𝛿𝐻(𝑘) = 4𝑘𝜆(𝑘)  (21) 

 𝜑𝑜(𝑘) =
1

𝑅𝑜(𝑘)
=

2𝑘

𝜆(𝑘)
 𝑤ℎ𝑒𝑟𝑒  𝑅𝑜(𝑘) 𝑖𝑠 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑  (35) 

The bending moment function M(s) is a stress function but has a boundary condition.  

 𝑀𝑜(𝑘) =
2𝐸𝐼𝑘(1 − 2𝑘2)

𝜆(𝑘)
 =

 4𝐸𝐼𝑘(1 − 2𝑘2)𝐾(𝑘) 

𝑙𝑜
 (36) 

The modulus k varies from 0.0 to 0.707 as is shown in Eq. (34) and the bending moment at the end satisfies   

Eq. (36) in Fig. 4. If the strength of the material is more than M max that is the peak of Mo (k) in Fig.4, the 

material is supposed to be elastic. Young’s modulus E and geometrical moment of inertia I are constant, 

while bending stiffness KB varies according to the geometrical deformation. Whether the material is elastic 

or inelastic, the geometrical deformation satisfies the same function as Eq. (19).  If the bending stiffness KB 

() increases as the modulus k increases, there is no solution for M(s). On the other hand, KB () decreases 

as the modulus k increases, there is a solution for M(s) that is identical to Eq. (18). Consequently, we must 

admit that the buckling load Ncr (k) should be Eq. (33) rather than Eq. (17). There are several other 

predictions that we could derive from the modified theory of elastica.  

5. Predictions from the modified theory of elastica

As the author pointed out so far, the classical thoery of elastica is based on the three suppositions instead of 

four. There are four variables such as x(s), (s), (s), and M(s), which means that there should be four 

equations to specify each one of them. Three variables x(s), (s), (s) are geometrical numbers, while M(s) 

expresses inner forces. This situation makes it necessary to set two physically different equations. This is 

the reason why the author supposed two physical models such as Eq. (3) or Fig. 2 and Eq. (26) or Fig. 3. 

They are geometrical nonlinearity and stiffness nonlinearity, respectively. Two different physical models 

came to the same nonlinear eigenvalue problem, which means two parameters are dependent and have a 

relation with each other. As far as the author checked the modification of the elastica theory, there is no 

defect in the process of logic. If the supposition of the physical model is appropriate enough to follow what 

really takes place in the real world, the predictions we could derive from the theoretical results are reliable, 

visible and tangible. Experimental investigation and observation are the only method to check the validity 

of the theory. The author wishes the readers to carry out validation tests and check the theoretical 

predictions.  

According to the modified theory of elastica, the buckling load decreases as the modulus k develops. This 

prediction is valid not only for linear materials but for inelastic materials. This prediction is totally differnt 

from the classical model. The Euler load is the upper boundary of the buckling phenomena for any 

materials. This is the most contraversial prediction as a result of the modification of the elastica model.  
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Theory tells us another prediction.  The shape of the column under buckling loads is not influenced by the 

fact that the material is either elastic or inelastic. This means that the theory and the physical model in this 

paper could be extened into the plastic buckling for steel as well as other materials.  

The theory has many merits but weak points as well. The solution of M(s) only does exist as far as the 

modulus k is between 0 and 0.707 according to Eq. (34). In other words, the supposition of Eq. (25) is only 

consistent with other boundary conditions and suppositions as long as the modulus k satisfies Eq. (34). If 

the deformation of the column is excessively large and the modulus k is bigger than 0.707, we have to make 

a different supposision instead of Eq. (34). Otherwise, we could not complete the modification of the theory 

of elastica. Unfortunately, the author has not yet discovered the appropriate nonlinear inelastic model to 

comensate for this weak point.  

6. Conclusive remarks

The author believes that there should be a modification necessary for the classical theory of elastica. The 

bending stiffness is no longer a constant value EI but influenced by the modulus k of the elliptic function. 

The buckling load Ncr is less than Euler load and it comes down as the deformation develops, even if the 

material property is constant and elastic. We could not tell whether the material is elastic or inelastic just by 

observing the shape of the post buckling state, because the horizontal deformation of the column reduces 

the bending stiffness and the buckling load as well.  

There are several predictions derived from the modified theory of elastica, some of them are contraversial 

and require further discussion and verification. Experimental studies are also necessary for proving the 

validity of the modified theory of elastica.  
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