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Abstract 
Aiming at acquiring the knowledge of the earthquake motion evaluation of the new point of view, trial evaluations of 
site-specific ground motion models are performed utilizing machine learning methods. Horizontal ground motion 
records in and around the Kanto plains in Tokyo metropolitan area are used as the training data for machine learning. At 
each site where the site effect is common to all the records, the machine learning method is applied to the feature 
parameters of source and seismic wave propagation characteristics and applied to the target variables of the earthquake 
motion indexes derived from the records. 

The “Gradient Boosting Decision Tree” is used as the machine learning method. As the target variables of machine 
learning, the peak ground acceleration PGA [cm/s2], the pseudo velocity response spectra PSV [cm/s] and the velocity 
response duration time spectra TSV [s] (damping factor h=0.05, parameter p1=0.03, p2=0.95) of several periods T [s], 
are examined, respectively. Since there are few large data of PGA and PSV, both are changed into common logarithmic 
input data (log10 PGA and log10 PSV) for machine learning to raise the precision of the evaluation models. As the input 
feature parameters of machine learning, the moment magnitude MW, the hypocentral depth H [km], the hypocentral 
distance X [km] and the epicentral direction Λ [degree] are selected. Λ is set 0 degrees to due north and is defined 
clockwise. Then, sin Λ and cos Λ are inputted for the machine learning models because Λ is discontinuous at due north. 
The feature impact on the evaluation model is defined as the degree of that the evaluation precision has been aggravated, 
when one of data sequence of the feature parameters has been shuffled and the model has been revalued by machine 
learning. 

In particular, the impact of Λ is large on TSV. In many cases it is almost as large as the impacts of MW, H and X, or 
larger. The averages of the ratios of the evaluated earthquake motion indexes to the observed ones are almost 1.1. The 
common logarithmic standard deviations of the ratios are more than 0.2 regarding PGA and PSV and are more than 0.1 
regarding TSV. Most of the evaluated values are within double to half of the observed values. These evaluation models 
consider the epicentral direction and the response duration time which have not been considered in the conventional 
prediction equations. It can help the qualitative and quantitative analyses of various characteristics of ground motions 
which depend on site locations and periods. There is a possibility in future that the differences of three-dimensional 
seismic wave propagation characteristics can be reflected in such semi-automatic evaluation models. 

If the Artificial Intelligence and the so-called Big Data could be utilized for earthquake ground motion evaluations, 
there is a big advantage in constructing a site-specific ground motion model at each recording site where large amount 
of data and information with high quality could be obtained. Huge training data and further ideas of interpolation and 
extrapolation of data are necessary for machine learning. Especially it is necessary for evaluating large earthquakes, 
very strong ground motions and long duration ground motions. 
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1. Introduction 
In Japan recently, earthquake observation stations have been deployed nationwide [1], and high-quality and 
enormous data can be obtained in real time. At the same time, remarkable advances in computers have 
enabled high-speed arithmetic processing thereof. Such rapid changes in the environment of data, 
information and computers, have great potential to improve both quality and quantity of knowledges, of 
earthquakes and ground motions. On the other hand, looking at the earthquake ground motion evaluation 
models, many general and practical attenuation relation formulas [e.g.2] have been developed and utilized. 
However, the data and information on which these models are based, have biases in the number of 
earthquakes depending on the region and biases in the number of records depending on the observation 
stations, so that imbalance occurs in their reflection on the models. The rapid increase in data and 
information in recent years is expected to greatly improve this problem, but the subdivision and advancement 
of specialized fields have limited the time and effort that can be spent by experts. In order to overcome this 
situation, we will leave everything that can be automatically processed to the computer thoroughly, so that 
we can devote enough time and effort to advanced and detailed examinations and various judgments that 
only humans need to bear. 

 From such a viewpoint, a desirable form of future earthquake motion evaluation models will be 
automatically generated and verified by the Artificial Intelligence (AI) as needed, using so-called Big Data 
such as observation records which will be constantly upgraded every time an earthquake occurs. Recently, 
pioneering efforts to build earthquake motion evaluation models using machine learning [3] have begun [4 to 
8]. In this paper, as a clue to acquire new knowledge about earthquake ground motions in the future when 
such an environment is acquired, a preliminary study on the construction of earthquake ground motion 
evaluation models using machine learning is performed. 

 The authors aim to acquire new knowledge of the earthquake motion evaluation from the following 
new perspectives. The author considers the merits of effectively utilizing AI and Big Data and tries to 
construct an earthquake motion evaluation model for each observation station where high-quality large-
volume records and site-specific information have been obtained. It has also been pointed out that 
observation records show differences in earthquake ground motion characteristics depending on the 
epicentral directions [e.g.9,10], although they have not been reflected in the conventional attenuation relation 
formula. In this paper the epicentral direction is also considered. Although duration times of earthquake 
ground motions are important factors as well as amplitudes and periodic characteristics (e.g. response 
spectra) not only in understanding phenomena but also in earthquake engineering [11], it has hardly been 
considered in the conventional attenuation relation formula. In this paper, the epicentral direction 
dependency of characteristics of earthquake ground motions and the response duration time spectra of 
earthquake ground motions [9,12] will be also evaluated. 

2. Approach and subject of study 
It is attempted to create site-specific ground motion evaluation models utilizing machine learning methods 
[3] using past ground motion observation records as training data. The parameters describing the source and 
propagation characteristics are used as the input feature parameters. The earthquake motion indexes obtained 
from the observation records are used as the target variables. Then the machine learning models that 
associates those are created. 

2.1 Outline of method for creating earthquake motion evaluation models 
The “Gradient Boosting Decision Tree” [13] is used as the machine learning method. 

 The “Gradient Boosting” is a method of constructing a strong classifier (high-performance machine 
learning model) by combining plurality of weak classifiers (low-performance machine learning models). The 
“Decision Tree” is a method of creating a machine learning model that can perform classification and 
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regression by performing conditional branching using a branch structure of a tree. A method of combining 
weak classifiers created by the Decision Tree by applying Gradient Boosting is called the Gradient Boosting 
Decision Tree.  Fig. 1 shows the concept of the Gradient Boosting Decision Tree. In this study, the Gradient 
Boosting Decision Tree is implemented using XGBoost (eXtreme Gradient Boosting) [14] which is an open 
source library. 

 

 
 

2.2 Earthquake motion records and earthquake motion indexes for target variables 
In this paper, among the observation stations in Tokyo metropolitan area of the strong motion seismograph 
network K-NET of the National Research Institute for Earth Science and Disaster Resilience (NIED) [1], 
SIT006 (Chichibu) which is located on a shallow bedrock and on hard surface ground, and TKY028 
(Etchujima) which is located on a deep bedrock and on soft surface ground, are selected and earthquake 
ground motions at these sites are studied. From the data search and download website of K-NET [1], the 
earthquake ground motions recorded at the above-mentioned stations from 1996 to May 31, 2019 are 
selected for the training data of machine learning. Among the earthquakes whose moment magnitude MW 
was obtained by the broadband seismograph network F-net of NIED [1], every horizontal ground motion 
whose combined three-component maximum acceleration displayed on the website is 1 cm/s2 or more is 
selected. Fig. 2 shows the epicenters of the target earthquakes with the locations of both observation sites 
used in this study. The selected horizontal ground motions have a total of 1468 time histories (2 components 
of each observation record of 734 earthquakes) at SIT006 and a total of 1314 time histories (of 657 
earthquakes) at TKY028. 

 As the “earthquake motion indexes” for the “target variables” of machine learning, the peak ground 
acceleration PGA [cm/s2], the pseudo velocity response spectra PSV [cm/s] and the velocity response duration 
time spectra TSV [s] (period T=0.1, 0.5, 1, 3, 5 [s], damping factor h=0.05, parameter p1=0.03, p2=0.95 [12]), 
are examined, respectively. Since there are few large data of PGA and PSV, they are changed into common 
logarithmic data (log10 PGA and log10 PSV) for the input target variables of machine learning to raise the 
precision of the evaluation models. As the loss functions used in the analyses, the least squares method (the 
normal distribution) is applied to PGA and PSV and the Poisson distribution is applied to TSV. 

Fig. 1 – Schematic explanation of the Gradient Boosting Decision Tree 
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Fig. 2 – Eepicenters of the target earthquakes with the locations of observation stations used in this study 
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2.3 Feature parameters of earthquake motion evaluation models 
At each site where the site effect is common to all the records, the machine learning method is applied using 
the “feature parameters” of source and seismic wave propagation characteristics and the target variables of 
earthquake motion indexes derived from the records as the training data. As the input feature parameters of 
machine learning, the moment magnitude MW, the hypocentral depth H [km], the hypocentral distance X 
[km] and the epicentral direction Λ [degree] are selected. MW values are obtained from F-net data [1], the 
locations of epicenters necessary to determine H, X and Λ are obtained from the Japan Meteorological 
Agency (JMA) data [15], and the locations of observation stations are obtained from K-NET data [1]. Λ is set 
0 degrees to due north and is defined clockwise. Then, sin Λ and cos Λ are inputted for the machine learning 
models because Λ is discontinuous at due north. 

 A “feature impact” on an evaluation model, which is called "impact" by the machine learning tool 
DataRobot [16], is defined as the degree of decrease of the evaluation precision when a model has been 
revalued by machine learning with a set of re-shuffled feature parameter data. It is used in order to 
investigate the effect of each feature on the target variables. When the evaluation accuracy is greatly 
deteriorated, that feature parameter is important. Conversely, when the evaluation accuracy does not change, 
that feature parameter does not affect the evaluation and is useless. 

2.4 Machine learning model and input dataset 
The earthquake motion evaluation models for SIT006 and TKY028 are named "Model S" and "Model T", 
respectively. The data of the feature parameters and the target variables necessary for machine learning are 
named “Data Set S” and “Data Set T”, respectively. 

 Fig. 3 shows examples of relationship between the obtained data for feature parameters of the 
earthquake ground motion evaluation models. There are few records of distant small earthquakes. Even if the 
epicenters are near, there are few earthquake data of short distance considering their hypocentral depths. 
Although the epicenters extend in all directions, many of them are in the northeastern direction (around 45 
degrees). 

 

 

 
 

Fig. 3 – Examples of the relationship between the obtained data for feature parameters 
of the earthquake ground motion evaluation models 
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3. Results 
Model S and Model T are created by machine learning using Data Set S and Data Set T, respectively. 

 The left of Fig. 4 shows the feature impacts on the earthquake motion indexes (the target variables) of 
Model S. MW and X have comparable impacts on PGA and short-period PSV (impacts of X is slightly higher), 
but MW has the greatest impacts on other variables. The feature impacts of H are small. The feature impacts 
of Λ are greater in short periods than in long periods. These impacts on TSV are greater than the ones on PSV, 
surpassing those of X. The right of Fig. 4 shows the feature impacts of Model T. In short periods, the impacts 
of X are dominant, and in other cases, the impacts of MW are dominant. Generally, the feature impacts of MW 
increase with period and the ones of X decrease with period. The feature impacts of H are small. The feature 
impacts of Λ are larger in short periods, especially on TSV, larger than the ones on PGA and PSV, exceeding 
those of X for periods other than 0.1 second, and exceeding MW in short periods. The impacts of MW on 
short-period TSV at Etchujima where the bedrock is deep is relatively smaller than the ones at Chichibu 
where the bedrock is shallow. It is necessary to examine this point in detail by selecting more records of 
earthquakes at more stations. 

 

 
 

 Fig. 5 shows examples of the relationship between the observed target variable values and the 
evaluated ones (log10 PGA, log10 PSV, TSV) and histograms of the ratios of the evaluated earthquake motion 
indexes to the observed ones (PGA, PSV, TSV). In the figures concerning PSV and TSV, T [s] denotes the period 
and the damping factor is 0.05. Looking at each scatterplot, there is no significant difference between the 
distribution of the training data shown in black and the distribution of the validation data shown in red. As a 
whole, observed values are well evaluated and modeled, and most of the evaluated values are within double 
to half of the observed values. Looking at each histogram, the ratios of the evaluated earthquake motion 
indexes to the observed ones have relatively uniform distribution centered at about 1, and the variations in 
response duration time are smaller than the ones in amplitudes (maximum values and response spectra). 
Table 1 shows the ratios of the evaluated earthquake motion indexes (PGA, PSV, TSV) to the observed ones. 
The averages of the ratios of the evaluated earthquake motion indexes to the observed ones are almost 1.1. 
The common logarithmic standard deviations of the ratios are more than 0.2 regarding PGA and PSV and are 
more than 0.1 regarding TSV. 
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Fig. 4 – Feature impacts on the earthquake motion indexes (the target variables) 
of the earthquake ground motion evaluation models 
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●： Learning data  ( 64% of all data ) Solid line： an evaluated earthquake motion index value is equal to the observed one 
●： Validation data  ( 36% of all data ) Dotted line： an evaluated earthquake motion index value is double or half of the observed one 

Model S  ( SIT006 ) Model T  ( TKY028 ) 

Fig. 5 – Examples of relationship between the observed target variable values and the evaluated ones 
( log10 PGA, log10 PSV, TSV ) and histograms of the ratios of the evaluated earthquake motion 
indexes to the observed ones ( PGA, PSV, TSV )  ( period T [s], damping factor 0.05 ) 
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Table 1 – Ratios of the evaluated earthquake motion indexes ( PGA, PSV, TSV ) to the observed ones 

Earthquake motion index PGA PS V TS V

Period [s] － 0.1 0.5 1 3 5 0.1 0.5 1 3 5
Average μ  of ratios of the evaluated to the observed
   Model S  ( SIT006 ) 1.08 1.10 1.14 1.11 1.09 1.09 1.16 1.06 1.07 1.09 1.10
   Model T  ( TKY028 ) 1.15 1.15 1.16 1.14 1.13 1.13 1.09 1.07 1.06 1.09 1.09
Common logarithmic standard deviation σ  of ratios of the evaluated to the observed
   Model S  ( SIT006 ) 0.19 0.22 0.25 0.22 0.21 0.21 0.19 0.12 0.13 0.15 0.16
   Model T  ( TKY028 ) 0.24 0.24 0.28 0.25 0.24 0.24 0.17 0.11 0.12 0.15 0.15
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 Fig. 6 shows examples of the epicentral direction dependency of the evaluated earthquake motion 
indexes (PSV, TSV) which are normalized by the maximum values calculated in 72 directions changing in 5 
degree increments. The resuls of Model S in the cases of MW =5, H =10km and X =120km are illustrated on 
the left side and the ones of Model T in the case of MW =6, H =10km and X =180km are illustrated on the 
right side. Fig. 7 shows examples of the epicentral direction dependency of the evaluated earthquake motion 
indexes (PSV, TSV), raw values, in the case of MW =6, H =10km and X =180km, calculated in 72 directions 
changing in 5 degree increments. The resuls of PSV are illustrated above and the ones of TSV are illustrated 
below. These examples show epicentral direction dependencies whose characteristics are different depending 
on the site and the period, and also different between PSV and TSV. For example, in the cases of events in the 
north-northwest direction, especially in long periods, both PSV and TSV show large values. These may reflect 
the seismic wave propagation characteristics caused by the deep underground structure from Niigata 
prefecture to the Tokyo metropolitan area. In most cases, the absolute values of PSV and TSV are both larger 
in the results of Model T than in Model S. At least under the conditions of these examples, it can be said that 
TKY028 has larger site characteristics than SIT006 due to its deep bedrock and soft surface ground. 

 Fig. 8 shows studies on modeling methods of epicentral directions for machine learning (Model T, 
period T [s], damping factor 0.05, MW =6, H =10km, X =180km). The examples of studies on the contribution 
of sine and cosine functions of epicentral directions to Model T are illustrated above and the examples of 
studies on on the effect of the origin direction of epicentral directions on Model T are illustrated below. The 
origin direction is due north for ΛS which is the same as Λ, and due south for ΛN. The results using only sin Λ 
are north-south symmetric (EW axis symmetric) and the results using only cos Λ are east-west symmetric 
(NS axis symmetric). If the epicentral direction itself, ΛS or ΛN, is used as a feature, the result will be 
discontinuous in the zero-degree direction, which is due north for ΛS or due south for ΛN. The results with a 
period of 3 seconds are more variable than those with a period of 1 second. Among the results of TSV with a 
period of 3 seconds, the absolute values by the model using ΛS are larger than those by the others, which are 
about double in many directions. In the north-northwest, south-southwest, and northeast directions where the 
source data for machine learning (training data) exist, the results of these models are almost the same. 
However, in those directions or areas where there is no source data, it may be possible that a model trained 
successfully in accordance with the data has not been created. 

 

 

Fig. 6 – Examples of the epicentral direction dependency of the evaluated earthquake motion 
indexes ( PSV, TSV ) normalized by the maximum values calculated in 72 directions 
changing in 5 degree increments  ( period T [s], damping factor 0.05 ) 
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Fig. 8 – Studies on modeling methods of epicentral directions for machine learning 
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4. Discussion 
In this paper, the newly attempted site-specific earthquake motion evaluation models consider the response 
duration time spectra and the epicentral directions which have not been considered in the conventional 
prediction equations. As a result of this study, the earthquake ground motions are accurately evaluated and 
modeled as a whole. The ratios of the evaluated values to the observed values have a well-distribution with 
an average of almost 1, and most of the evaluated values are within double to half of the observed values. 

 In particular, the response duration time spectra could be evaluated with less variability than the 
amplitudes (maximum values and response spectra). It is also important to consider the differences in the 
earthquake motion characteristics depending on the epicentral directions. Especially, the feature impact of Λ 
is large on TSV. In many cases it is almost as large as the impacts of MW, H and X, or larger, which have been 
considered in the conventional prediction equations. These results indicate that the epicentral direction 
dependency in the amplitudes and duration times of the observed earthquake ground motions can be 
evaluated depending on the locations of sites and the periods of earthquake ground motions. It can help the 
qualitative and quantitative analyses of various characteristics of earthquake ground motions which depend 
on site locations and periods. There is a possibility in future that the differences of three-dimensional seismic 
wave propagation characteristics can be reflected in such evaluation models. Interpretation of models 
(examination results) using individual observation records and surrounding underground structure 
information is necessary to be advanced in the future. 

 However, it is important to study using data from which adverse effects such as long-period noises 
have been carefully removed. Especially, it is important to carefully examine the raw data of time histories of 
earthquake ground motion records in order to avoid negative effects on the response duration spectra. In the 
future, it will be essential to develop and systematize primary processing methods such as automatic 
selection and automatic filtering of observed raw data. 

 Although the observed values seem to be evaluated well as a whole this time, the number of the 
training data used in this study is not necessarily enough, so a lot of careful consideration is needed in the 
future for quantitative evaluation. In other words, it is expected that the overall evaluation will be of even 
higher quality if the latest data accumulated from time to time at each site could be utilized to their fullest. 
Since we examined only two locations this time, it is necessary to consider and analyze more sites from now 
on. It is also necessary to consider the vertical ground motions. 

 Furthermore, in the future, it is also needed to consider carefully the deliberate measures to improve 
the balance of model accuracy due to the density of data. Huge training data and further ideas of 
interpolation and extrapolation of data are necessary for machine learning. Especially it is necessary for 
evaluating huge earthquakes, very strong ground motions and long duration ground motions, which are 
overwhelmingly little data. As a measure therefore, for example, weighting of data or utilization of 
simulation results by the seismic fault models or the like can be considered. It is also necessary to compare 
with existing earthquake motion evaluation formulas and evaluation results and to consider how much the 
model can explain observation records including variations. 

5. Conclusion 
In this paper, with the aim of acquiring new knowledge through earthquake ground motion evaluation from a 
new perspective, it has been attempted to create new site-specific earthquake ground motion evaluation 
models by machine learning using the ground motion observation records obtained in the Tokyo 
metropolitan area as training data. The earthquake motion evaluation models have been constructed for each 
earthquake observation station. The epicentral directions and the response duration time spectra of 
earthquake ground motions, which were not considered in the conventional attenuation relation formula, 
have been also examined. 
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 In the future, it is necessary to make full use of so-called Big Data nationwide and work on studies 
using the Artificial Intelligence (AI). If AI and Big Data could be utilized for ground motion evaluation, 
there is a big advantage in constructing a site-specific ground motion model at each recording site where 
large amount of data and information with high quality could be obtained. When such an environment is 
realized, there will be a high possibility that the analyses and discussion of the source, propagation and site 
effects of the earthquake ground motions can be drastically advanced. By considering past earthquake 
motion evaluation formulas, evaluation results and their physical conditions, it is also expected to realize and 
improve the explanation of the examination process and results by AI which are difficult at present. 
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