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Abstract

The field of Probabilistic Seismic Hazard Analysis (PSHA) is currently moving from the ergodic assumption, which
assumes that the ground-motion model applies to all sites in a broad region, to the non-ergodic assumption, in which the
coefficients in the ground-motion models are allowed to vary with spatial locations called Varying-Coefficient Models
(VCM). The VCM approach uses the available dataset to include source, site, and path conditions that are specific to each
spatial location. To have enough local data, the recorded ground-motion data sets are expanded to include data from small
magnitude earthquakes. As the small magnitude data is included for a region, the dataset gets very large (e.g. up to
100,000 recordings in California), or if numerical simulations are used (e.g. 100,000 to 1,000,000 simulated ground
motions) some efficient numerical methods are required to compute the parameters of the VCM model and forward
predictions of the median ground motion and its epistemic uncertainty. For a dataset of 100,000 ground motions, the
covariance matrix involved in the predictions is of size 105 x 10"5, which requires about 100 GB of memory storage
with double precision, and large amounts of computational power to obtain its inverse and use it in forward predictions,
which does not make the method practical.

To avoid such large memory and computational requirements, we use Structured Kernel Interpolation for Products
(SKIP), to obtain a low-rank decomosition of the large covariance matrix, via interpolation of the covariance between
some reference (or inducing) points. SKIP removes large memory requirements, and brings down the computational cost
of ground-motion predictions of several orders of magnitude. This numerical method makes the development of non-
ergodic ground-motion models practical. Large scale predictions can be obtained using SKIP in a run time of a few
minutes using a regular laptop. We present the method and illustrate it with an application to ground-motion data from
California.
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1. Introduction

The field of Probabilistic Seismic Hazard Analysis (PSHA) is currently moving from the ergodic
assumption, which assumes that the ground-motion model applies to all sites in a broad region, to the non-
ergodic assumption, in which the coefficients in the ground-motion models are allowed to vary depending on
the earthquake location and the site location, called Varying-Coefficient Models (VCM). The VCM approach
uses the available dataset to include source, site, and path conditions that are specific to each spatial location.
To have enough local data, the recorded ground-motion data sets are expanded to include data from small
magnitude earthquakes. As the small magnitude data is included for a region, the data set gets very large, up
to 100,000 recordings in California, or if numerical simulations are used, 100,000 to 1,000,000 simulated
ground motions. VCM models are based on Gaussian Processes methods, where the equations involved for
inference (learn from the data the parameters that govern the ground-motion model, also called
hyperparameters) and predictions have a complexity of O(N"3 ) in computational time and O(N"2 ) in
memory. Such computational complexities limit the use of these equations to a small amount of data only, in
practice, to a few thousand earthquake scenarios. For a data set of 100,000 ground motions, the covariance
matrix involved in the predictions is of size 105 x 10”5, which requires about 100 GB of memory storage
with double precision, and large amounts of computational power to obtain its inverse and use it in forward
predictions, which does not make the method practical. Therefore, some efficient numerical methods are
required for inference and forward predictions of the median ground motion and its epistemic uncertainty.

An efficient numerical method that deals with large amounts of data was recently developed, called Scalable
Kernel Interpolation (SKI) [1]. SKI performs sparse and accurate approximations of a covariance matrix, via
kernel interpolation from some reference points, also called inducing points. Additionally, SKI allows the
use of fast numerical methods for matrix-vector multiplications, that take advantage of the properties of the
covariance functions such as stationary kernels, and grid-based input data points. Combining sparse
approximations and fast matrix-vector multiplication algorithms makes SKI a numerically efficient tool for
fast hyper-parameter learning and forward prediction with little memory requirements. However, SKI
performs well only for covariance matrices of low dimensions, for example, using the covariance between
the data along latitude or longitude only. When several dimensions are considered (latitude, longitude,
magnitude, distance, ...), SKI does not perform well, because each dimension requires a set of inducing
points, leading to a total the number of inducing points growing exponentially with the number of
dimensions. We therefore refer to an extension of SKI, called Structured Kernel Interpolation for Products
(SKIP) [2], that alleviates the exponential complexity of SKI with increasing numbers of dimensions. SKIP
approximates covariance matrices along each dimension separately using SKI, and then combines them by
exploiting mathematical properties of kernel products. SKIP results in linear rather than exponential scaling
in complexity with dimension compared to SKI, and leads to low-rank decompositions of the covariance
matrices involved. We introduce SKI and SKIP in the next sections, and further describe their application to
non-ergodic ground motion prediction.

2. Scalable Kernel Interpolation (SKI)

SKI allows to obtain a sparse and accurate approximation of a large covariance matrix by interpolation from
the values of a smaller covariance matrix of some fixed, reference points, also called inducing points. The idea
behind SKI is that the values from a large covariance matrix Kyy between some large data set X should be
close enough from the values of the small covariance matrix of the inducing points Ky, so that we should be
able accurately approximate the values of Kyy by interpolation from the values of Kj;;;. We therefore only
need to compute the small covariance matrix Ky and the interpolation weights to obtain a sparse
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approximation of Ky using SKI, which requires few computations and memory. Mathematically, this sparse
approximation is given by:

Kxx = Ksg; = W = Kyy * wT (1

where W is a sparse matrix of interpolation weights, with nx4 non-zero entries only using cubic interpolation.
We illustrate in Fig. 1 the placement of inducing points for SKI over the Bay Area, and in Fig. 2 the error of
the approximation between SKI and the direct approach for a squared exponential covariance function
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Fig. 1 — Inducing points placed every 10km over the Bay Area
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Fig. 2 — Error Between Covariance Matrix from Direct Approach and SKI with Number of Inducing Points

SKI gives an accurate and sparse approximation of large covariance matrices over small domains such as the
Bay Area; however, it does not remain efficient for large domains, such as the State of California, due to an
exponentially growing number of inducing points per dimension. We next introduce SKIP, an improvement
of SKI, which reduces this computational complexity.

3. Structured Kernel Interpolation for Products (SKIP)

The main idea behind SKIP is that some kernel functions, like the ones used in the non-ergodic model, are
separable over their dimensions. Therefore, the covariance matrix involved can be expressed as the element-
wise product of one-dimensional covariance matrices. One-dimensional covariance matrices can efficiently
be approximated using SKI, and their element-wise products require much less operations than their full
products. SKIP takes advantage of these properties to efficiently obtain low-rank decomposition of large
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covariance matrices from multidimensional kernels over large domains. For example, for a squared-
exponential covariance function over latitude and longitude with parameters 6 and p, we have:

n2 n2
k(lat, lon; lat’, lo_n/) — Be_[(lut_lut ) +(lon—lon ) ]/ZPZ (2)

which can be separated over latitude and longitude, such as:

k(lat, lon; lat’, lon") = 9e~(lat=1at')’ /207 5 o~(lon~lon')"/2¢?

3)
The resulting covariance matrix K, jo,, can be expressed as the element-wise product:
Klut,lon = Kiqt © Kion “)

where K4, and K;,,, can efficiently be approximated using SKI. By taking advantage of fast element-wise
operations, and using some efficient algorithm ([3]), we can further efficiently obtain a low-rank
decomposition of K¢ jon, such as:

Klat,lon =upvT” &)

We now describe how to use SKIP for efficient non-ergodic ground motion prediction.

4. Non-Ergodic Ground Motion Model

The non-ergodic median ground-motion model is given by [4]:

¥ = B-1(te) + Bo(ts) + B1M + B2M? + (B3(t,) + BoaM)In /(RJZB + h?) + Bs(t)Ryp +

Be(ts)InVS3g + B7Fg + BgFyy + 05
Q)

where the terms Bi are assumed to be independent Gaussian processes with mean zero and spatial covariance
functions given by:
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kg, (t,6) = 0, ,i = 1,2,4,7,8
! 2 2 2
kg, (tort) = Be e tell 720° 4y i = g 35 (6)

2
kg, (ts ts) = gellts=sll 720" L i~ 0.6

Since the terms i in Eq. (5) are assumed to be independent, the total covariance matrix Ky x between the
data X from the non-ergodic ground-motion model is the sum of covariance matrices Kx xy; coming from
each term in Eq. (5), such as:

Kyx = Y% 1 Kxx)i + 06514 (7

To compute the median ground motion at a new location t * , with features X , given the observed data
sety = [yq, .., ¥n] and features X = [x4, ..., Xy]at locations t = [tq, ..., ty], we use the equations given by

[4]:

-1
M= Ky.x* (KX,X +05* Id) * Yobs (®

The epistemic uncertainty of the median ground motion is given by:

. -1
Y = diag (KX*,X* — Ky x(Kxx + 0§ * Id) KX,X*) )]
We approximate the large covariance matrices Ky x and Ky, x. by their the low-rank decomposition

using SKIP, such as:

Ky x = UDV" (10)

© The 17th World Conference on Earthquake Engineering - 1¢-0030 -



1 C'OOBO The 17th World Conference on Earthquake Engineering

17" World Conference on Earthquake Engineering, 17WCEE
Sendai, Japan - September 13th to 18th 2020

and plug them into Eq. (8) and Eq. (9) to approximate the median ground-motion and its epistemic
uncertainty for a given earthquake scenario and site location. Fig. 3 illustrates a set of 500 x 500 = 25, 000
inducing points placed over the entire State of California, for the sparse approximation from SKIP. This
approximation is accurate and efficient because of the large amount of inducing points used, and because the
covariance over latitude and longitude are treated separately using SKIP. Fig. 4 shows the eigenvalues of the
covariance matrix from the non-ergodic model using a dataset of size 2000, and compares it with the first
400 eigenvalues obtained using SKIP. The accuracy reached is of the order 10—4 in the spectral
decomposition. The desired accuracy in the spectral decomposition can be prescribed by the user to
guarantee that the smallest eigenvalue obtained by SKIP is under a certain threshold. For this example, with
2000 data points, the computational time is 9.8s for the direct approach, and 5.6s for SKIP. If the data set is
increased to 100,000 points, then the computational time using SKIP will be about 5 minutes and require
about a few hundred MB of memory, whereas the computational time using the direct method will be about
14 days and require about 100GB of memory.
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Fig. 3 — Inducing points placed over a grid every 10km in California
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Fig. 4 — Eigenvalues of covariance matrix from full approach (N =2000), first 400 eigenvalues from SKIP

5. Conclusion

The move to developing non-ergodic GMMs from large data sets of moderate and small earthquakes will
require either faster and larger computers or more efficient algorithms to compute the non-ergodic terms
using the GP regression. Our approach has been to use more efficient algorithms such as SKIP. With these
sparse matrix approximations combined with matrix-vector multiplications provide tremendous
improvements in computational speed and reduced memory requirements while still providing good
accuracy. The method described in this paper allows non-ergodic GMM to be developed for large data sets
using standard laptop computers which will make the non-ergodic approach accessible to a much larger
group of ground-motion developers.
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