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Abstract 

For seismic wave simulation in regional scale, it is necessary and important to introduce the high accurate and stable 

artificial boundary condition to truncate out the computation domain and simulate the process of seismic wave radiating 

outside the computation domain. Perfectly Matched Layer (PML) is one kind of artificial boundary conditions 

formulated as absorbing layer. The governing motion equations in PML are routinely derived by complex coordinate 

stretching of the seismic wave equation. Since the wave impedances of PML are equal to their counterparts in 

computational domain, the radiating seismic waves outside the computational domain can enter theoretically into PML 

without any reflection. Moreover, those waves will damp out exponentially along their propagation inside PML. It has 

been shown in large-scale 3D seismic wave simulation, the absorbing efficiency of PML is excellent for both incident 

body waves and interface waves and the required thickness of PML is only several times of the interested shortest 

wavelength. In this paper, we summarize and rederive consistently several time-domain second order PML formulations 

in seismic wave simulation based upon the second order seismic wave equation and the continuous finite/spectral 

element method. Due to the consistence in their rederivation, we show clearly the special treatments which lead to the 

deviation in their final formulations. 
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1. Introduction 

Compared with the full earth, the damage area of given earthquake is finite. Thus, it is reasonable to treat the 

seismic wave simulation as simulation of wave propagation in infinite domain. For interested damage area, 

we take into account fully the effect of source geometry, source dynamic process, topography, the 

underground distribution of medium property and et al., while treat the propagation of seismic wave outside 

the interested area as wave propagation in infinite domain. It is implicated that the wave radiated outside the 

interested damage area will propagate without any reflection into the infinite domain and damped out inside 

to a static equilibrium state.  

For wave simulation in infinite domain based upon finite difference, finite element, spectral element 

method, artificial boundary conditions are needed for truncate out a finite computation region while simulate 

the effect of infinite domain. Since the pioneer work of Lysmer[1], various artificial boundary conditions 

have been developed. Among them, PML is one kind of artificial boundary conditions formulated as 

absorbing layer, which is initially proposed by Bérenger in electromagnet wave simulation [2]. Late, the 

interpretation of governing motion equations in PML as an analytic continuation of wave equations in real 

spatial domain to a complex coordinate spatial domain given by Chew et al. [3] have greatly simplify the 

derivation of the governing motion equations in PML, which are the complex-coordinate-stretched wave 

equations in infinite domain.  

The developed PML formulation in seismic wave simulation can be divided into two basic categories, 

the first-order PML and the second-order PML. The former is typically derived by complex-coordinate-

stretching the first-order seismic wave equation in velocity-stress formulation, while the latter is derived by 

complex-coordinate-stretching the second-order seismic wave equation in displacement formulation. Since 

the pioneer work of Dimitri and Tromp [4], several second-order PML formulations have been derived. In 

apparent look, they are quite different. Thus, in this paper, we given them a small summary and rederive 

them in a consistent way. Due to the consistence in their rederivation, we show clearly the special treatments 

which lead to the deviation in their final formulations. 

2. The second-order wave equation in infinite domain 

   

Fig. 1 The sketch of finite element mesh in computational domain and in region of PML 

We focus on wave simulation based upon finite element or spectral element method. Thus, in this section, we 

set up the strong-form and weak-form problem of wave propagation in non-overlapping element e  in 

infinite domain (Fig. 1). Though the wave equation in interested damage area can be set to be non-linear, we 

typically set the counterparts in infinite domain as the second order linear elastic wave equation. Without 

loss of generality, we consider here the isotropic P-SV elastic wave equations, which are 

x x xx z xzu  =  +  ,                                   (1) 

e  
PML

e  

z 

x 
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z x zx z zzu  =  +  ,                                   (2) 

( )2xx x x z zu u   = +  +  , ( )2zz x x z zu u   =  + +  , ( )xz zx x z z xu u  = =  +  ,   (3) 

where   denotes the density, 
iu  the displacement in 

ix direction, ij  the stress component, j jx =   ,   

and   are the Lamé constants.  Along the boundary of 
e , the traction and displacement are continuous 

0ij jn
+

−
  =  ,   0iu

+

−
= ,                                                                     (4) 

where jn  denotes the component of outward-pointing normal vector along the two sides of the interface. In 

case the boundary of 
e  is aligned with the air-solid surface of earth, the tractions are equal to zero. 

Moreover, we set the initial state of displacement and velocity are equal to zero. The wave equation coupling 

the boundary condition and the initial state condition define the strong form wave propagation problem in 

e  inside infinite domain, which can be extended for whole region of infinite domain after the introduction 

of the corresponding boundary and initial stable condition in the infinite domain. Following the principle of 

virtual work, that is the virtual work of a system of equilibrium forces vanishes when compatible virtual 

displacements xw  and zw  are imposed, we can write the weak form wave propagation problem in 
e  as 

( ) ( )

( ) ( )

e e

e

x x z z e x x xx z x xz x z zx z z zz e

x xx z zx x xz z zz

w u w u d w w w w d

w w dz w w dx

   

   

 



+  +  +  +  +   =

+ + +

 


         (5) 

Due to the compatibility of the virtual displacements and the continuity of the traction along the interface of 

different elements, the right-side integration in (5) vanished for interior elements. For exterior element 

subjected to traction or   traction and displacement boundary conditions, the computation of integration can 

be found in Dimitri and Tromp [5]. Moreover, assuming that the virtual and real displacements share the 

same scheme of approximation inside elements, the solution of (5) can be achieved by Garlerkin continuous 

finite/spectral element method. 

2. The second-order PML in frequency domain 

Following the complex coordinate stretching approach, the derivation of PML can be can be divided into 

three steps. The first step is to introduced the complex-stretched coordinate in PML region. The second is 

that to mapping the Fourier-transformed second order wave equation into the complex stretched coordinate, 

which is transformed back into real coordinate to get the frequency-domain PML. The third is to transform 

the frequency-domain PML into time domain utilizing the inverse Fourier transform.  The essential 

difference lies in third step, where different operations on the frequency-domain PML used in order to get an 

author's favorite time-domain PML in terms of their adopted numerical methods. Taking the element 
PML

e inside PML region as an example, let us firstly introduce the complex-stretched coordinate in x 

direction as 

( ) ( )
0

x

x x s x dx=  ,                                                                         (6) 

where ( )s x is the coordinate stretching function. The commonly used ( )s x is the single-pole rational 

function 

( ) ( )
( )

( )
( )

( )

( )

d x x
s x x x

x x

 
 

   

+
= + =

+ +

i

i i
,                                              (7) 
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where ( )d x  is the attenuation factor that causes the amplitude of the wavefield to be damping exponentially 

inside the PML layer, ( )x  is the frequency-shifted factor that makes the damping effect frequency 

dependent, and  ( )x is the scaling factor. The latter has been found in numerical tests to be important for 

absorption of evanescent waves and near-grazing incident waves [6],   is the angular frequency and  

1= −i , ( ) ( ) ( ) ( )x x d x x  = + . Due to the fact that a non-zero ( )x  will reduce the absorbing 

efficiency of PML for low frequency incident wave,  ( )s x of multi-poles rational function has also been 

introduced [7], such as 

( ) ( )
( )

( )
j

j

j j

x
s x x

x

 


 

+
=

+


i

i
.                                                              (8) 

Then, in second step, we firstly map the frequency-domain P-SV wave equation into the stretched coordinate, 

( ) ( )2 ˆ ˆ ˆ ˆ ˆ2x x x x z z z x z z xu u u u u    − =   +  +   +    +      ,               (9) 

( ) ( )2 ˆ ˆ ˆ ˆ ˆ2z x x z z x z x x z zu u u u u    − =    +   +    + +      ,              (10) 

where a caret “ ” denotes the Fourier transform of the subtended function. According to the relationship 

derived from (6), 

1

x x xs− =  .                                                                            (11) 

We transform (9)-(10) into real coordinate that are 

( ) ( )2 1 1 1ˆ ˆ ˆ ˆ ˆ2x x x x x x z z z x x z z xu s s u u s u u    − − −  − =  +  +  +   +    
,           (12) 

( ) ( )2 1 1 1ˆ ˆ ˆ ˆ ˆ2z x x x x z z x z x x x z zu s s u u s u u    − − −   − =   +  +   + +   
.           (13) 

In order to get frequency-domain PML ready for discretized with frequency-domain finite/spectral element 

methods, we multiply two sides of (12) and (13) with xs  to get 

( ) ( )( )2 1 1ˆ ˆ ˆ ˆ ˆ2x x x x x x z z z x x x z z xs u s u u s s u u    − −  − =  +  +  +   +    
,        (14) 

( ) ( )( )2 1 1ˆ ˆ ˆ ˆ ˆ2x z x x x z z x z x x x x z zs u s u u s s u u    − −   − =   +  +   + + 
   

.        (15) 

Eq. (14) and (15) define the frequency-domain PML, which server for derivation of the time-domain PML in 

[4,8-13] . 

3. The second-order PML in time domain 

3.1 The second-order split PML in Dimitri and Tromp [4] 

It is worth to note here that the second-order split PML in time domain proposed in Dimitri and Tromp [4] is 

the first second-order PML ready for numerical discretization using finite/spectral element method. In order 

to get their formulation, we firstly restructure (14) and (15) as 

( )  ( )         2 1 2ˆ ˆ ˆ ˆ ˆ ˆ2 2x x x x x x x x x x x z z z x z x z z xs u s u s s u u u s u       − −− =   +   + +  +   +   +    ,(16) 

          ( ) 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ2x z x x x z x x x z x z x z x x x z z zs u s u s s u u u s u      − −− =   +  +   +   +   +    .      (17) 
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Then, following the idea in deriving the first-order PML as done in [14], we split (16) and (17) as 

( ) ( ) ( )
2 12 ˆ ˆ2x x x x xs u u  − =   +    , ( ) ( )  

2 12 ˆ ˆ
x z x x zs u u − =   ,               (18) 

( ) ( ) ( )
3 22 ˆ ˆ/ 2x x x x xs s u u   − = + 

 
, ( ) ( )3 22 ˆ ˆ/x x z x zs s u u  − = 

 
,             (19) 

( )    32 ˆ ˆ ˆ
x x x z z z x zs u u u  − =   +   , ( )    32 ˆ ˆ ˆ

x z x z x z x xs u u u  − =   +   ,         (20) 

( )  42 ˆ ˆ
x z z xu u − =   , ( ) ( )42 ˆ ˆ2z z z zu u  − =   +    ,                         (21) 

( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆ ˆ
x x x x xu u u u u= + + + , ( ) ( ) ( ) ( )1 2 3 4ˆ ˆ ˆ ˆ ˆ

z z z z zu u u u u= + + + .                          (22) 

Taking into account the stretching function used in [4], that is ( ) ( )1s x d x = + i , we can easily recover the 

time-domain second-order split PML in [4]. 

3.2 The second-order unsplit PML in Basu and Chopra [8] 

In Basu and Chopra [8], the first second-order unsplit PML has been proposed by introducing element-

defined memory variables associated with the strain and stress. In order to recover their formulation, we 

firstly restructure (14) and (15) as 

   2 ˆ ˆ ˆ
x x x xx z x xzs u s  − =  +  ,                               (23) 

   2 ˆ ˆ ˆ
x z x zx z x zzs u s  − =  +  ,                               (24) 

( ) ˆ ˆˆ 2xx xx zz    = + + , ˆˆ ˆ 2zx zx xz  = = ,  ( )ˆ ˆˆ 2zz zz zz    = + + ,                     (25) 

( )
21ˆ ˆˆ ˆ

xx x x x x xx x x xs u s s u   −=   = i i , ( ) ( )1ˆ ˆˆ ˆ ˆ ˆ2 2xz x x z z x x xz x z x z xs u u s u s u   −=  +   =  + i i .(26) 

Inserting ( ) ( ) ( )s x x d x = + i  into (23)-(26), we get the time-domain PML in Basu and Chopra [8], that 

are 

( )   ( ) ( )x x x xx z xz xzu d x u x d x    +  =  +   +      ,                     (27) 

( )   ( ) ( )z z x zx z zz zzu d x u x d x    +  =  +   +      ,                     (28) 

( )2xx xx zzE   = + + , 2zx zx xzE  = = ,  ( )2zz xx zzE    = + + ,                    (29) 

0

t

xz xzdt =  ,
0

t

zz zzdt =  ,                                                                   (30) 

( ) ( ) ( ) ( ) ( ) ( )2 2

0
2

t

xx xx xx x x x xx E x d x E d x E dt x u d x u  + + =  +  ,                         (31) 

( ) ( ) ( ) ( )2 2 2xz xz x z z x z xx E d x E u x u d x u + =  +  +  .                               (32) 

On basis of the PML formulation given in Basu and Chopra [8], a different version of PML has been 

introduced by Fathi et al by introducing only the element-defined memory variables associated only with the 

stress, which in frequency domain can be written as 

   2 ˆ ˆ ˆ
x x x xx z x xzs u s  − =  +  ,                              (33) 

   2 ˆ ˆ ˆ
x z x zx z x zzs u s  − =  +  ,                              (34) 
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( )  ( ) ( ) ˆ ˆ ˆ2xx x x z zs x u s x u     = +  + i i ,                                             (35) 

 ( )  ( )( ) ˆ ˆ ˆ2zz x x z zs x u s x u     =  + + i i ,                                             (36) 

( )  ( )  ( ) ˆ ˆ ˆ ˆ
zx zx x z z xs x s x u s x u     = =  +   i i i ,                                      (37) 

Inserting ( ) ( ) ( )s x x d x = + i  into (33)-(37), we get the corresponding time-domain PML as 

( ) ( ) ( ) ( )x x x xx z xz xzx u d x u x d x      +  =   +   +      
,                 (38) 

( ) ( ) ( ) ( )z z x zx z zz zzx u d x u x d x      +  =   +   +      
,                 (39) 

( ) ( ) ( ) ( ) ( )2xx xx x x z z z zx d x u x u d x u     +  = +  +   +    ,                            (40) 

 ( ) ( ) ( ) ( ) ( )2zz zz x x z z z zx d x u x u d x u     +  =  + +   +    ,                             (41) 

( ) ( ) ( ) ( ) ( ) ( )xz xz zx zx x z z x z xx d x x d x u x u d x u    +  =  +  =  +  +    .                (42) 

3.3 The second-order unsplit PML in time domain in Matzen [10] 

Utilizing the commonly adopted assumption that the material properties are constant inside each element, 

Matzen [10] proposed by introducing only node-defined memory variables associated with displacement. 

Assuming that 
xs is constant inside in each element, we can rewrite (14) and (15) as 

( ) ( )2 1 2ˆ ˆˆ ˆ ˆ2x x x x x z z z x z z xs u U u u U      − =  +  +  +   + 
   

,           (43) 

( ) ( )2 1 2ˆ ˆˆ ˆ ˆ 2x z x x z z x z x x z zs u U u u U       − =   +  +   + + 
  

,           (44) 

1 1ˆ ˆ
x x xU s u−= , 1 1ˆ ˆ

z x zU s u−= , 2ˆ ˆ
x x xU s u= , 2ˆ ˆ

z x zU s u= .                                          (45) 

Inserting ( ) ( ) ( )s x x d x = + i  into (33)-(37), we get the corresponding time-domain PML as 

( ) ( ) ( ) ( )1 22x x x x x z z z x z z xx u d x u U u u U        +  =  +  +  +   +      
,           (46) 

( ) ( ) ( ) ( )1 22z z x x z z x z x x z zx u d x u U u u U         +  =   +  +   + +     
,           (47) 

( )

( ) ( )

( )
( ) ( )( ) ( )1

2 0

1 t d x x t

x x

d x x
U e u d

x x

 
 

 

− −−
= +  , 

( )

( ) ( )

( )
( ) ( )( ) ( )1

2 0

1 t d x x t

z z

d x x
U e u d

x x

 
 

 

− −−
= +  ,(48)

( ) ( ) ( )2

0

t

x x xU x u d x u d  = +  , ( ) ( ) ( )2

0

t

z z zU x u d x u d  = +  .                           (49) 

However, as pointed out by Dan et al. [15] the removal of the requirement that parameter in PML element be 

constant is important when higher order basis functions are employed to improve the absorbing efficiency of 

PML. Thus, Xie et al. [12] rederive a time-domain PML as following  

( ) ( ) ( ) ( )2x x x xx z z z x z zxx u d x u E u u E      +  =   + +   +    +       ,             (50) 

( ) ( ) ( ) ( )2z z x xz z x z x x zzx u d x u E u u E      +  =   +   +    + +       ,           (51) 
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( )

( ) ( )

( )

( )

( )
( )

( )
2 0

1
d x

tt x

xx x x

d x x
E e u d

x x




 
 

− −−
= +  , 

( )

( ) ( )

( )

( )

( )
( )

( )
2 0

1
d x

tt x

xz x z

d x x
E e u d

x x




 
 

− −−
= +  , (52) 

( ) ( ) ( )
0

t

zx z x z xE x u d x u d  =  +  , ( ) ( ) ( )
0

t

zz z z z zE x u d x u d  =  +  .                    (53) 

Though compared with Matzen’s formulation, the two are seeming to be the same in terms of the number of 

memory variables and the computational work. However, it is not the truth since that ijE are element defined. 

Thus, the needed storage increases in our formulation. However, the computational work of Matzen’s 

formulation is slightly bigger than ours due to the increase in work for computing 1

i jU , 2

i jU .  

4. CONCLUSIONS 

In this paper, we summarize and rederive consistently several time-domain second order PML formulations 

for infinite domain truncation in seismic wave simulation based upon the second order seismic wave 

equation and the continuous finite/spectral element method. We only show the numerically long-time stable 

formulations, which have been already validated with numerical tests. Though we only show consistently 

their derivation using the simplest single-pole complex coordinate stretching function, the extension to more 

complex functions are straightforward. We will finish that in our future work. It is worthy to carry out the 

comparison of the mentioned second-order PMLs using the same finite/spectral element method for space 

discretization together with the same time scheme for integrating the semi-discrete finite/spectral element 

equations. 
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