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Abstract 
The scaling relationships among source parameters (e.g., seismic moment M0, rupture area S, and fault length L) are 
important for source physics studies and seismic hazard analysis. Although the relationships have been classically 
studied by assuming self-similarity, the self-similar models do not hold for large crustal earthquakes due to the width 
limitation of the seismogenic layer. Various scaling relations for crustal earthquakes have been proposed by many 
authors, but most models result in a static stress drop that depends on the earthquake size. In contrast, for example, 
Anderson et al. (2017) for the M–L relation and Hikima and Shimmura (2020) (hereafter referred to as H&S) for M0–S 
proposed scaling relationships that satisfy the constant stress drop for a wide magnitude range. They formulated scaling 
relations based on the theoretical static stress drop formula for a rectangular fault model. Although H&S showed good 
agreement with the existing data from medium to large earthquakes, that study did not discuss small to medium events 
in detail.  

In this study, to advance the work in H&S, we discuss a scaling relation that assumes a constant stress drop for a 
wide seismic moment range, and show that the scale-independent stress drop basically holds for a wide range of 
earthquake magnitudes. For example, the figure shows the stress drop values calculated with the formulas of Chinnery 
(1964, 1969) for the event data used in H&S. Although the scatter of stress drop for small events is relatively large, no 
obvious dependence on the earthquake size is seen. The average value is about 3 MPa, which is almost same as that of 
H&S.  

Fig. Relationship between seismic moment and static stress drop estimated assuming rectangular fault model 
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1. Introduction 
The scaling relationship among source parameters (e.g., seismic moment M0, rupture area S, and fault length 
L) is important for earthquake source physics and seismic hazard analysis. Therefore, such relationships have 
been studied for a long time. The famous study by Kanamori and Anderson [1] revealed that the seismic 
moment and rupture area have the scaling relation of M0 ≈ S3/2. The result means that a self-similar relation 
exists among length L, width W, and slip D, and also that the static stress drop Δσ is constant from small to 
large earthquakes. The rupture widths of large earthquakes were not saturated in Kanamori and Anderson [1] 
because most of them were oceanic inter-plate earthquakes. However, for crustal earthquakes, an upper limit 
of the fault width exists due to the limit width of the crustal seismogenic layer. In these cases, the self-
similarity does not hold. Therefore, for crustal earthquakes, scaling relations different from those of inter-
plate earthquakes have been proposed. 

For large crustal earthquakes, Scholz [2] proposed the so-called L-model, in which the slip is 
proportional to the rupture length but not to the width. Hanks and Bakun [3] suggested a bilinear scaling, in 
which a self-similar relation holds for small earthquakes and the L-model is adopted for large earthquakes. In 
contrast, Romanowicz [4] and Romanowicz and Ruff [5] advocated that the W-model, in which the slip is 
proportional to the rupture width, is appropriate for large earthquakes. Although those scaling relations are 
also bilinear, the slope of the equations for large earthquakes is different from that of the L-model because 
the assumed physical conditions are different. Although the static stress drop becomes constant in the scaling 
relation based on the W-model, the value varies depending on fault length in the scaling based on the L-
model. Murotani et al. [6] quantified the idea of Irikura and Miyake [7] and proposed a scaling relation that 
is also applicable for small to long faults. In the relation, the power of the M0–S scaling relation changes to 
M0 ≈ S3/2, S2, and S1 as the size of earthquakes varies from small to large. The static stress drop, however, 
changes at each stage, because the model combines three different physical conditions into one scaling 
relation. 

As mentioned above, whether the static stress drop for crustal earthquake is constant or varies with 
size is still debated, and the attitude toward them affects the shape of scaling relations. Here, we think that 
the static stress drop is nearly constant regardless of the earthquake size, if the stress drop is considered as a 
physical property of the crust. Based on this position, Hikima and Shimmura [8] (hereafter H&S) formulated 
a M0–S scaling relation that realizes a scale-independent stress drop condition by referring to the analytical 
solution for rectangular faults (Chinnery [9], [10]) in a fashion similar to that of Anderson et al. [11]. H&S 
introduced a correction factor to compensate for the difference in physical models between Chinnery’s 
model and ordinary crack models to compare them with the existing earthquake parameters. The proposed 
formula agreed well with data for medium to large magnitude earthquakes, and it means the constant stress 
drop holds for relatively large earthquakes. However, for small earthquakes whose width does not saturate 
the seismogenic width, discussions using the event data were not sufficient. 

In this paper, we first outline the results of H&S [8] because this study contains the basic idea of our 
studies. Then, we discuss the method for calculating the static stress drop and scaling relations for relatively 
small earthquakes. After that, we apply them to the event data and verify whether the stress drops for a wide 
magnitude range are almost constant. Note that, because distinct discrepancies among fault types were not 
recognized in our previous study, we discuss fault types without classification in this paper, unless otherwise 
specified. 

2. M0–S scaling relation assuming rectangular fault 
2.1 Formulation for surface faults 
H&S discussed the M0–S scaling relation mainly based on the formula of the static stress drop for a 
rectangular vertical strike-slip surface fault [9] in an approach similar to that of Anderson et al. [11], who 
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discussed the M–L scaling relations using this formula. Here we summarize these approaches and show the 
proposed scaling relations. 

According to Chinnery [9] and Anderson et al. [11], the static stress drop at the surface center of a 
rectangular vertical strike-slip surface fault with a uniform slip distribution is expressed by Eq. (1) using the 
parameters in Fig. 1. 

 ∆σ = ఓଶగ ௐ 𝐶(𝛾), 𝐶(𝛾) = 2 cos 𝛾 + 3tan𝛾 − ୡ୭ୱ ఊୱ୧୬ఊ(ଷାସ ୱ୧୬ ఊ)(ଵାୱ୧୬ ఊ)మ  , (1) 

where we used the relation tan 𝛾 = 𝑊 𝐿⁄  according to Anderson et al. [11]. 

 
Fig. 1 – Schematic of rectangular surface fault.  

To calculate the relation between the static stress drop and the seismic moment, we solve D from Eq. (1) and 
perform the substitution 𝑀 = 𝜇𝐷𝑆 to obtain 

 𝑀 = ଶ(ఊ) ∆σ𝑆𝑊 .  (2) 

The coefficient 𝐶(𝛾) depends on the aspect ratio 𝐶ௐ, which means that M0 is evaluated through the fault 
shape and the static stress drop. Eq. (2) is applicable for any size fault, from small to large events. 

However, because the boundary condition of Chinnery’s formula is different from ordinary crack 
models, there are some drawbacks. One is that the calculated stress drop becomes infinite at the crack tip, 
and the second is that the evaluated stress drop is exact only at the center of the surface side for a surface 
fault, or at the center of the plane for a buried fault. Although there are such problems, it has the advantage 
of providing a simple analytical solution, which is useful for formulation of a scaling relation. To overcome 
these drawbacks, we also introduced a correction factor, which considers that approximately twice the 
Chinnery value corresponds to the value obtained by the crack model. A detailed explanation for this factor 
and its verification is provided in H&S [8]. When the correction factor is applied to Eq. (2), the relation that 
can be comparable with that in the ordinary crack model becomes  

 𝑀 = (ఊ) ∆σ𝑆𝑊 .  (3) 

When Eq. (3) is applied to crustal earthquakes, the aspect ratio CLW is constant until its width reaches 
the saturated rupture width Wmax, and the rupture area becomes 𝑆 = 𝐿𝑊 = 𝐶ௐ𝑊ଶ . However, when the 
rupture width is saturated, the width becomes the fixed value 𝑊 = 𝑊௫ and CLW is no longer constant. 
Therefore, Eq. (3) can be rewritten as follows: 

 𝑀 = ඥಽೈ(ఊ) ∆σ𝑆ଷ ଶൗ  ,  for 𝐿 𝐶ௐ⁄ < 𝑊௫, (4a) 

 𝑀 = (ఊ) ∆σ𝑊௫𝑆 , for 𝐿 𝐶ௐ⁄ ≧ 𝑊௫. (4b) 

Furthermore, we can take the logarithm of both sides and rearrange these equations as relations between log 
M0 and log S: 

W

L

Lh

a

γ

D=uniform const.

Ground Surface

Lh = L/2
a = (Lh

2+ W 2)1/2

CLW = L/W

Δσ at center of surface
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 log 𝑀 = ଷଶ log 𝑆 + log ∆σ + log ൜ ඥಽೈ(ఊ)ൠ, for 𝐿 𝐶ௐ⁄ < 𝑊௫, (5a) 

 log 𝑀 = log 𝑆 + log ∆σ + log ቄ (ఊ) 𝑊௫ቅ, for 𝐿 𝐶ௐ⁄ ≧ 𝑊௫. (5b) 

These relations maintain the constant stress drop condition for small to large earthquakes. Regarding 
the form of the relations, the slope for the small to medium faults is 2/3, while the slope for long large faults 
asymptotically tends to 1 on a logarithmic graph. These are consistent with the self-similar model and the W-
model, respectively, and are comparable with the first and third stages of the three-stage scaling model [6]. 
The slope for moderate faults, which corresponds to the second stage of the three-stage model, changes 
according to 𝐶(𝛾), which depends on the aspect ratio of the fault. 

2.2 Comparison with event data 
To indicate the validity of the formulas, H&S compared the proposed formulas with existing event data and 
determined an approximately proper stress drop. The data were taken from published papers [6], [12], [13], 
[14] and listed in H&S [8]. The comparison with the data is depicted in Fig. 2, in which the proposed 
formula is plotted by a solid curve calculated with Wmax =18 km and Δσ = 3 MPa. The scaling relation 
assuming a constant stress drop shows good agreement with the data in a similar degree with the three-stage 
scaling relationship [6]. Therefore, it can be said that a scale-invariant stress drop is almost appropriate for 
crustal earthquakes. 

However, the value of the stress drop and the saturated rupture width were determined only for 
relatively large earthquakes, which are depicted as filled symbols in Fig. 2. For small earthquakes, which 
mainly do not saturate the seismogenic layer, evaluation has been insufficient, and it is not clear whether the 
stress drop is constant or almost the same as that for large events. Therefore, we will again consider the stress 
drop for small earthquakes in the following sections. 

 
Fig. 2 – Scaling relations discussed in H&S (solid curve). The three-stage scaling relation by Murotani et al. 
[6] (dashed curve) is also plotted. The filled and open symbols represent the data that were used and not used, 

respectively, to determine the proper stress drop. 

3. Stress drop of small events 
In the previous paper [8], we applied the rectangular fault model to estimate the stress drop for small events 
in a way similar to that for the surface fault model, but the reference model was a buried fault [10]. The 
formula for scaling between M0 and S is as follows: 
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 𝑀 = ଷସᇱ(క) ∆σξଵ ଶൗ 𝑆ଷ ଶൗ , (6) 

where 𝜉 = 𝑊 𝐿⁄ = 1 𝐶ௐ⁄  and 𝐶ᇱ(𝜉) = (3 + 4𝜉ଶ) ඥ1 + 𝜉ଶ⁄  . 

This formulation is consistent with the concept for larger faults, in the sense that all events are based 
on the rectangular fault model. However, because the error in the introduced correction factor is relatively 
large for faults having a small aspect ratio [8], it may be more appropriate to use another physical model, 
such as the circular crack model [15], to calculate the static stress drop.  

When a circular crack that has same area as a rectangular fault (such a model is sometimes called an 
“equivalent circular crack”) is used to calculate the stress drop, the scaling relation is written as 

 𝑀 = ଵ ∆σ ቀௌగቁଷ ଶൗ
 , (7) 

where S = LW. Consequently, from Eqs. (6) and (7), if the stress drops for rectangular and circular faults are 
denoted as Δσs and Δσc, respectively, and the aspect ratio for a rectangular fault is assumed as 𝜉 = 1, the 
relation between Δσs and Δσc for faults having the same M0 becomes Δσc = 1.16Δσs. Conversely, if the stress 
drops are identical, the M0 calculated for a square fault becomes 16 % larger than the value for a circular 
fault. 

These relations, whose stress drop values are set as 3 MPa, are plotted in Fig. 3 with the data used in 
Fig. 2. The curve assuming the buried rectangular fault model mostly overlaps the curve for a surface fault; 
therefore, these relations cannot be distinguished clearly. In contrast, the curve assuming a circular crack 
shows an M0 smaller than that for a square fault having an equal fault area and, as a result, it seems to match 
better with small event data than it does with other relations. Therefore, if the circular crack model is 
assumed for small events and it is combined with formulas for a surface fault model for large events, those 
scaling relations can fit the data better when the stress drop is constant. However, a gap exists at the 
boundary between the two curves because the assumed fault models are different. Clearly, it is not realistic 
for the fault shape to change suddenly from circular to rectangular, even if it reaches the ground surface or is 
cut off from the whole seismogenic layer. Therefore, it is expected that the scaling relations vary gradually 
between small and large fault stages. Nevertheless, it seems to be difficult to determine those relations only 
from the existing event data, in part due to the estimated error of source parameters. Despite the persistent 
difficulty in determining complete scaling relations, it was shown that a constant stress drop model is 
basically consistent with event data over a wide seismic moment range. 

 
Fig. 3 – Scaling relation for small events. The three scaling curves are based on surface and buried 

rectangular faults and a circular fault. Event data used in Fig. 2 are also plotted. 
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4. Stress drop considering fault shape 
We calculated static stress drops considering the shape of each fault and checked the values directly. The 
stress drop values were calculated using Eqs. (3) and (6), which were derived by Chinnery [9], [10] and 
applied the correction factor adopted by H&S [8]. The target event data are same as those used in H&S. To 
determine which equations to apply, each event was classified as a surface fault or a buried fault by 
comprehensively considering the top depth of the fault and previous studies. 

The stress drop values calculated with a rectangular fault model are plotted in Fig. 4(a). Different 
symbols are used to distinguish between surface faults and buried faults, and the number of buried faults was 
six. However, this classification of faults is tentative, and we may change it in the future. However, we think 
that the influence of any particular fault classification on the discussion in this study is unlikely to be critical, 
because the difference between those formulas is not large, as shown in Fig. 3. The average stress drop is 2.9 
MPa and the value is consistent with that given in H&S. Furthermore, it is notable that the value is 
independent of earthquake size, though the variance is not small. 

Moreover, we also calculated the stress drop values assuming an equivalent circular crack in an 
approach similar to that of an existing study [16] using Eq. (7). These are plotted in Fig. 4(b). The average 
value is 4.1 MPa and it is larger than those of Fig. 4(a). Although these relations generally do not contradict 
the discussion in the previous section, the degree of overestimation by the circular crack model is greater 
than expected. Additionally, the variance is larger than that in Fig. 4(a). From these discrepancies, it seems 
that the stress drop calculated by the circular fault model tends to be overestimated and unstable. In addition, 
the application of and equivalent circular crack for a long crustal earthquake has already been discussed in a 
previous study and its use is not recommended for long events [16]. Therefore, the equivalent circular crack 
should be considered as not suitable for medium to large events.  

For small earthquakes, although their number is few, the average values assuming rectangular and 
circular fault models were 2.7 and 3.1 MPa, respectively. The differences between these models are trivial 
and both values are comparable with those of medium to large events; therefore, the circular crack model 
also seems to be applicable to small earthquakes, as described before. 

(a)  (b)  

Fig. 4 – Stress drop for the event data used in Fig. 2. (a) Stress drop calculated with a rectangular fault model. 
(b) Stress drop calculated with an equivalent circular crack model. 

Next, to discuss small events in more detail, we also used another database. Those data are based 
mainly on Thingbaijam et al. [17], who processed the SRCMOD database [18]. We used them 
complementarily in the Appendix of H&S. The stress drop calculated with the rectangular fault model is 
shown in Fig. 5. Overall, the calculated values are somewhat lower than those in Fig. 4(a). Although this 
trend is already shown in H&S, its cause is still under consideration. However, here we focused on the 
difference between surface and buried faults and the size dependency. 
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The differences in the average stress drop between buried and surface faults are not clear, but the 
degree of variance appears to be distinctly different, which means that the variance of stress drop for buried 
faults (mainly small events) is greater than that for surface faults (mostly large events). Another feature of 
the plot is that no obvious size dependence is seen in these data, as in Fig. 4(a). Therefore, a scale-
independent stress drop is seen in this database. 

In this study, we examined two datasets, and consequently no clear scale dependence of the static 
stress drop was observed in either database. Conversely, the stress drop variance for small and/or buried 
faults seems to be greater than that for large events. The cause of the difference in these variances should be 
considered in detail in the future. However, we think one reason is that the fault size for small events is not 
very limited and depends on local stress conditions, while large events are restricted by the thickness of the 
seismogenic layer and affected by regional stress conditions. 

 
Fig. 5 – Stress drop for the event data taken from Thingbaijam et al. [17]. These values were calculated with 
the rectangular fault formulas. When multiple rupture models exist for the same event, the average values are 

plotted, and the bars indicate the corresponding ranges. 

5. Discussion 
As we have seen, the scaling relation with a constant stress drop agrees well with the past event data, and no 
obvious size dependence could be recognized by directly calculating the stress drops. However, we also 
know that many researchers have concluded that the stress drop depends on scale. Their conclusions are 
based on various reasons, for example, observed waveform data, analyzed source parameters, and dynamic 
rupture simulations. As an example of recent research, Thingbaijam et al. [17] suggested a scale-dependent 
stress drop by examining the ratio D/W as a proxy for average stress drop. The ratio D/W, which corresponds 
to strain, is related to the stress drop by the following equation: 

 ∆𝜎 = 𝐶𝜇 , (8) 

where LC is the characteristic length of the event (here, the width W) and C is a constant that depends on the 
fault shape (e.g., Lay and Wallace [19]). Eq. (1) in this paper is similar, but C in Eq. (1) is a variable 
depending on the fault shape. 

We depict the D/W ratio for the event data used by H&S in Fig. 6(a). The ratio indeed tends to 
increase as the earthquake size becomes larger, and therefore the stress drop seems to become more 
dependent on event size. As seen in Eq. (8), that is because the slip D increases despite the width W 
becoming nearly constant for larger crustal earthquakes. In addition, the assumption of a constant C also 
contributes to the estimation of the scale-dependent stress drop. However, if the rectangular fault model is 
used, C is no longer constant, but it becomes a variable depending on its aspect ratio, as exhibited in Eq. (1). 
To illustrate the relationship by example, the fault displacements for some models were calculated using the 
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rectangular fault model formula and are listed in Table 1. As shown in the table, even after the fault width is 
saturated at Wmax = 18 km, the slip D becomes larger and the D/W ratio also becomes greater. These relations 
are also plotted in Fig. 6(a) as a red curve. The expected ratios are mostly consistent with the trend of the 
D/W distribution of fault parameters. This suggests that the constant stress drop condition is generally 
maintained if the fault shape is properly considered. 

Table 1 – Fault parameters obtained using the scaling relation by H&S  

L (km) 6 10 15 18 20 30 40 50 80 100 200 300 500 1000

W (km) 6 10 15 18 18 18 18 18 18 18 18 18 18 18

M0 (Nm) 3.30e17 1.53e18 5.16e18 8.92e18 1.09e19 2.33e19 3.85e19 5.50e19 1.06e20 1.40e20 2.99e20 4.54e20 7.61e20 1.53e21

D (m) 0.28 0.46 0.70 0.83 0.92 1.31 1.62 1.85 2.23 2.35 2.52 2.55 2.56 2.57

D/W in m 4.64e-05 4.64e-05 4.64e-05 4.64e-05 5.11e-05 7.28e-05 9.00e-05 1.03e-04 1.24e-04 1.31e-04 1.40e-04 1.42e-04 1.42e-04 1.43e-04

* Assumed as Δσ = 3 MPa and D was estimated assuming μ = 3.3x1010 N/m2 

For reference, the same relations for the modified data of Thingbaijam et al. [17] also are depicted in 
Fig. 6(b). The scale dependency is seen also in these data, although it is less clear. The D/W ratio is slightly 
lower overall than in the former data, but it is consistent with the tendency found in Fig. 5, which means that 
the lower ratio reflects the average stress drop being lower than 3 MPa. Therefore, if we adopt lower stress 
drop values in the calculation of the theoretical ratio, the scaling relation with a rectangular fault model will 
become consistent, and these data show a constant stress drop condition. 

As thus far described, the scaling relationship for a crustal earthquake with constant stress drop can be 
configured if its fault shape is taken into account properly. In addition, the scale independence was shown 
also by the stress drop values directly calculated by the rectangular model. However, in practice, not a little 
difficulty will be encountered in determining the proper coefficients from existing source parameters, due to 
considerable variation of those parameters. Such studies need to be carried on continuously to advance 
hazard analyses in the future. 

(a)  (b)  

Fig. 6 – D/W ratio for the event data. (a) Plots of the data used in H&S. (b) Plots of the data in Thingbaijam 
et al.[17] The ratios calculated using the formula proposed in H&S (assumed Δσ = 3 MPa and Wmax = 18 km) 
are drawn as red curves.  

6. Conclusion 
In this short paper, we have explained the scaling relationship for crustal earthquakes by assuming a constant 
stress drop, in line with Hikima and Shimmura [8]. Based on this relation, we have advanced the discussion 
for applying this scaling relation to small earthquakes. Then, stress drop values for a wide size range were 
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calculated using rectangular fault models, and the scale dependence of the stress drop was examined directly. 
The findings and our comments on these evaluations are as follows: 

The constant (scale-independent) stress drop holds over a wide size range, even for crustal earthquakes. 

In contrast, the variance for small earthquakes tends to be larger than that for medium to large events. 

Transitions in the scaling relationship occur gradually rather than suddenly. Such transitions mark the 
change from small events to saturated events, as well as a change in the slope for the scaling relation 
after the fault saturates seismogenic layer. 

To represent those changes, it is very important to consider the fault shape explicitly. 

It is not easy to uniquely determine the scaling relation from existing source parameters, in practice. 
However, considering that a prediction formula based on physical models can lead to improvements in the 
reliability of hazard analyses, it is important to consider the scaling relationship also with the condition that 
the average static stress drop is constant. 
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