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Abstract 

The currently used Ground Motion Prediction Models (GMPMs) are developed independently for different periods of a 

single-degree-of-freedom oscillator and do not account for internal correlations between the spectral accelerations at 

various periods for the same ground motion. The current approach to incorporating such a correlation is through a post-

processing technique by Jayaram and Baker (2011); their method relates the spectral accelerations of different periods 

using linear correlation coefficients. The proposed correlation coefficients, however, are not highly exhaustive and can 

be improved to describe ground motion spectra in a more accurate manner. This study proposes a sophisticated Recurrent 

Neural Network (RNN) framework that can be used to develop ground motion spectra using similar inputs as GMMs. A 

series of statistical tests are conducted to assess the importance of various earthquake sources and site parameters in 

predicting spectral accelerations. The obtained parameters are then used as an input to the RNN-based ground motion 

spectral estimation framework. Contrary to previous research, the target of this framework is to estimate the entire 

spectrum instead of a single spectral acceleration. The discrepancy between the RNN-predicted spectrum and the true 

spectrum is minimized by maximizing the log-likelihood function using a non-convex optimization method Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES is used to obtain the inter-event covariance matrix and the 

intra-event covariance matrix to account for the hierarchical structure of the data. Hence, given the source and site 

parameters, the hybrid Recurrent Neural Network eventually returns an estimation of the GM spectrum along with an 

estimation of inter-event and intra-event errors. The RNN framework is finally validated by conducting a series of 

statistical tests on the residuals obtained from the model.    

Keywords: Ground Motion Spectrum, Neural Networks, Spectral Correlations, Hazard 

1. Introduction

In the field of structural and hazard analysis, ground motion prediction equations (GMPM) form an essential 

tool that is used to estimate the levels of ground motion intensity using the earthquake event parameters such 

as Magnitude Mw, Distance to Fault Rrup, etc. In general, GMPMs provide statistical predictions of peak ground 

acceleration (PGA), peak ground velocity (PGV), and pseudo-spectral acceleration (Sa) of a single-degree-of-

freedom-system of various periods. GMPMs are used along with an Earthquake Rupture Forecast (ERF) 

database such as UCERF2 (2008), UCERF3 (2015) , which provide the GMPMs with the necessary event 

parameters to estimate ground motion intensity at the sites of interest. This is widely useful in an extensive 

range of research areas of Seismic Engineering such as regional seismic analysis, structural loss estimation, 

hazard mapping, etc. Over the years there have been numerous GMPMs developed across the world for both 

global and regional bases (Douglas 2019). Conventionally, GMPMs are developed as parametric functional 

forms using empirical data. Since the ground motions are recorded in two or three orthogonal directions, 

various measures have been used to quantify the intensity of ground motions on single-degree-of-freedom 

systems such as maximum Sa, average Sa, SRSS Sa, Geomean of Sa, GMRotI50 Sa, RotD50 Sa, etc. RotD50 Sa 

(Boore 2010) is the current state-of-art intensity measure (IM) that is adopted by all current GMPMs and is 

expressed as RotDpp, where Rot indicates the rotation of the two orthogonal components of the ground motion, 

D indicates the period dependency, and pp corresponds to the percentile value (mainly limited to the 50th 

percentiles, i.e. the median value).  
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The GMPMs mainly express the IM as a function of predictor variables such as Earthquake Moment 

Magnitude Mw, Closest site-to-source distance Rrup, Shear-wave velocity over the upper 30m of the site Vs30, 

etc. Abrahamson et al. (2014) proposed the ASK14 ground motion model for shallow crustal earthquakes in 

active tectonic regions. It included regional differences between California, Japan, China, and Taiwan. Also, 

Chiou and Youngs (2014) updated their 2008 version of the model and incorporated regional differences in 

far-source distance and site effects between active tectonic regions in their CY2014 model. Campbell and 

Bozorgnia (2014) included regionally independent geometric attenuation, regionally dependent anelastic 

attenuation, and magnitude-dependent aleatory variability in their CB14 model and corrected the bias of their 

2008 version.  

As the parametric models with functional forms require pre-informed physical interpretation of seismological 

and geotechnical modeling, researchers oftentimes prefer data-driven non-parametric modeling techniques for 

developing GMPMs. These models do not require any predefined formulas and make good use of advanced 

statistical techniques to develop predictive models for the ground motion intensity measures. Tezcan and 

Cheng (2012) used support vector regression (SVR) which maps data points into a high dimensional feature 

space to build their non-parametric model to predict response spectra for 13 periods between 0-4s. Recently, 

Dhanya and Raghukanth (2017) adopted an artificial neural network (ANN) in combination with a Genetic 

Algorithm (GA) to train a data-driven model to predict PGA, PGV and spectral accelerations at 26 periods 

between 0.01 and 4s.  

However, one of the drawbacks that these GMPM models possess is that they predict the target response at 

each period independently. In other words, the fixed functional form has different values of coefficients for 

predicting Sa at different periods of interest, and since the spectrum belongs to the same earthquake event, the 

Sa  predictions for different periods must be correlated. Baker and Jayaram (2010) measured these correlations 

and concluded that the observed correlations are not sensitive to the choice of GMPMs. They proposed a 

functional form for a variety of correlation predictions that is valid for periods from 0.01 to 10s. Using this 

correlational structure a different form of Hazard Spectrum was introduced, known as Conditional Spectrum, 

for the structural and hazard analysis. Furthermore, Eads et al. (2016) developed a metric for quantifying the 

ground motion intensities called SaRatio which is the ratio between Sa at the first period and the average 

spectral value over a period range. They showed that SaRatio is a much better predictor of collapse intensity 

of a structure than other spectral shape metrics.  

This study aims at developing a data-driven non-parametric GMPM model to predict the vector series of Sa 

(entire Response Spectra) rather than independently predicting the value of Sa at each period separately. 

Therefore in this study, to incorporate the higher-order spectral dependencies of Sa, the framework of 

Recurrent Neural Network (RNN) is adopted along with optimation techniques of Evolution Strategy. In 

particular, under the RNNs, a Long Short Term Memory (LSTM) network is used to estimate a correlated 

vector of Sa corresponding to 25 periods (periods ranging from 0.1 to 5s) using the input event parameters of 

Moment Magnitude Mw, Closest site-to-source distance Rrup, Shear-wave velocity over the upper 30m of the 

site Vs30 , and focal mechanism F which describe the physics of the rupture. Furthermore, the uncertainties are 

also calibrated in terms of 25x25 covariance matrices that are estimated for both intra-event and inter-event 

effects by maximizing the log-likelihood calculated from the discrepancy between the spectra estimated by 

RNN framework and the recorded data.  

2. Ground Motion Database

A subset of the PEER NGA-West2 (Timothy et al., 2014) database containing the bi-directional ground motion 

acceleration records along with the site information, source information, event parameters, and ground motion 

intensity measures (IMs) is selected as the ground motion database for this study. Some of the records from 

the database are eliminated based on the exclusion criteria given below: 
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1) Earthquakes that lack any event such as Rake Angle (Focal Mechanism), Mw, etc.

2) Recordings for stations that lack the information about site parameters such as Vs30.

3) Earthquakes with a questionable hypocentral depth that are greater than 20 km or less than 1 km.

4) Earthquakes do not belong to shallow active crustal regions.

5) Recordings that are not representative of free field ground motion.

6) Earthquakes with fewer than 5 recordings when Mw<5 and with fewer than 3 recordings when 5< Mw

<6.5.

7) Recordings that lack any one horizontal component.

8) Recordings having Rrup greater than 80 km.

9) Recordings from aftershocks.

Fig 1 – Magnitude (Mw) and Distance (Rrup) details of the selected Ground Motions 

Based on the above-mentioned exclusion criteria, 6,947 recordings with 277 earthquakes are finally selected. 

The earthquakes are classified into 5 fault mechanisms which include Normal (17 earthquakes with 185 

recordings), Normal Oblique (12 earthquakes with 245 recordings), Reverse (34 earthquakes with 1,057 

recordings), Reverse Oblique (23 earthquakes with 910 recordings), and Strike-Slip (191 earthquakes with 

4,550 recordings). The magnitude and distance details of the selected motions are shown in Fig 1. The 

statistical details of the other parameters obtained from the metadata are listed below: 

1) Moment magnitude (Mw) ranges from 3.05 to 7.9.

2) Closest distance to the fault rupture plane (Rrup) ranges from 0.07 to 80 km.

3) Joyne-Boore distance to the surface projection of fault rupture plane (Rjb) ranges from 0.02 to 80 km.

4) Closest distance to the surface projection of the top of the fault rupture plan (Rx) ranges from -79.93 to 98.57

km.

5) Depth to the top of the fault rupture plane (ZTOR) ranges from 0 to 19.54 km.

6) Average dip angle (𝛿) of the fault rupture plane ranges from 10 to 90 degrees.

7) Average rake angle (𝜆) of the fault rupture plane ranges from -180 to 180 degrees.

8) Hypercentral depth measured from sea level (ZHYP) ranges from 0.02 to 20.23 km.

9) Distance to Hypocenter (DHYP)  ranges from 2.6 to 160.45 km.

10) Rupture length (L) and Rupture width (W)  range between 0.4 to 305 km and 0.3 to 70.4 km, respectively.

11) Shear wave velocity in the top 30m of the profile (Vs30) ranges from 116.35 to 2016.13 m/s

3. Parameter Senstivity Analysis

Before developing the RNN framework, it is necessary to identify which source and site parameters possess 

the highest predictive power to estimate the spectral accelerations. Non-parametric Random Forests algorithm 
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is primarily used to conduct the sensitivity analysis of Sa at four periods including 0.2, 0.5, 1.0 and 2.0 secs 

with respect to all the source and site parameters. The main benefit of using this algorithm as compared to 

traditional methods of gradient-based sensitivity analysis is that it does not require any closed functional forms 

to compute the partial derivatives, and due to their non-parametric nature, Random Forests has a high power 

of handling large data sets with higher dimensionality, handling the outliers better and deducing the highly 

non-linear relationships among the features and target variable. The method of Bagging is used to create 

randomized decision trees in Random Forests, and the bootstrap dataset is created from random sampling 

(with replacement). Bootstrap datasets that do not contain a particular record from the original dataset are 

called Out-Of-Bag (OOB) examples (Zhu et al., 2015), and Out-Of-Bag (OOB) estimate for the generalization 

error is the aggregation of errors of the OOB examples. By first fitting a random forest to the data, OOB error 

for each data point is recorded and averaged over the forest. The importance of the jth feature is measured by 

permuting the values of the jth feature among the data and computing the OOB error on this perturbed data set. 

The importance score for the jth feature is computed by averaging the difference in OOB error before and after 

the permutation over all trees. Features that produce large values for the normalized (by the standard deviation) 

score are ranked as more important than features that produce small values. Using the Random Forests 

algorithm, the relative importance (RI) of each source and site parameter in predicting the target variables 

(Sa(T=0.2s), Sa(T=0.5s), Sa(T=1.0s) and Sa(T=2.0s)) is obtained and compared. The results are presented in Fig 

2. As can be observed from the subplots for all periods, parameters including Mw, Rrup, Rx, ZTOR, and Vs30 are

deemed significant. Specifically, it is observed that the basin effects in terms of ZTOR are observed to become

more important for longer periods (1 and 2 secs) while site parameter Vs30 appears to be important for shorter

periods specifically. Source parameters of Mw, Rrup, and Rx are consistently observed to be rated significantly

by the Random Forests algorithm. As the physics of the fault mechanism is widely known to cause differences

in the ground motion characteristics, the selected 5 parameters (Mw, Rrup, Rx, ZTOR, and Vs30) are used along

with the fault mechanism to be used as inputs to the RNN framework.

        (a)         (b) 

          (c)                                (d) 

Fig 2 – Relative Importance (RI) of source and site parameters to predict: (a) Sa(T=0.2s), (b) Sa(T=0.5s), (c) 

Sa(T=1.0s), and (d) Sa(T=2.0s) 
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4. Recurrent Neural Networks

Recurrent Neural Network (RNN) is a class of artificial neural network (ANN) that attempts to model time or 

sequence-dependent behavior. This is performed by feeding back the output of a neural network layer at time 

t to the input of the same network layer at time t + 1. Hence, RNN possesses connections between nodes that 

form a directed graph along a temporal sequence which allows it to exhibit temporal dynamic behavior. Unlike 

feedforward neural networks, RNNs can use their internal state (memory) to process input sequences with 

variable input. RNN not only feeds forward but keeps an internal memory to process the sequences of inputs 

so that all input vectors are related to each other. Therefore, RNN is the best candidate to train a data-driven 

model for the prediction of sequential processes, in this case, the Sa Response Spectrum. Since a response 

spectrum represents the characteristics of the same ground motion, the values of Sa for various periods in the 

response spectrum are correlated with each other. This can be viewed as a sequence of Sa whose current value 

depends on the past value. For example, Sa at T=0.3 secs is correlated with the Sa at T =0.2 sec and Sa at T =0.2 

secs is correlated with the Sa at T =0.1 sec and so on.  The recurrent nature of RNN allows it to perform the 

same function for each input, copying and sending the data back to the network while producing the output 

simultaneously.  

Fig 3- Long Short Term Memory (LSTM) cell structure 

Although RNN is capable of tackling dependencies between the steps of the sequences, RNNs are known to 

have a problem of short-term memory. This means if the sequence is long enough, it will be difficult for them 

to transfer information from an earlier time step to a later one. During the reverse propagation, RNNs will 

encounter the problem of vanishing gradient. As the training of neural networks involves the use of gradients 

to update the weights of nodes, due to the problem of vanishing gradient, the gradient becomes very small 

over the propagation of time in the sequence and hence the learning does not continue. To tackle this issue, 

the framework of Long Short Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is available. An 

LSTM is a refined version of traditional RNN which has internal mechanisms called ‘gates’ that regulate 

information flow. A typical LSTM structure is a cell state consisting of three gates which are explained below 

and illustrated in Fig 3. 

1) Forget Gate: This determines what information should be discarded or retained from the previous steps

in the sequence. Information from the previously hidden state and information from the current input is

passed through the sigmoid function (𝜎). Values between 0 and 1, the closer to 0 means forgetting, the

closer to 1 means keeping. The function of the gate is shown in Eq. 1, where the current input xt and the

previous output ht-1 are combined using weights Wf and bias bf  with a sigmoid layer.

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

tanh

tanhσ σσ

Forget Gate

Input Gate
Output Gate

Cell State
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2) Input Gate: This determines how the cell state (𝐶𝑡) will be updated, and memory will be modified based

on the input. Firstly, the previous hidden state (ht-1) and the current input (xt) are combined through the

sigmoid function (𝜎) as shown in Eq. 2 using weights Wi and bias bi to obtain the sigmoid output (𝑖𝑡).

This determines which values are updated by converting the values to be between 0 to 1 with values

closer to 0 meaning unimportant and closer to 1 means important. Then using Eq. 3, the hidden state (ht-

1) and current input (xt) are passed to the tanh function with weights WC and bias bC to take values between

– 1 and 1. This helps in regulating the network. Eq. 4 is then used to update the cell state and store the

data in terms of the updated cell state (𝐶𝑡). In Eq. 4, the tanh output (�̃�𝑡) is multiplied by the sigmoid

output (𝑖𝑡) and the previous cell state (𝐶𝑡−1) is multiplied by the forget vector (𝑓𝑡). If 𝑓𝑡 is close to 0,

𝐶𝑡−1 may be discarded in new cell state (𝐶𝑡). Then the addition of the two products updates the cell state

(𝐶𝑡).

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (2) 

�̃�𝑡 = 𝑡𝑎𝑛ℎ( 𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)  (3) 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × �̃�𝑡  (4) 

3) Output Gate: This decides what the next hidden state (ht) should be and which information will be

produced by the state. First, the previous hidden state (ht-1) and current input (xt) are passed to the sigmoid

function with weights (Wo) and bias (bo) to obtain output (𝑜𝑡) using Eq. 5. Then the newly modified cell

state (𝐶𝑡) is passed to the tanh function and the output is multiplied with the sigmoid output (𝑜𝑡) using

Eq. 6 to determine the information to be carried by the hidden state (ht). The new hidden state (ht) is

transferred to the next time step.

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ( 𝐶𝑡) (6) 

The selected database of the PEER NGA-West2 consisting of 6,947 recordings from 277 events are randomly 

split into Train and Test sets with 70% of events in the Train set and 30% of events in the Test set. Since the 

database is heavily dominated by the smaller magnitude events, the Train-Test splitting is conducted in 

discretized sets of 3 < Mw ≤ 4, 4 < Mw ≤ 5,  and so on. This means that 70:30 (Train: Test) random split is 

done independently for the events in each discretized set and then combined together to form a single Train 

set and Test set. 10% of the train set is then further used to conduct the neural network training with cross-

validation.  The neural network framework is trained in epochs using Adam optimizer (Kingsma and Ba, 2014) 

along with the Early Stopping (Prechelt, 2002) callback to prevent overfitting. The final proposed Neural 

Network architecture is presented in Fig 4. The source and site inputs to the RNN framework include a vector 

of 10 values: (1) Magnitude (Mw), (2) Distance to Rupture (Rrup), (3) Distance to the surface projection of the 

top edge of the fault rupture plan (Rx), (4) Depth to the top of the fault rupture plane (ZTOR), (5) Shear wave 

velocity in the top 30m of the profile (Vs30), (6) Fault mechanism (F) represented by one-hot vector for 5 fault 

mechanisms.  Unlike the conventional methods of using discretized values for the discretized classes (as done 

by Dhanya and Raghukanth, 2017), the 5 classes of fault mechanisms are represented by one-hot vector given 

in Table 1. Using discretized values for the classes is usually not the correct method to differentiate the classes 

since the classes that receive arbitrary greater values prioritize the gradient slope in the backpropagation 

algorithm. Hence to avoid this, the fault mechanisms are differentiated in terms of one-hot vector as given in 

Table 1. The framework then processes the correlated sequence of Sa using the LSTM layer which estimates 

the values of Sa while maintaining the spectral correlations. The LSTM layer is then connected to two Dense 

ANN layers that update the estimations made by LSTM layer so as to obtain better final predictions. The 

output of RNN framework is the median estimate of 25 points RotD50 Sa spectrum including Sa values 

corresponding to periods of 0.1 sec to 1 sec with the interval of 0.1 sec, and 1.2 sec to 3.0 sec with the interval 

of 0.2 sec, and 3.4 sec to 5 sec with the interval of 0.4 sec. 
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Table 1- One-Hot Vectors for Fault Mechanisms 

Mechanism (F) One-Hot Vector 

Strike Slip 1 0 0 0 0 

Normal 0 1 0 0 0 

Reverse 0 0 1 0 0 

Reverse Oblique 0 0 0 1 0 

Normal Oblique 0 0 0 0 1 

Fig 4 – Proposed Recurrent Neural Network (RNN) Architecture 

5. Estimation of Covariance Matrices for Errors

The proposed RNN structure focuses on building a model that estimates a 25x1 vector representing the median 

values of the response spectrum. Although the nature of RNN effectively addresses the correlation between 

response spectrum values at multiple periods, the error of the model needs to be dealtcarefully, given that the 

error terms cannot be independent for the different periods of same spectrum. As the problem statement 

involves hierarchical data, the error term is partitioned into two parts: inter-event and intra-event effects. ηi, 

the random effect of the ith event represents inter-event variation, while εij stands for the intra-event variation 

of the jth recording from the ith event. Eq. 7 demonstrates the functional form used to develop the hierarchical 

model. ηi and εij are assumed to be normally distributed with covariances Τ and Σ, respectively. 

𝑙𝑛 𝑆𝑎𝑖𝑗 = 𝑅𝑁𝑁(𝑀𝑖, 𝑅𝑖𝑗 , . . . ) + 𝜂𝑖(0, Τ) + 𝜀𝑖𝑗(0, Σ) 𝑙𝑛 𝑦𝑖𝑗 = 𝑅𝑁𝑁(𝑀𝑖, 𝑟𝑖𝑗 , . . . ) + 𝜂𝑖 + 𝜀𝑖𝑗 (7) 

Τ and Σ are the 25×25 covariance matrices that correlate the error terms for the different periods of the 

spectrum. The diagonal elements of these two matrices represent the inter-event (τ2) and intra-event variances 

(σ2) of the 25 periods, while the off-diagonal element at the ith row and the jth column are τiτjρτij and σiσjρσij for Τ 

and Σ, respectively. ρτij and ρσij are correlations between the ith period and jth period for τ2 and σ2 matrices, 

respectively. To estimate the optimal covariance matrices Τ and Σ, the log-likelihood function given in Eq. 8 

is maximized using heuristic gradient-free optimization method, namely Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES) (Hansen, 2010), where y and μ are true and predicted values of Sa, respectively, 

and C is the covariance matrix. The first term in Eq. 8 is a constant, the second term is the determinant of the 

covariance matrix, and the third term accounts for the discrepancy between the true response and the predicted 

values of Sa. Since the data involves heteroscedasticity, following the suggestions of Campbell and Bozorgnia 

(2014), the inter-event and intra-event covariances matrices Τ and Σ are estimated separately for Mw≤4.5 and 

tanh
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Mw≥5.5 and for the values between the two groups, linear interpolation can be performed. Hence, four 25x25 

covariance matrices (Τ and Σ both for Mw≤4.5 and Mw≥5.5) are proposed to be used along with the RNN 

framework for the estimation of the ground motion spectrum using the source, event and site parameters. 

𝑙𝑛 𝐿 =
𝑁

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛|𝐶| −

1

2
(𝑦 − 𝜇)𝑇𝐶−1(𝑦 − 𝜇) 𝑙𝑛 𝐿 =

𝑁

2
𝑙𝑛( 2𝜋) −

1

2
𝑙𝑛|𝐶| −

1

2
(𝑦 − 𝜇)𝑇𝐶−1(𝑦 − 𝜇) 

(8) 

CMA-ES is widey used to solve non-linear non-convex optimization problems. In CMA-ES, several particles 

are randomly generated, and each particle represents a particular setting of parameters that are random 

variables of the objective function to be minimized or maximized. The mean of the distribution of the particles 

as well as the covariance matrix of the distribution of the particles are both updated during search steps until 

the algorithm converges at the global minimum as illustrated in Eq. 9 where 𝑚𝑡+1 stands for the mean of the

distribution at step t+1, and xi stands for a setting of parameters of the ith particle. The mean of the distribution 

𝑚𝑡+1 at step t+1 is updated based on the mean 𝑚𝑡 at step t and the weight wi, which is the weight of the ith

particle proportional to the objective function of the ith particle. μ in Eq. 10  stands for the total number of 

particles. Eq. 10 illustrates the update of the covariance matrix of the distribution 𝐶𝑡+1at step t+1. 𝑐1and 𝑐𝜇are

both hyperparamters that affect the rate of convergence. 𝑝𝑡+1 is the path at step t+1 and 𝜎𝑡is a normalization

factor at step t , which are updated as shown in Eq. 11 and Eq. 12, respectively. c and 𝜇𝑤 and 𝑐𝜎and 𝑑𝜎in Eq.

11 and Eq. 12, respectively, are also hyperparameters of the algorithm. 𝐸||𝑁(0, 𝐼)|| in Eq. 12 represents the 

expectation of the Euclidean norm of the normal distribution N(0, I) and𝑠𝑡+1 in Eq. 12 is the step size that is

updated based on Eq. 13, where matrix B is formed from the normal distribution N(0, I).  

𝑚𝑡+1 = ∑ 𝑤𝑖𝑥𝑖 = 𝑚𝑡 + ∑ 𝑤𝑖(𝑥𝑖 − 𝑚𝑡)

𝜇

𝑖=1

𝜇

𝑖=1

(9) 

𝐶𝑡+1 = (1 − 𝑐1 − 𝑐𝜇)𝐶𝑡 + 𝑐1𝑝𝑡+1𝑝𝑡+1
𝑇 + 𝑐𝜇 ∑ 𝑤𝑖(

𝑥𝑖 − 𝑚𝑡

𝜎𝑡
)

𝜇

𝑖=1

(
𝑥𝑖 − 𝑚𝑡

𝜎𝑡
)𝑇

(10) 

𝑝𝑡+1 = (1 − 𝑐)𝑝𝑡 + √𝑐(2 − 𝑐)√𝜇𝑤

𝑚𝑡+1 − 𝑚𝑡

𝜎𝑡

(11) 

𝜎𝑡+1 = 𝜎𝑡 𝑒𝑥𝑝(
𝑐𝜎

𝑑𝜎
(

||𝑠𝑡+1||

𝐸||𝑁(0, 𝐼)||
− 1))

(12) 

𝑠𝑡+1 = (1 − 𝑐𝜎)𝑠𝑡 + √𝑐𝜎(2 − 𝑐𝜎)√𝜇𝑤𝐵 ∑ 𝑤𝑖𝑥𝑖

𝜇

𝑖=1

(13) 

6. Model Performance

(a)                     (b) 

Fig 5 – (a) Predicted vs Measured Sa for all 25 periods for Train and Test sets, (b) Values of R2 for the 25 

periods for Train and Test sets 
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The proposed RNN framework is evaluated firstly by comparing the actual (measured) values of Sa with the median 

predictions of Sa made by the RNN framework. This is presented in Fig 5a where the predicted Sa is plotted against 

the measured values of Sa for both Train and Test sets for all periods combined. As can be observed from the figure, 

the RNN framework shows good predictions for all ranges of Sa for both Train and Test sets. As mentioned in 

section 3, the Train and Test sets are split in discretized based on Magnitudes, hence it can be seen from the figure 

both Train and Test sets contain values of Sa that cover the entire range of Sa. It can be observed from the figure that 

the scatter between Measured vs Predicted Sa for both Train and Test sets tend to follow a 1:1 line which leads to 

the conclusion that the statistical performance of the RNN framework is satisfactory. Furthermore, the performance 

of the RNN structure is tested by checking its goodness-of-fit using the statistical measure of R2. Fig 5b shows the 

values of R2 for the 25 selected periods for both Train and Test sets. As can be observed from the figure, the values 

of R2 for all periods tend to be greater than 0.8 which shows the high predictive power of the proposed RNN 

framework. Also, as the R2 from the Test set is observed to be very close to the R2 of Train set, it can be concluded 

that the RNN framework is not overfitted to the database and can be effectively used for future predictions and 

hazard analysis. 

(a)           (b) 

       (c)           (d) 

        (e)               (f) 

Fig 6 – Residuals of predictions using proposed RNN framework for: (a) Sa(T=0.2s) for Mw, (b) 

Sa(T=0.2s) for Rrup, (c) Sa(T=1.0s) for Mw, (d) Sa(T=1.0s) for Rrup, (e) Sa(T=2.0s) for Mw, (f) Sa(T=2.0s) 

for Rrup 

T = 0.2 sec T = 0.2 sec

T = 1.0 sec T = 1.0 sec

T = 2.0 sec T = 2.0 sec
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The performance of the model is further evaluated by checking the residuals obtained from the RNN 

framework to understand whether the residuals show any observable pattern against Magnitude (Mw) and 

Rupture Distance (Rrup). Fig 6 shows the residuals of the predictions made by the RNN framework against the 

corresponding Magnitude (Mw) and Rupture Distance (Rrup) for periods of 0.2, 0.5, 1.0 and 2.0 secs. Since the 

residuals are further bifurcated into inter-event (ηi) and intra-event (εij), the overall residuals represent the 

SRSS of the inter-event (ηi) and intra-event (εij) residuals. As can be observed from Fig 6a to 6f, for all 3 

periods (0.2, 1.0, and 2.0 secs), the residuals tend to be normally distributed with mean equal to zero and no 

trends seem to appear for both Magnitude (Mw) and Rupture Distance (Rrup). It can be further observed from 

Fig 6 that the residuals seem to have smaller sigma for events with Magnitude (Mw) > 5.5 and larger sigma for 

the events with Magnitude (Mw) < 4.5.  

7. Spectral Comparisons

      (a)   (b) 

      (c)                     (d) 

Fig 7 – Spectral Comparsions for ground motion arising from Strike-Slip mechanism with Mw = 6.0,  Rrup = 

9.67 km and Vs30= 320.4 m/s for CMS of : (a) 𝜖 = −2, (b) 𝜖 = −1, (c) 𝜖 = 1 and (d) 𝜖 = 2 

In this section, earthquake scenerios are selected from the Test set of the NGAWest2 database and then ground 

motion spectra generated from the proposed RNN framework are compared against the spectra generated from 

CB14 (Campbell and Bozorgnia, 2014) GMPE, true recorded spectra, and Conditional Mean Spectra (CMS) 

(Baker and Jayaram (2010)) developed using CB14, conditioned on three periods (𝑇 = 0.2 s, 𝑇 = 1 s, and 

𝑇 = 3 s) and four epsilons (𝜖 = −2, 𝜖 = −1, 𝜖 = 1, and 𝜖 = 2). Fig 7 shows the spectral comparions for 

ground motion arising from Strike-Slip mechanism with Mw = 6.0, Rrup = 9.67 km and Vs30 = 320.4 m/s. Fig 

7a, 7b, 7c and 7d show the recorded spectrum alongwith the spectrum generated from the RNN framework 

with three CMS conditioned on 𝜖 = −2, 𝜖 = −1, 𝜖 = 1, and 𝜖 = 2, respectively. As can be observed from 

the figure, the spectrum generated from the RNN framework lies very close to the true recorded spectrum. 

Since the CMS are developed conditioned on the period (T) and 𝜖, the four sub-figures demonstrate the CMS 

for on 𝜖 = −2, 𝜖 = −1, 𝜖 = 1, and 𝜖 = 2 each of which contain three CMS that are conditioned on 𝑇 = 0.2 s, 

Median CB14 Recorded Median RNN

CMS (T=0.2s) CMS (T=1.0s) CMS (T=3.0s)
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𝑇 = 1 s, and 𝑇 = 3 s. Based on the Fig 7, it can be observed that having additional constraints on the period 

(T) and 𝜖 can cause huge variability in the estimation of the ground motion spectrum. It is observed that CMS

conditioned on 𝜖 = −2 show closer match with respect to the recorded spectrum, however, it can be further

observed that the CMS tends to match only at few periods and mainly differ from the recorded spectrum.

Similar trends are observed for another scenario (shown in Fig 8) obtained from the Test set for the ground

motion arising from Reverse-Oblique mechanism with Mw = 6.9, Rrup = 18.33 km and Vs30= 663.3 m/s. The

spectrum generated from the RNN framework is estimated very close to spectrum of the recorded ground

motion and high variability is observed in CMS due to variation in the period (T) and 𝜖. In this case, 𝜖 = −1
generates the three CMS (𝑇 = 0.2 s, 𝑇 = 1 s, and 𝑇 = 3 s) that are close to the recorded spectrum in the

shorter period ranges while tends to o\verestimate for the longer periods. Furthermore, as the GMPEs are

developed in terms of average for various earthquake events, it can be observed from both figures 7 and 8,

spectra obtained using CB14 highly overestimate the Sa values.

     (a)   (b) 

    (c)                     (d) 

Fig 8 – Spectral Comparsions for ground motion arising from Reverse-Oblique mechanism with Mw = 6.9,  

Rrup = 18.33 km and Vs30= 663.3 m/s for CMS of : (a) 𝜖 = −2, (b) 𝜖 = −1, (c) 𝜖 = 1 and (d) 𝜖 = 2 

8. Conclusions

Current seismic hazard and demand analysis are highly based on the utilization of GMPMs. These models are 

combined with Earthquake Rupture Forecast platforms for probabilistic seismic hazard analysis. Due to the 

increase in computational resources and outgrowth of machine learning models, the research community has 

directed these models towards more accurate nonparameteric forms. Though these functional forms are said 

to be based on the physics of seismic events, the complexity involved in the understanding of the physics of 

seismic activities has debatably lead to multiple representations of the functional forms. To counteract this, 

nonparameteric forms can be seen as a good alternative to represent the seismic hazard, especially Neural 

Networks are argued to have the complex physics embedded in the network and hence can provide a better 

Median CB14 Recorded Median RNN

CMS (T=0.2s) CMS (T=1.0s) CMS (T=3.0s)
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estimation of the hazard. The hazard is generally represented in the form of an IM, which in the current-state-

of-practice is the RotD50 spectral acceleration of a SDOF system with varying periods. Also, the present 

GMPMs are not developed explicitly to consider the spectral correlations of IMs for same ground motion. 

In this research firstly a sensitivity analysis is conducted through the Random Forests algorithm which shows 

that 5 parameters including Mw, Rrup, Rx, ZTOR, Vs30, and F are sufficient to accurately define the variability in 

RotD50 spectral acceleration of the 7000 mainshock ground motions available in the NGAWest2 database. 

Using these inputs, an RNN framework is developed to estimate the RotD50 spectral acceleration for 25 

periods while explicitly considering the spectral correlations and dependencies. Furthermore, four 25x25 

covariance matrices are developed using heuristic gradient-free optimization methods that estimate the inter-

event and intra-event variabilities of the Sa for 25 periods with earthquake magnitudes below 4.5 and above 

5.5. Finally, the RNN framework is compared against the CB14 GMPE and CMS by comparing spectra 

associated with two recorded scenerios. It is observed that the RNN framework show superior spectral match 

with the recorded ground motions and hence can be easily used for hazard analysis. 
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