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Abstract 
In earthquake engineering, mapping is frequently done to visualize the spatial variation of seismic site amplification. In 
conventional mapping, observations recorded over many seismic events at a site are reduced to a single averaged value. 
Thus, although site amplification at two sites might look visually different, statistical significance of this difference is 
directly ungraspable without any information on the data uncertainty. Uncertainty Projected Mapping (UPM) adds 
statistical significance to mapping by projecting data uncertainty on map resolutions. Here, we introduce the principal 
concept of UPM and discuss its data dependency property. UPM approaches conventional mapping as data increase and 
we use it to quantify data saturation in geospatial mapping. A parameter is proposed that measures the incremental 
information gain as new data is added to mapping. Data saturation is reached when the proposed parameter approaches 
zero. The concept is applied to a seismic array in Furukawa district of Japan where seismic data is collected over 7 years 
from 31 seismometers. Convergence in site amplification maps generated over different observation periods conclude 
that the mapping in Furukawa district is approaching data saturation and from the view point of information theory, the 
current operation of seismic monitoring may be terminated.  
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1. Introduction 
In earthquake engineering, mapping is frequently done to visualize the spatial distribution of many different 
variables. Immediately after an earthquake, USGS releases ShakeMaps which provide near-real-time spatial 
distribution maps of ground motion and shaking intensity. Long term earthquake records are utilized to 
generate hazard maps and highlight areas vulnerable to significant earthquake damage. The knowledge of 
spatial distribution of shear wave velocity is crucial in identifying sites susceptible to strong ground shaking.  
Many variants of these geospatial maps are used by several organizations for post-earthquake response, 
preparedness exercise and disaster planning, etc. 

 However, the resolution of these spatial maps is not always reliable at local scales. Fig. 1 shows a local 
scale map of spatial distribution of site amplification factor (mapped variable) in an area of Japan [1]. Let us 
focus at the situation at A, where blue and red colored sites, representing extreme site amplification factors, 
are situated right next to each other.  How reliable is this situation? Is it possible to explain if this situation 
belongs to case 1 or case 2?  If it is case 1, where the difference in neighboring values is statistically significant 
(non-overlapping data distributions), situation at A is reliable. However, if it is case 2, where the difference in 
neighboring values is not statistically significant (overlapping data distributions), the color separation at A is 
not reliable. Unfortunately, the conventional maps cannot distinguish between the cases 1 and 2, as the 
information of data variation (uncertainty) is not included in the mapping process. Situations like this is not 
uncommon in spatial maps. The inability of conventional maps to statistically signify the difference in mapped 
values, raises a question on its use for reliable decision making process.   

 
 

To handle the reliability issues with spatial distribution maps, Chakraborty and Goto [2] proposed 
Uncertainty Projected Mapping (UPM), where in addition to the mean value, uncertainty information is 
projected in the map resolutions in such a way that map resolutions in high uncertainty zones are colored 
smoothly. In UPM, a smoothing effect is introduced and map resolutions are reduced in high uncertainty zones 
where the difference in neighboring values are not statistically significant. However, the map resolution 
remains high in low uncertainty zones where the difference in neighboring values is statistically significant. 
Thus, if Fig. 1 was replotted with UPM, and the data distribution belonged to case 2, instead of two distinct 
colors (blue and red) at A, there will be only one color at A. UPM map is a better representation of the available 
data and can help in reliable decision making process. 

 

 
Fig. 1- A local scale spatial distribution map [1] 
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Another important issue with mapping is the issue of data sufficiency. Data has increased significantly 
in recent times. However, it is usually not clear if the amount of data is enough to extract the desired 
information. Continuing data collection adds to the computational cost as the new data being processed might 
be redundant. An interesting data dependent property of UPM maps, which will be discussed throughout this 
paper, offers a solution to this issue. UPM maps evolve with addition of new data, and after a while they start 
converging. In this study, we quantify the convergence process by measuring the incremental information gain 
as maps are updated with new data. Point of data sufficiency (data saturation) is assumed when no more 
incremental information gain happens even after adding new data to a map.  

The purpose of this paper is twofold. Firstly, to introduce the basic concept of UPM [2] and then to 
discuss the data dependency property of UPM which plays an important role in visualizing the data saturation 
in mapping. Although UPM and visualizing data saturation in UPM maps are applicable to any spatial variable, 
in this paper, we focus on site amplification as the spatial variable. In the numerical experiment, we study the 
site amplification variation in a one-dimensional alluvial basin. And as a case study, we study the site 
amplification in Furukawa district of Japan using long term data from a dense seismic array being operated 
there.  

2. Uncertainty Projected Mapping(UPM) 

 
 
In this section, we introduce the basic concept of UPM. In Fig. 2, conventional mapping varies as a triangular 
wave in one-dimensional space. In this paper, for conventional mapping, we use Kriging [3], a popular tool of 
spatial interpolation. The uncertainty at site j (standard deviation, 𝜎𝜎𝑗𝑗) increases from left to right. As discussed 
in section 1, the goal of UPM is to reflect the uncertainty information into the map resolutions and reduce the 
map resolution in zones of high uncertainty. Thus, in the left zone, where the data variation is low, UPM 
follows the conventional mapping and maintains a high map resolution. However, in the right zone, where the 
data variation is high, a smoothness is introduced and the map resolutions decrease.  

To obtain the smoothing effect in zones of high uncertainty, UPM considers two uncertainties: record 
to record variability at a site j ( 𝜎𝜎𝑗𝑗) and site to site variability in the neighborhood of j ( sj ) . These two 
uncertainties are related such that  

                         𝑐𝑐 = 𝑠𝑠𝑗𝑗𝜎𝜎𝑗𝑗                                                                                      (1) 

where c is a constant. In UPM,  sj  helps make the map resolutions smooth where 𝜎𝜎𝑗𝑗 is high. A low sj 
value means low variability around j and hence, a smooth resolution. However, a high sj means a high 

 
Fig. 2- Basic concept of Uncertainty Projected Mapping(UPM)  
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variability around j and thus, a rough resolution. At zones of high 𝜎𝜎𝑗𝑗  we impose a low sj  and make the 
resolutions smooth. At zones of low 𝜎𝜎𝑗𝑗, we impose a high sj and make the resolutions rough. The constant c is 
unique to a model setting and the optimum value of the constant c is based on model evaluation. 

UPM is modelled as a Bayesian hierarchical model [4].  The unknown parameters 𝜇𝜇,σ and s are assigned 
a prior distribution and estimated based on a posterior probability distribution using Markov Chain Monte 
Carlo algorithms. However, many different UPM can be generated based on different c values. Model 
evaluation is done using widely adopted information criterion (WAIC) [5]. Neighborhood is an important 
component in modelling UPM. In many cases, the spatial sites may not be uniformly spaced or there may be 
some missing sites where the values need to be estimated. So, in general, we create uniformly distributed sites 
(by adding missing points, if necessary) so that every site almost has the same number of sites in the 
neighborhood.    

3. Methodology 

3.1 Update UPM maps at multiple stages of data accumulation 
The first step in visualizing data saturation is to create a series of UPM Maps at different stages of data 
accumulation. UPM maps evolve with the increasing data as the estimation of mean (𝜇𝜇𝑗𝑗) and record to record 
variability (𝜎𝜎𝑗𝑗) depends on the amount of data. As we will see in section 4 and section 5, the UPM maps 
converge with conventional mapping as the data increase. Quantifying this convergence process will help us 
find at which stage data saturation occurs.  

 
3.2 Measuring the incremental information gain as the UPM maps evolve 
To quantify this convergence in UPM maps, we use a parameter based on Kullback-Leibler (KL) Divergence 
[6]. KL Divergence measures how different two probabilistic distributions are. It is usually defined as  

𝐷𝐷𝐾𝐾𝐾𝐾(𝑃𝑃||𝑄𝑄) = ∫ 𝑝𝑝(𝑥𝑥) log �𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

� 𝑑𝑑𝑥𝑥∞
−∞                                                                    (2) 

where 𝑃𝑃 and 𝑄𝑄 are continuous random variables and 𝑝𝑝 and 𝑞𝑞 are the associated probability densities.  

In this study, we define a quantity called incremental KL Divergence (∆𝐷𝐷𝐾𝐾𝐾𝐾 ) given by  

∆𝐷𝐷𝐾𝐾𝐾𝐾[𝑁𝑁+∆𝑁𝑁] = ∑ 𝐷𝐷𝐾𝐾𝐾𝐾𝑗𝑗 �𝑃𝑃[𝑁𝑁],𝑗𝑗||𝑃𝑃[𝑁𝑁+∆𝑁𝑁],𝑗𝑗�                                                                 (3) 

where  ∆𝐷𝐷𝐾𝐾𝐾𝐾[𝑁𝑁+∆𝑁𝑁]  is the 𝐷𝐷𝐾𝐾𝐾𝐾  between the probability distribution 𝑃𝑃[𝑁𝑁] at 𝑁𝑁 observation data case and the 
probability distribution  𝑃𝑃[𝑁𝑁+∆𝑁𝑁] at 𝑁𝑁 + ∆𝑁𝑁 observation data case summed over the 𝑗𝑗 sites.  

The parameter ∆𝐷𝐷𝐾𝐾𝐾𝐾 measures the incremental information gain as the maps are updated with more and 
more data in time. Data saturation happens when ∆𝐷𝐷𝐾𝐾𝐾𝐾 approaches zero, which means that no more spatial 
information is added even upon adding more data to the map. The uniqueness of the parameter ∆𝐷𝐷𝐾𝐾𝐾𝐾 is that 
unlike conventional measures of data saturation, it also considers the data uncertainty in its formulation and 
hence adds a sense of reliability to the measurement.  

4. Numerical Experiment 

4.1 Data 
As numerical experiment, we model the spatial variation of wave amplification (hypothetical) in a one-
dimensional alluvial basin. Alluvial deposits can significantly affect the amplitudes of the incident seismic 
waves in a basin [7]. It is well known (low uncertainty) that the incident seismic waves get highly amplified 
at the center of an alluvial basin. However, at the basin edge (boundary between the rock site and alluvial 
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basin) there is a high uncertainty regarding the wave amplification properties because the incident angle and 
frequency contents are well affected. In Fig. 3, randomly generated samples at each site are wave amplification 
values for different incident seismic waves. The samples at each site follow a lognormal distribution. The well 
accepted trend of wave amplification variation is captured by the trend of mean (µ) variation, which increases 
from the edge to the center of the basin. The uncertainty knowledge is captured through the record to record 
variability (σ ) , which is high at the basin edge, and low at all other locations.  

 

4.2 Results 
Eight UPM maps with 8, 16, 32, 64, 128, 256, 512 and 1024 samples (gray dots) are created (Fig. 4a). Each 
succeeding dataset includes the preceding dataset with lower earthquake events.  

It is observed that when the number of observations (N) is low, UPM maps show a smooth transition at 
the highly uncertain basin edge, where the Kriging map is very rough and fluctuating. This smoothness is 
introduced by Eq. (1). However, as the number of observations (N) increase, UPM maps starts to converge 
with Kriging maps. This change in the characteristics of UPM with the increase in N has a significance in 
understanding the population. 

When N is low, there is less information for modelling and so, the estimated model parameters are quite 
unstable. The estimates are erroneous in high uncertainty zones. In such a situation, the smooth UPM maps in 
the highly uncertain basin edge is a better representative of the physical process than the erroneous Kriging 
maps.  

When N is high, there is more information for modelling and so, the estimated model parameters are 
stable. Due to increased data, error is also reduced in high uncertainty zones. It is very interesting to observe 
that the UPM maps now converge with the Kriging maps. Thus, UPM yields reliable results as compared to 
Kriging when less information is available and can be used to hint at data saturation as the number of 
observation increases.  

The change in incremental KL divergence (∆𝐷𝐷𝐾𝐾𝐾𝐾) with respect to N is shown in Fig. 4b. Sites located 
at the edges are not included in the calculation of ∆𝐷𝐷𝐾𝐾𝐾𝐾. It is observed that ∆𝐷𝐷𝐾𝐾𝐾𝐾 starts to converge as N 
increases. This indicates that the UPM maps reaches convergence and the data set is sufficient to extract the 
population statistics.  

 

 
Fig. 3- Numerical experiment: A hypothetical model of wave amplification in an alluvial basin  
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5. Case study: Site Amplification in Furukawa district, Japan 

5.1 Data 
In this case study, long term earthquake data from a dense seismic array is used to create a series of local scale 
site amplification maps. The dense seismic array is situated in Furukawa district of Japan [8]. During the 2011 
off the Pacific coast of Tohoku Earthquake, downtown residential areas of Furukawa district incurred severe 
damages mainly due to site amplification. Significant spatial differences of ground motion were observed even 
in sub-kilometer scale and hence, since 29th October, 2011, a dense seismic array is being operated for in-depth 
study of the area.   

 Fig.5 shows the layout of the dense seismic array in Furukawa district. In total, there were 37 
seismometers. However, we focus on the 31 seismometers situated in the significantly damaged downtown 
area. As for the observation data, we use 176 earthquake events collected over a period of 7 years (29th October, 
2011 to 19th September, 2018). These earthquake events are mostly aftershocks from the 2011 off the pacific 
coast of Tohoku Earthquake and include all recorded events in the above-mentioned period without any 
restriction on the threshold of amplitude or condition of source location. Also, each of the 31 seismometers 
didn’t record all the 176 earthquake events. For studying the convergence process, 6 datasets were created 
using groups of 8,16,32,64,128 and 176 earthquake events. Each succeeding dataset includes the preceding 
dataset with lower earthquake events.  

The mapped variable is a site amplification factor observed at site j during an earthquake event. It is 
defined as the logarithmic ratio of observed peak ground velocity (PGV) at site j to the spatial average 
calculated over all the available sites during an earthquake event. The PGV is calculated from the vector sum 

 
 

 
 

Fig. 4- (a) Evolution of UPM and Kriging maps for numerical experiment  
(b) Plot of ∆𝐷𝐷𝐾𝐾𝐾𝐾 vs N for the UPM maps  
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of EW component and NS component of the earthquake record. To generate a UPM map of the site 
amplification factor, the dataset comprised of 431 sites with 31 measurement sites from the seismic network 
and 400 missing sites, all distributed in a rectangular grid.  

 

5.2 Results 
Fig. 6a and Fig. 6b show the site amplification maps calculated using PGVs. Kriging maps are created in 
addition to the UPM maps for comparison. It is observed that when the number of observations (N) is low, the 
UPM maps are smooth with gradual transitions between the site amplification values as compared to the 
Kriging maps. However, as the number of observations (N) increase, spatial variation starts appearing on the 
UPM maps and they start to converge. To discuss this convergence quantitatively, Fig. 6c shows a plot of 
∆𝐷𝐷𝐾𝐾𝐾𝐾 with N. The ∆𝐷𝐷𝐾𝐾𝐾𝐾 is calculated only for the sites common to all the events. It is shown that as the number 
of observations increase, ∆𝐷𝐷𝐾𝐾𝐾𝐾 decreases and starts to approach the minimum zero value. From the viewpoint 
of information theory, it can be concluded that the data is approaching saturation. We can then manage the 
seismic network, e.g., the observation period, and rearrange the layout to resolve the map in the unclear area, 
based on UPM.   

6. Discussion and Conclusion 
In recent times, data is becoming more accessible. Visualization is becoming more important and geospatial 
maps are now taking a common place in many different fields. Many of these maps are used in decision making 
process. The conventional visualization techniques assume that the data is free of uncertainty and the 
resolutions are not always reliable. UPM maps which project uncertainty in map resolutions can lead to more 
reliable decision making and has application in a wide range of problems in earthquake engineering.  

The numerical experiment and case study reveal that UPM yields reliable results as compared to 
conventional mapping when less information is available and can be used to hint at data saturation as the 
number of observation increases. It is also evident that the optimum number of data which is deemed enough 
to extract useful information depends on the available dataset. In the case study problem, data sufficiency is 
reached much earlier as compared to the numerical experiment. It is probably because optimum data necessary 
to accurately estimate the mean and the record to record variability is affected by the presence of high 
uncertainty zones.  

 

 
Fig. 5- Spatial distribution of seismometers (▲) in Furukawa district, Japan 
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