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Abstract 

Modelling the spatial correlation of ground motion intensity measures (IMs) has become a keystone in seismic hazard 
and risk analysis of portfolios of buildings, spatially distributed infrastructures and earthquake-induced phenomena. The 
quantification of the seismic performance of such systems over a region requires knowledge of the joint probability of 
occurrence of different ground motion IMs at multiple locations. Therefore, the classical Probabilistic Seismic Hazard 
Assessment (PSHA) tools, which are based on the hypothesis of independency between IMs at closely spaced sites, are 
not appropriate. 
Over the past decade, the spatial correlation of peak ground acceleration (PGA) and spectral acceleration (SA) has been 
widely studied. Although common findings suggest that the correlation of intra-event residuals decreases quite rapidly 
with increasing separation distances, these models feature different rates of decay. Among the causes that may lead to 
inconsistencies between models, with significant impact on hazard and loss estimates, are the multiple techniques used to 
estimate the correlation structure, the region and local site conditions, as well as the choice of the databases. 
Furthermore, little effort has been directed towards other IMs suitable to characterize the resulting damage to structures 
and predict ground failure: peak ground velocity (PGV), peak ground displacement (PGD) and spectral displacement 
(SD) as well as Arias intensity (𝐼") and cumulative absolute velocity (CAV), to name but a few. A proper definition of 
the seismic action in terms of spectral displacement ordinates has progressively gained importance in performance-based 
seismic design, and 𝐼" and CAV have been found to be adequate for many other earthquake engineering applications, 
such as evaluating the susceptibility to liquefaction and earthquake-induced landslides. 
In this study, we use geostatistical tools in order to compute the spatial correlations of such ground motion parameters. 
We perform comparisons with other existing models with the aim of: (1) identifying factors that most affect the correlation 
structure, and (2) quantifying the variability of correlation lengths between different events and regions. Moreover, spatial 
correlation models are usually calibrated on the within-event component of residuals, obtained based on ergodic ground 
motion prediction equations (GMPEs). Therefore, we also analyse the spatial correlation of event- and site- corrected 
residuals, retrieved relaxing the ergodic assumption, to further investigate the factors that determine the spatial 
dependency of IMs. In order to address these issues, we use the 2016-2017 Central Italy seismic sequence database, which 
includes nine Mw ≥ 5.0 earthquakes that occurred over a time period of five months. These data allow some uncertainties 
to be removed and an evaluation of the event-to-event variability of the spatial correlation because the same seismic 
region is considered. Our preliminary results will provide a more accurate picture of ground motions, and thus improve 
the modelling of earthquake losses for risk model development.  

Keywords: spatial correlation; ground motion intensity measures; regional probabilistic seismic hazard analysis. 
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1. Introduction 

Modelling the spatial correlation of ground motion intensity measures (IMs) has become a keystone in seismic 
hazard and risk analysis of portfolios of buildings, spatially distributed infrastructures and earthquake-induced 
phenomena. The quantification of the seismic performance of such systems over a region requires not only the 
estimation of independent IMs values at different sites, but also knowledge of the joint probability of 
occurrence of such IMs at multiple locations during the same earthquake. Therefore, the classical Probabilistic 
Seismic Hazard Assessment (PSHA) tools, which are grounded on the hypothesis of independency between 
IMs at closely spaced sites, are not appropriate. 

Over the past decade, the spatial correlation of peak ground acceleration (PGA) and spectral acceleration 
(SA) has been widely studied. A comprehensive summary of such models can be found in Schiappapietra and 
Douglas [1], in which a comparison among the various models is provided, highlighting both common findings 
and differences. The authors demonstrate that multiple techniques used to estimate the correlation structure, 
region and local site conditions, as well as the choice of the databases are the primary causes of inconsistencies 
among the models, which can have a significant impact on hazard and loss estimates. Furthermore, little effort 
has been directed towards other IMs suitable to characterize the resulting damage to structures and predict 
ground failure: peak ground velocity (PGV) and peak ground displacement (PGD) as well as Arias intensity 
(𝐼") and cumulative absolute velocity (CAV), to name but a few. A proper definition of the seismic action in 
terms of spectral displacement ordinates has progressively gained importance in performance-based seismic 
design [2], and 𝐼"  and CAV have been found to be adequate for many other earthquake engineering 
applications, such as evaluating the susceptibility to liquefaction and earthquake-induced landslides as well as 
predicting the structural damage [3,4]. 

𝐼" is defined as the integral of the square of the acceleration time history 𝑎(𝑡)	over the entire duration 
adjusted by a constant factor [5]:  

𝐼" = 	
𝜋
2𝑔

, 𝑎(𝑡)-
./01

2
𝑑𝑡	 (1) 

where g is the acceleration of gravity. CAV is the area under the absolute acceleration time history: 

𝐶𝐴𝑉 = 	, |𝑎(𝑡)|𝑑𝑡
./01

9
	 (2) 

Differently from the other IMs, which are primarily related to either the amplitude or the frequency content of 
the ground motion, 𝐼" and CAV implicitly reflect multiple characteristics of the time histories, including the 
cumulative effects of the ground motion duration [3,6]. As a matter of fact, they turn out to be more efficient 
to represent the cumulative potential damage due to the ground shaking [4]. 

Moreover, spatial correlation models are usually calibrated on the within-event component of residuals, 
obtained based on ergodic ground motion prediction equations (GMPEs). The ergodic assumption implies that 
the distribution of ground motions over time at given site is the same as their spatial distribution over all site 
[7]. In the last decade many efforts have been made in order to relax the ergodic assumption, thereby leading 
towards a non-ergodic approach, in which the systematic and repeatable characteristics of the ground motion 
(e.g. site-specific and path-specific component) are specified to adjust the median prediction of a GMPE and 
hence significantly reduce the aleatory uncertainties. Despite the importance of such approaches in case of 
site-specific PSHA, the assessment of spatial correlation under the non-ergodic assumption has not been widely 
studied yet. The major contributions in this context are by Kuehn and Abrahamson [8] and Sgobba et al. [9]. 

In this study, we use geostatistical tools in order to compute the spatial correlations of different ground 
motion parameters, such as PGA, PGV, PGD, spectral acceleration, CAV and 𝐼". We perform comparison 
with other existing models and we also analyse the spatial correlation of event-and-site- corrected residuals, 
retrieved relaxing the ergodic assumption, to further investigate the factors that determine the spatial 
dependency of IMs. In order to address these issues, we use the 2016-2017 Central Italy seismic sequence 
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database, which includes nearly 6900 records from 63 Mw ≥ 3.7 earthquakes that occurred over a time period 
of five months (August 2016 – January 2017). 

2. Database 

Starting from 24th August, one of the most important sequences ever recorded in Italy struck the central 
Apennines, one of the highest hazard zones in Italy. The sequence caused widespread damage to the built 
environment, thousands of homeless people and invaluable losses for historical heritage as well as earthquake-
induced landslides and ground failure. The first mainshock (Mw 6.0) occurred on 24th August near the 
municipality of Amatrice and was followed by an Mw 5.3 aftershock within less than one hour. After two 
months, on 26th October, two other large earthquakes (Mw 5.4 and Mw 5.9) struck further north, near the village 
of Visso and close to the aftershock area of the 1997 Umbria-Marche sequence [10]. On 30th October, the 
largest event of the sequence (Mw 6.5) occurred close to the municipality of Norcia. Few months later, on 18th 
January, four other Mw ³ 5.0 earthquakes happened to the south of the Norcia mainshock, near the village of 
Campotosto and Montereale, adjacent to the aftershock zone of the 2009 L’Aquila sequence [10] (Fig. 1, Table 
1). The sequence includes 63 Mw ³ 3.7 events in the period from August 2016 to January 2017, which were 
recorded by nearly 400 ground-motion stations, mainly belonging to two major permanent networks: the Italian 
strong-motion network (RAN, Rete Accelerometrica Nazionale) and the Italian National Seismometric 
Network (INSN). In addition, several temporary networks were installed in the aftermath of the first mainshock 
to retrieve more accurate observations of the ground shaking in the epicentral region and further investigate 
site effects [10]. 

In this study, we select 6048 records from 44 Mw ³ 4.0 well-recorded events with more than 100 
recordings, recorded by 367 strong-motion stations within an epicentral distance of 200 km (Fig. 1). The 
distributions of the selected data with respect to distance, magnitude and magnitude-distance are summarized 
in Fig. 2. The site conditions at each recording site are expressed according to the EC8 soil categories [11], 
which are based either on the average shear-wave velocity averaged over the upper-most 30 m (Vs,30) or on the 
available geological information. Only about 25% of the considered stations are characterised by shear-wave 
velocity profiles, so that most of them are classified using geology. The majority of the selected stations are 
classified as site class B, which includes very dense sand or gravel and very stiff clay deposits. 

 
Fig. 1 – Strong ground-motion stations considered in the analysis. Stations are color-coded based on the EC8 

site classification. In the zoom-view, epicentres of the events considered in the analysis. 

1d-0028 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 1d-0028 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

4 

 
Fig. 2 – (a) Records-distance distribution; (b) Events-magnitude distribution; (c) Magnitude-distance 
distribution. Distances are in terms of Joyner and Boore distance (RJB, i.e. the distance to the surface 

projection of the rupture). 

Table 1 – Main characteristic of the Mw ³ 5.0 earthquakes of the Central Italy seismic sequence. 

Event Event Time Latitude [°] Longitude [°] Depth [km] Mw # Records 

Amatrice 24/08/2016 01:36 42.70 13.23 8.1 6.0 173 

Amatrice Aftershock 24/08/2016 02:33 42.79 13.15 8.0 5.3 173 

Visso I 26/10/2016 17:10 42.88 13.13 8.7 5.4 176 

Visso II 26/10/2016 19:18 42.91 13.13 7.5 5.9 183 

Norcia 30/10/2016 06:40 42.83 13.11 9.2 6.5 175 

Montereale I 18/01/2017 09:25 42.55 13.26 9.2 5.1 128 

Montereale II 18/01/2017 10:14 42.53 13.28 9.1 5.5 142 

Pizzoli I 18/01/2017 10:25 42.49 13.31 8.9 5.4 129 

Pizzoli II 18/01/2017 10:33 42.48 13.28 10.0 5.0 127 

3. Spatial Correlation Modelling 

GMPEs commonly model IMs as lognormally-distributed random variables and predict such intensities at an 
individual site i during an earthquake j as a function of source-, path- and site-related parameters. GMPEs take 
the following form: 

log=2 𝑌?@ = 	 log=2 𝑌A?@(𝑀, 𝑅, 𝑆, 𝜃) + 𝜂@ + 𝜀?@ (3) 

where 𝑌?@ is the IM of interest at site ith due to the jth event and 𝑌A?@ is the predicted median function of magnitude 
(M), distance from the source (R), local-site conditions (S) and other explanatory variables (𝜃). 𝜂@ denotes the 
between-event residual term and represents the systematic deviation of observed IMs with respect to the 
median prediction of an event. 𝜀?@ is the within-event residual term, which represents the misfit between an 
individual observation at site i from the event-specific average model due to the path and local-site effects. 
Therefore, the spatial dependency of IMs is explained by the within-event term, as 𝜂@ is constant across all 
sites when a single event is considered. Furthermore, it is assumed that residuals 𝜂@ and 𝜀?@ are independent 
and normally distributed random variables with zero mean and standard deviation 𝜏 and 𝜙, respectively. The 
joint probability of occurrence of IMs at multiple locations (i,k) during the same earthquake j is usually 
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modelled as a multivariate gaussian distribution, which is fully described by its mean function, 𝐸[𝜀?@], and 
covariance function defined as in Eq. (4): 

𝐶@(𝑖, 𝑘) = 𝐸R𝜀?@ ∙ 𝜀T@U − 𝐸R𝜀?@U ∙ 𝐸R𝜀T@U (4) 

For each location, only one realization of the random variable is available (e.g. one observation from a given 
earthquake) and the mean function can vary depending on the site, so that it is impossible to draw any inference 
from it [12]. Hence, further simplifications are needed, and the hypotheses of second-order stationarity and 
isotropy are commonly assumed. This implies that: (1) the mean function is constant for all sites and (2) the 
covariance is location-independent and depends only on the separation distance (h) between two sites. 

In geostatistical analysis, it is common practice to adopt the experimental semivariogram to represent 
the spatial dependency of IMs values with varying separation distance, which measures the average 
dissimilarity between spatially distributed data [9, 13, 14, 15, 16]. The semivariogram is defined as: 

𝛾@(ℎ) = 	
1
2
VarR𝜀?@ − 𝜀T@U (5) 

In the stationary case, the semivariogram and the covariance function are equivalent, so that the following 
relation holds [17]: 

𝛾@(ℎ) = 	VarR𝜀@U − 𝐶@(ℎ) = 	VarR𝜀@U ∙ R1 − 𝜌@(ℎ)U (6) 

where 𝜌@(ℎ) is the correlation function, defined as 𝜌@(ℎ) = 𝐶@(ℎ)/	VarR𝜀@U. 

3.1 GMPE regression 

Generally, an existing GMPE or an ad hoc GMPE is adopted to compute the within-event residuals at each 
site in order to compute the experimental semivariogram. In this study, we develop a data-driven ground 
motion model based on the data of the Central Italy earthquake sequence (Section 2) to avoid any dependency 
on the selected GMPE, without including any site-response component. We use RotD50 values of PGA, PGV, 
PGD, CAV, 𝐼" and 5%-damped SA at 15 periods of vibration between 0.1 and 5 s; hence, the equation is: 

log=2 𝑌?@ = 	𝑏= + 𝑏-𝑀 + 𝑏b𝑀- + (𝑏c + 𝑏d𝑀) log=2 e𝑅fg- + 𝑏h- + 𝑏i e𝑅fg- + 𝑏h- + 𝜂@ + 𝜀?@ (7) 

where M is either the moment magnitude or the local magnitude and RJB is the Joyner-Boore distance (i.e. the 
closest distance to the surface projection of the rupture). b1…b7 are the model coefficients inferred through a 
non-linear mixed-effect regression approach, computed using the NLMER algorithm of [18] implemented in 
[19]. The advantage of using such approach is twofold. Namely, it allows: (1) quantifying the between- and 
within-event components and further partitioning the within-event group into systematic and non-systematic 
components; and (2) obtaining unbiased regression for each group (event or station) which has a different 
number of ground motion records [20]. 

We derive two GMPEs with identical functional forms, but with different decomposition of residuals: 
(1) between-event and within-event residuals and, (2) between-event, between-site (𝛿𝑆2𝑆) and event-and-site 
corrected residuals (𝛿𝑊𝑆mn). The second model allows partially relaxing the ergodic assumption through the 
definition of the site-to-site term (𝛿𝑆2𝑆) , which includes all the local-site specific effects [7, 21]. This 
partitioning lets us compute not only the spatial correlation of the within-event residuals, but also of both the 
site-to-site and event-and-site corrected residuals to further investigate the factors that determine the spatial 
dependency of IMs. In both case, visual inspection of the residuals (Fig. 3) suggests that the adopted functional 
form (Eq.7) is performing well, as no significant trends with respect to the predictor variables are detected. It 
is noted that, for sake of brevity, we show only the plot pertinent to the partially ergodic GMPE. However, we 
obtain similar results for the ergodic GMPE, where 𝜂@ and 𝜀?@ are plotted against Mw and RJB, respectively. 

1d-0028 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 1d-0028 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6 

 
Fig. 3 – Residual plots to check if residuals show any systematic trend with predictor variables: a) ηp (δBs) 
against Mw; b) δS2S against Vs,30; c) δWSsv	against RJB. Green dots in b) highlight stations with a measured 

Vs,30 value, whereas black dots stations for which the Vs,30 is inferred from the slope, following [22]. 

3.2 Estimation of empirical semivariograms 

We use the robust estimator proposed by Cressie [24] to compute the experimental semivariogram, defined as: 

𝛾w(ℎ) =
1
2
⎩
⎨

⎧{ 1
|𝑁(ℎ)| ∑ ~𝜀?@ − 𝜀T@~

2.d
�(�) �

c

0.457 + 0.494
|𝑁(ℎ)| ⎭

⎬

⎫
(8) 

where 𝛾w(ℎ) represents the empirical semivariogram and N(h) is the number of pairs of observations separated 
by h. Alternatively, one can use the classic estimator based on the method of moments proposed by Matheron 
[25], which, however, is more sensitive to outliers [3, 26]. The semivariogram is computed for each pair of 
stations (si,sk) whose inter-site spacing falls in a distance bin set as h − ∆h/2 ≤ |𝑠? − 𝑠T | ≤ h + ∆h/2. Du and Wang 
and Esposito and Iervolino [3,14] suggest fixing the bin width in such a way that there are at least 30 pairs in each 
bin. Other studies recommend having at least 100 pairs per bin, so that the estimations result to be more reliable 
and representative. In our case, we select either a bin size of 5 km if each single event is individually studied 
or of 1 km if residuals from all earthquakes are pooled to develop a combined model. 

3.3 Parametric functions 

Several parametric functions have been developed to fit the experimental values obtained through Eq.8 in order 
to retrieve the spatial dependency of the different residual components (e.g. 𝜀?@, 𝛿𝑆2𝑆, 𝛿𝑊𝑆mn) for any h. Basic 
second-order stationary and isotropic models are: (1) Gaussian, (2) Exponential, and (3) Spherical, to name 
but a few [12]. We select an exponential model, as it usually provides the best performance and we implement 
the following functional form: 

𝛾(ℎ) = 𝑎2 + 𝑎 {1 − exp �−
𝑐ℎ
𝑏 �
� (9) 

where h is the separation distance, a and b are the sill and the range of the semivariogram and c is a positive 
constant set to 3. a0 is the so called nugget effect, which represents the semivariogram variability at the origin 
due to either measurements errors or microscale spatial variations. We set a0 equal to zero throughout the 
analysis. The sill equals the variance of the data, whereas the range represents the distance beyond which the 
spatial dependency between site vanishes. For the exponential model, the range is conventionally defined as 
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the distance at which 𝛾(ℎ)  equals 0.95 times the sill, since the semivariogram only approaches the sill 
asymptotically. 

Different approaches have been proposed to retrieve the model parameters, such as the weighted least-
squares and manual-fitting techniques. We opt for a weighted least-squares approach in which the weights are 
computed based on both the number of pairs in each bin and the separation distance, so that shorter lags are 
weighted higher. 

3.4 Trend surface 

Practically, the hypothesis of second-order stationarity may not hold. The expected value of the random 
variable may not be constant across all sites, but indeed varying depending on the location. In such cases, the 
semivariogram increases with separation distance, without reaching a stable sill [17]. These long-range spatial 
trends should be removed so that small-range correlation structures can be detected. It is common practice to 
model spatial trends through trend surface models, namely the mean function is described by either first- or 
second-order polynomial functions of the geographic coordinates. Alternatively, the spatial trends may be 
defined as a function of any other “scientifically” pertinent parameter of the site, rather than coordinates, in 
order to better capture the spatial variation of the mean function [17]. 

In our preliminary study, we simply correct variables through a detrending processing using trend 
surfaces based on geographical coordinates. Fig. 4 compares the original data (e.g. within-event residuals), 
which clearly show a pattern from north to south, with residuals obtained after fitting a second-order surface 
model. In the latter case, the spatial variation is taken up by the trend surface, allowing identification of the 
small-scale correlation structure. The corresponding semivariograms are plotted in Fig. 5. The raw data feature 
an increasing experimental semivariogram and hence an unstable sill. Conversely, detrended data show a 
behaviour more typical of a stationary spatially-correlated process. It is noted that the modelled 
semivariograms and the correlation parameters presented in Fig. 5 are similar, despite the different behaviour 
of the experimental values. This is a consequence of the adopted weighting system, which gives more weight 
to shorter separation distances. 

 
Fig. 4 – Distribution of within-event residuals obtained for SA at 0.3 s: a) original data; b) residuals from the 
second-order polynomial trend surface. The purple triangle represents the epicentre of the Pizzoli II event. 
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Fig. 5 – Experimental semivariograms (squares) and modelled semivariograms (solid line): raw data are 

plotted in black; detrended data in red. 

4. Results of the geostatistical analyses 

4.1 Spatial correlation of different residual components 

Generally, spatial correlation studies are performed on the within-event component of residuals, obtained based 
on ergodic GMPEs. Therefore, the correlation structure of such terms includes spatial variation of both local-
site and travel-path effects. In this study, we decide to analyse the spatial correlation not only of the within-
event term, but also of the site-to-site term and event- and site-corrected residuals, estimated partially relaxing 
the ergodic assumption. It is recalled that Eq. (7) does not involve any site-response parameter, hence 𝛿𝑆2𝑆 
absorbs all site-specific features and it can be considered as a proxy of the amplification function of each 
station [27]. Conversely, 𝛿𝑊𝑆mn is the remaining aleatory variability, which mostly accounts for path effects. 
Fig. 6 compares the semivariograms obtained for the different residual components of PGV, before and after 
the detrending processing. Indeed, 𝜀?@ and 𝛿𝑊𝑆mn do not clearly comply with the hypothesis of second-order 
stationarity, as the semivariogram tends to increase without reaching a stable plateau. On the contrary, 𝛿𝑆2𝑆 
does not reveal any spatial trend and thus we do not apply any detrending correction. Similar outcomes were 
found by Sgobba et al. [28], in which the authors model the spatial correlation under the hypothesis of 
stationarity for the site term and non-stationarity for the path term, while analysing data from Central Italy. 
Kuehn and Abrahamson [8] employed a non-stationary covariance function, which includes a dependency on 
both the inter-site distance and source-to-site distance, to investigate the correlation structure of the path term. 
According to Kuehn and Abrahamson [8], fitting both the spatial dependency of IMs from near and distant 
stations is not appropriate; indeed, closely spaced sites located near the source may show different travel paths 
due to small-scale heterogeneities in the rupture process, whereas seismic waves to distant sites  will be along 
almost identical travel paths. 

Fig. 7 shows the spatial correlation results for different IMs by considering within-event and event- and site-
corrected residuals as well as the site-to-site term. In agreement with Sgobba et al. [28], the latter term does 
not show any correlation, with a very small range for all investigated IMs. On the contrary, the correlation 
distance of 𝜀?@	tends to increase with increasing period, as previously observed in the literature. The spatial 
correlation structure is found to be affected by the response-spectral period considered: in particular, range and 
period are directly proportioned. 𝛿𝑊𝑆mn shows a very similar behaviour to 𝜀?@, despite lower correlation values 
at longer periods. This suggests that spatial dependency of IMs is not due only to site-specific features, but 
also to travel-path effects and other unexplained effects, not fully captured by our GMPE. A comparison of 
these residual components for CAV and 𝐼"  was also investigated by Foulser-Piggott and Goda [4], who 
concluded that the two terms have in general different correlation structures, and thus this variability should 
be accounted for in seismic hazard and risk analysis. 
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Fig. 6 – Semivariograms of different residual components for PGV obtained pooling all the events 

considered in the analysis: a) Within-event residuals; b) Site-to-site term; c) Event- and site-corrected 
residuals. Black squares represent the original data, whereas red dots refer to the detrended data. 

 
Fig. 7 – Range of within-event, site-to-site and event- and site-corrected term for different IMs: a) Spectral 

acceleration at period between 0.1 and 5 s; b) PGA, PGV, PGD, CAV and 𝐼". 

4.2 Relationship between magnitude and range 

Foulser-Piggott and Goda and Sokolov et al. [4, 29] provided evidence that the range tends to increase with 
increasing magnitude, since moderate-to-large earthquake are characterized by a lower frequency content. 
Conversely, Jayaram and Baker [16] did not find any clear relationship between correlation distance and 
magnitude, at least for the Mw interval analysed (5 ≤ Mw ≤ 6.5). In this study, we expand the Mw interval 
including all Mw ≥ 4.0 events. In general, there is not an evident trend for all the IMs considered, as illustrated 
in Fig. 8 and as already found in Schiappapietra and Douglas [1] for spectral acceleration. We are aware that 
our database is biased towards small-magnitude earthquakes and this could influence the results. Besides, the 
large variability in terms of range at lower Mw values may be attributed to other factors, such as the rupture 
process and stress-drop. Stafford et al. [30] showed that the variability of the correlation distance of events of 
equal magnitude is strongly influenced by the rupture process. In addition, central Italy earthquake stress-drops 
were found to have a large variability [10]. 

4.3 Comparison with other intra-event correlation models 

In Fig. 9, we compare our correlation models for PGV, CAV and 𝐼" with some of the studies reported in 
literature. In particular, we select the models of: Esposito and Iervolino [13], based on Italian data; Sokolov 
and Wenzel [31], calibrated on Japanese events with 4.2 ≤	𝑀� 	≤ 7.2; Wang and Takada [32], which selected 
earthquakes recorded in Japan and Taiwan with 6.2 ≤	𝑀� 	≤ 8; and Du and Wang [3], which developed a 
prediction equation for the range based on the correlation structure of Vs,30 values, using data from events 
occurred in California and Japan. Clearly, the models calibrated on different regions show a much larger 
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correlation distance than our results. This suggests that regional and local site effects play a first -order role in 
defining the correlation structure. The range estimated by Esposito and Iervolino [13] is slightly larger than 
that found for Central Italy. A possible explanation can lie with the extended database considered in Esposito 
and Iervolino [13], which includes events that occurred in all of the Italian mainland. Similar outcomes were 
found in Schiappapietra and Douglas [1] for spectral acceleration, suggesting that a unique correlation model 
based on a large database is not appropriate to represent small regions. Finally, ranges estimated for the 
Amatrice and Norcia earthquakes are compared to those obtained by Costanzo [6]. CAV and 𝐼" show very 
similar outcomes, in agreement also with Foulser-Piggott and Goda [4]. However, our results differ to those 
by Costanzo [6] and the main causes can be attributable to the different estimation process. 

 
Fig. 8 – Range a as function of magnitude Mw: a) PGV; b) PGD; c) CAV. The dashed red line represents the 
bin size of 5 km. Any range value smaller than the bin size is indicative of non-correlation and should not be 

taken as an appropriate estimate. 

 
Fig. 9 – Comparison among different correlation models: a) PGV; b) CAV and Ia. Black dashed line points 

out a level of correlation equal to 0.05. 

5. Conclusions 

This study focuses on the 2016-2017 Central Italy earthquake sequence to analyse the spatial correlation of 
different IMs and different residual components. We derive a GMPE through the mixed-effects regression 
approach for use in computing the correlation distance. We develop both a correlation model for each Mw ≥
	4.0 event and a global model obtained by pooling data from all considered earthquakes. In agreement with 
Kuehn and Abrahamson [8] and Sgobba et al. [28], we found that event- and site-corrected residuals, which 
are mostly influenced by path effects, do not comply with the hypothesis of stationarity. We get around the 
problem by modelling spatial trends through trend-surface models, calibrated on geographic coordinates. 
However, the spatial variation of the mean function may be better calibrated using more appropriate parameters 
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of the site and this aspect requires further analysis to draw more firm conclusions. Alternatively, the approach 
proposed by Kuehn and Abrahamson [8], which directly includes the computation of a non-stationary 
covariance function, can be used. Moreover, as suggested by Foulser-Piggott and Goda [4], we found that the 
analysed residual components have different degrees of spatial correlation, which may be related to the varying 
underlying physical processes. Therefore, seismic hazard and risk analysis should account for this variability. 
Finally, the range appears to be regionally-dependent, and thus a region-specific spatial correlation model 
should be developed. 
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