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Abstract 

As a preliminary study for constructing the future earthquake ground motion prediction model in which all the ground 
motion records will be accumulated every day, will be utilized and will be updated, we try to create the future earthquake 
ground motion evaluation models by machine learning using the past ground motion records obtained at the observation 
stations in the Kanto region, Japan. 

The ground motion records obtained at 138 observation stations of the K-NET of NIED (National Research Institute for 
Earth Science and Disaster Prevention) deployed in the Kanto region are used as the training data. We identify noises and 
signals of different earthquakes mixed in the records, then exclude them and select the appropriate records for this study. 

As the target variables of the machine learning, the peak ground acceleration PGA [cm/s2], the 5% damped pseudo velocity 
response spectra PSV [cm/s] and the 5% damped velocity response duration spectra TSV [s] (parameter p1=0.03, p2=0.95) 
of several periods, are examined, respectively. Since there are few large data of PGA nor PSV, both are changed into 
common logarithmic input data (log10 PGA and log10 PSV) for the machine learning to raise the accuracy of the evaluation 
models. As the features of the machine learning, the moment magnitude MW, the hypocentral depth H [km], the 
hypocentral distance X [km], the epicentral direction Λ [degree], the top depth of the seismic bedrock D28 [m], and the 
averaged S-wave velocity in the surface layers of total thickness 30 m AVS30 [m/s] are selected. Λ is set zero degrees to 
due north and is defined clockwise. However, a set of sinΛ and cosΛ are inputted for the machine learning because Λ 
is discontinuous at due north. The “Gradient Boosting Decision Trees” is used as the machine learning method. 

The feature impact on the target variable is examined based on the degree of changing the evaluation accuracy of the 
target variable when only one specific feature is rearranged at random and the other features remain unchanged. The 
feature impact of MW increase with T, and the feature impact of X and that of H on TSV decrease with T. The feature 
impact of AVS30 is relatively large for the period of 1 second, that of D28 is large for the period of 1 second or more, that 
of Λ is relatively large for the period of 1 second or less. The averages of the ratios of the evaluated earthquake ground 
motion indexes to the observed ones are almost 1, and the common logarithmic standard deviation is about 0.2 for PGA 
and PSVs, and about 0.1 for TSVs. Most of the evaluated earthquake ground motion indexes are staying between twice the 
average of observed values and half the average. 

The attenuation relations of PGA and MW are examined using the proposed ground motion evaluation model. The relations 
of PGA and MW or X is modeled similar to the ones by the conventional ground motion prediction equations. As a result 
of examining attenuation relations of PSV (T=1 s) and Λ, it is found that the difference in the amplitude was caused by Λ 
even in the same MW and X , which suggests that it is possible to establish an advanced ground motion model which takes 
into account much more regional characteristics than the ones in the previous studies. 

Keywords: earthquake ground motion, Kanto region, machine learning, response spectrum, epicentral direction 
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1. Introduction 

Recently, since ground motion observation stations have been deployed nationwide (e.g. [1]), we can obtain 
high-quality and huge data in real time. In addition, since high-speed calculations are becoming possible due 
to the remarkable evolution of computers, it is expected that knowledge on earthquakes and ground motions 
will improve in both quality and quantity. On the other hand, although many practical ground motion prediction 
equations (GMPEs) (e.g. [2]) have been developed and utilized, the data includes a bias in the number of 
earthquakes in each region and those of ground motion observation records at each station. Therefore, models 
constructed based on such data also include imbalance. Recent observation data growth may lead to an 
improvement in this problem. 
 In the future, we would like to realize an environment in which ground motion evaluation models 
(GMMs) are automatically generated by AI (Artificial Intelligence) using observation data obtained every time 
an earthquake occurs and are upgraded. The pioneering studies on constructing GMPEs using machine learning 
have also begun (e.g. [3], [4]). 
 The aim of this paper is to obtain clues to obtain new insights about earthquakes and ground motions. 
First, the data for this study were selected manually, and then preliminary studies on the construction of GMMs 
utilizing machine learning were performed. Here, not only the amplitude index of the ground motion but also 
the duration index [5] of the ground motion which was hardly considered in the conventional GMPEs was also 
evaluated. The epicentral direction was adopted as a feature because the previous studies (e.g. [6, 7]) have 
pointed out that the differences in the characteristics of ground motions due to the epicentral directions 
appeared in the observation records. Next, the influence of data quality (soundness of time history) on the 
evaluation results by machine learning was examined. Furthermore, we tried to visualize the characteristics 
such as magnitude dependency, hypocentral distance dependency, and epicentral direction dependency of the 
GMMs constructed by machine learning. Finally, the future issues to be examined were described. 

2. Method and data for constructing GMMs 

2.1 Outline of method for constructing GMMs 

In this study, we tried to make preliminary GMMs by supervised machine learning using the ground motion 
observation records obtained in the past. The parameters describing the characteristic of a ground motion 
regarding the source, path, and site were used as features. The ground motion amplitude and duration indexes 
calculated from the observation records were used as the target variables.  

 As machine learning algorithm, a “Gradient Boosting Decision Tree [8]” that combined “Gradient 
Boosting” and “Decision Tree” was used. Gradient Boosting is a method of creating a strong classifier (high-
performance machine learning model) by combining some weak classifiers (low-performance machine 
learning models). Decision Tree is a method for creating a classifier by branching criteria. Gradient Boosting 
Decision Tree is a method of combining weak classifier created by the decision tree by applying the gradient 
boosting [9]. Fig. 1 shows the schematic explanation of Gradient Boosting Decision Tree. In this study, 
XGBoost (eXtreme Gradient Boosting) [10], an open source library, was used. 

2.2 Ground motion records and target variables 

We used the horizontal ground motion records observed at 138 stations deployed in Kanto region (Tokyo, 
Kanagawa, Chiba, Saitama, Ibaraki, Tochigi, and Gumma) of the strong motion observation network K-NET 
of the National Research Institute for Earth Science and Disaster Resilience [1]. Fig. 2 shows the observation 
stations. 

 The target variables of the GMMs are the peak ground acceleration (PGA in cm/s2), the 5% damped 
pseudo velocity response spectra (pSV in cm/s) for 5 periods (0.1, 0.5, 1, 3, 5 sec), and the 5% damped velocity 
response duration spectra (TSV in sec) [6] for 5 periods (0.1, 0.5, 1, 3, 5 sec). The parameters defining the start 
and the end of TSV are p1 = 0.03 and p2 = 0.95 [6]. PGA and pSV were given as the common logarithm 
(log10PGA and log10pSV).  
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2.3 Features of GMMs 

We selected the features of the GMM based on the results of our trial and error preliminary studies. Specifically, 
the parameters that determine the ground motion characteristics, the moment magnitude (MW), the hypocentral 
depth (H in km), the hypocentral distance (X in km), the epicentral direction (Λ in degree), the top depth of the 
seismic bedrock (D28 in m), and the averaged S-wave velocity in the surface layers of total thickness 30 m 
(AVS30 in m/s) were selected. These features were assumed to be independent of each other. Only those 
earthquakes whose MW were determined by the NIED’s broadband seismograph network F-net [1] were 
selected. As data needed to determine H, X, and Λ, we obtained the locations of hypocenters from the JMA 
[11], and the locations of stations from the K-NET [1]. 

Λ is set zero degrees to due north and is defined clockwise. Then, a set of sin Λ and cos Λ are inputted 
for the machine learning models because Λ is discontinuous at due north. D28 is the bottom depth of the 28th 
layer of the underground velocity structure model by the Japan Seismic Hazard Information Station (J-SHIS) 
[12] (i.e. the top depth of the layer of 5000 m/s for P-wave velocity and 2700 m/s for S-wave velocity). When 
the underground velocity structures up to a depth of 20 m are available at the observation station, the AVS30 
is calculated by the equation by Morikawa and Fujiwara (2013) [2] using the average S-wave velocity of the 
surface layers with a total thickness 20 m. When the underground velocity structures are not available at the 
observation station, the AVS30 is replaced with the AVS30 disclosed by the J-SHIS [12]. 

The feature impact, the degree of deterioration of the estimation accuracy of the target variable when 
using the GMM created using training data which the specific feature column is rearranged at random, was 
used in order to determine which features were considered important in each GMM. 

3. GMM for Kanto region, Japan 

3.1 Earthquake and ground motion records 

We selected the surface earthquake ground motion records obtained at 138 observation stations of the K-NET 
(Fig. 2) deployed in the Kanto region based on the following criteria: 

1) Utilizing the JMA database, we extracted earthquakes with both a seismic intensity of 2 or more in 
Chiyoda-ku, Tokyo and a maximum seismic intensity of 4 or more nationwide from 1996 to January 15, 

Fig. 1 – Schematic explanation of the Gradient Boosting 
Decision Tree 

Fig. 2 – Locations of observation stations 
used in this study 

37°N 
 
 
 

36°N 
 
 
 

35°N 
 
 
 

34°N 
 
 
 

33°N 
139°E      140°E      141°E

50 km 

1d-0037 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 1d-0037 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

4 

2019. Then, we manually selected earthquakes from them, considering both the distribution of magnitudes 
and that of source locations. Here, earthquakes with very few stations observed in Kanto region were 
excluded.  

2) Magnitude of the earthquake (JMA magnitude MJ) was considered in three categories as follows: 3.0 < MJ 

൑ 5.0 (As a result, there was no data satisfying above-mentioned condition 1 for MJ < 4.0.), 5.0 < MJ ൑ 

5.5, and 5.5 < MJ. The number of earthquakes in each category was also considered. 

3) The deep earthquakes were also selected if the hypocentral depth varied much in the same hypocentral 
area. 

4) The 2011 off the Pacific coast of Tohoku earthquake (MJ 9.0) was excluded because of its extremely large 
source area. 

 As shown in Fig. 3, the epicenters of the 74 selected earthquakes spread mainly in Kanto region, and 
those of some earthquakes are located far from Kanto region. From the time histories of surface ground motion 
records of the selected earthquakes, the horizontal ground motions (NS and EW components) at the observation 
station where the maximum acceleration combined with the three components is more than 1 cm/s2 were 
selected. As a result, a total of 14104 records were selected for Data-set A. 

3.2 Data-set for machine learning (Data-set A) 

Fig. 4 shows the heatmaps of the number of the training data for the couples of features in Data-set A and the 
histograms corresponding those features. There are few data of earthquakes which X > 300 km and MW < 6. 
Also, there are few data for earthquakes which X < 200 km and MW > 7. It seems that the data seem to consist 
of three groups according to H. Their hypocentral depths appear to be dominated by the continental and oceanic 
plate depths. Λ for each observation station is generally distributed isotropically for X < 150 km, but is mostly 
distributed in the northeastern direction (Λ of around 45 degrees) for X > 150 km. Most of the observation 
stations where D28 is deeper than 2500 m have AVS30 less than 400 m/s. This is probably due to the deposition 
of the soft ground by the concentration of major rivers in the geological process that forms the bedrock around 
northern Tokyo Bay. Therefore, D28 may not be independent of AVS30. 

Fig. 4 – Heatmaps of number of training data for the 
couples of features in Data-set A and 
histograms corresponding those features 

(a) MW and X 

Fig. 3 – Epicenters of earthquakes used in this study 
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 Fig. 5 shows the histograms examples of the target variables. The histograms of log10PGA and log10pSV 
seem like a normal distribution. The histograms of TSV are distributions biased to the short-duration side. Based 
on the above, as a loss function in the machine learning, the root mean squared error (normal distribution) was 
applied to log10PGA and log10pSV and the Poisson deviance (Poisson distribution) was applied to TSV. 

3.3 GMM (Model A5 and Model A6)  

Model A (A5 and A6) were created by supervised machine learning using Data-set A. Here, in order to 
investigate the effects of Λ, Model A6 considering all features (MW, X, H, D28, AVS30, Λ) and Model A5  

Fig. 5 – Histogram examples of the target variables ( log10 PGA, log10pSV, TSV ) of Data-set A 

Fig. 4 – Heatmaps of number of training data for the couples of features in Data-set A and histograms 
corresponding those features 
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considering five features except for Λ (MW, X, H, D28, AVS30) were created and compared each other. In each 
model, both the index of the cross-validation results for the training data (64% of all data) and those for the 
validation data (36% of all data) were good and were almost same value, which indicated high versatility. 

 Fig. 6 shows the feature impacts on the target variables in Model A5 and Model A6. For the target 
variables except for TSV for the period of 1 second, the feature impacts of MW increased with period, and those 
of X decreased with period. The feature impacts of H increased slightly for the short period range, and those 
of D28 on TSV increased for the period more than 1 second. The feature impact of AVS30 was relatively large 
for TSV for the period of 1 second. The feature impact of Λ is evaluated by the sum of sinΛ and cosΛ. The 
feature impact of Λ on pSV and those on TSV for the period of 1 second were relatively large. There were several 
target variables whose feature impacts of Λ were comparable to that of H, that of D28, and that of AVS30. In 
general, it seems that the tendency of the feature impact changes in the period around 1 second. 

 Fig. 7 shows examples of the relationship between the observed value target variables and the evaluated 
ones based on Model A6. Here, the black plots indicate the training data used for constructing the model, and 
the red plots indicate the validation data. A solid line indicates that an evaluated value is equal to the observed 
one, and a broken line indicates that an evaluated value is double or half of the observed one. It can be seen 
that the model which can reproduce the observed values well has been constructed since most of the evaluated 
values are within double to half of the observed ones. Specifically, for PGA and pSV, the evaluated values were 
slightly smaller than the observed ones in the large-amplitude range, and slightly larger than the observed ones 
in the small-amplitude range. For TSV, the evaluated values were slightly larger than the observed ones in the 
short-duration range, and the variation in the short-duration range was slightly larger than that in the long-
duration range. 

Fig. 8 shows examples of histograms of the ratio of the evaluated earthquake ground motion indexes to 
the observed ones. The ratio for all earthquake ground motion indexes were distributed like a normal 
distribution with an average of 1. The variations of TSV were smaller than that of PGA and that of pSV. Table 

■ MW ■ H ■ X ■ sinΛ ■ cosΛ ■ D28 ■ AVS30 

PGA 

PSV  (0.1s) 

PSV  (0.5s) 

PSV  (1.0s) 

PSV  (3.0s) 

PSV  (5.0s) 
TSV (0.1s) 
TSV (0.5s) 
TSV (1.0s) 
TSV (3.0s) 
TSV (5.0s) 

0%            20%             40%             60%             80%         100% 0%            20%             40%             60%             80%         100% 

PGA 

PSV  (0.1s) 

PSV  (0.5s) 

PSV  (1.0s) 

PSV  (3.0s) 

PSV  (5.0s) 
TSV (0.1s) 
TSV (0.5s) 
TSV (1.0s) 
TSV (3.0s) 
TSV (5.0s) 

0%            20%             40%             60%             80%         100% 0%            20%             40%             60%             80%         100% 

Model A5  (Λ not considered) Model A6  (Λ considered) 

Model B5  (Λ not considered) Model B6  (Λ considered) 
Fig. 6 – Feature impacts on the target variables of the GMMs 
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1 shows the averages and the common logarithmic standard deviations of the ratios of the evaluated values to 
the observed ones. For PGA and pSV, the averages of the ratios were almost 1, and the common logarithmic 
standard deviations were around 0.18 to 0.19. For TSV, the averages of the ratios were almost 1, and the 

Fig. 8 – Examples of histograms of the ratios of the evaluated earthquake ground motion indexes 
( PGA, pSV, and TSV ) to the observed ones 

Fig. 7 – Examples of relationship between the observed target variables and the evaluated ones 
( log10 PGA, log10pSV, TSV ) based on Model A6 

Table 1 – Ratios of the evaluated earthquake ground motion indexes (PGA, PSV, TSV) to the observed ones 

Earthquake ground motion index PGA PS V TS V

Period [s] － 0.1 0.5 1 3 5 0.1 0.5 1 3 5
Average μ  of ratios of the evaluated to the observed

 Model A5  (Λ  not considered) 1.08 1.08 1.09 1.08 1.07 1.07 1.06 1.05 1.05 1.05 1.05
 Model A6  (Λ  considered) 1.07 1.07 1.08 1.07 1.07 1.07 1.07 1.05 1.05 1.05 1.05
 Model B5  (Λ  not considered) 1.08 1.08 1.08 1.08 1.08 1.08 1.05 1.05 1.04 1.04 1.04
 Model B6  (Λ  considered) 1.07 1.07 1.08 1.07 1.07 1.08 1.04 1.05 1.04 1.04 1.03
Common logarithmic standard deviation σ  of ratios of the evaluated to the observed

 Model A5  (Λ  not considered) 0.18 0.19 0.20 0.19 0.18 0.19 0.12 0.11 0.11 0.11 0.11
 Model A6  (Λ  considered) 0.17 0.17 0.19 0.18 0.17 0.18 0.12 0.11 0.10 0.11 0.11
 Model B5  (Λ  not considered) 0.19 0.20 0.20 0.19 0.19 0.19 0.11 0.11 0.10 0.11 0.10
 Model B6  (Λ  considered) 0.17 0.18 0.19 0.18 0.18 0.18 0.11 0.10 0.10 0.10 0.10
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common logarithmic standard deviations were around 0.11. The evaluation accuracies of most target variables 
in Model A6, which included Λ as a feature, were improved slightly compared to those in Model A5. 

4. Necessity of data quality examination 

4.1 Data-set considering data quality (Data-set B) 

In this section, we examined the influences of training data quality on the results of the machine learning. In 
general, it is necessary to check the soundness of time histories as a preliminary study before ground motion 
analysis. In the future, we would like to automate this work with AI. However, since we didn’t have such 
measures, we created Data-set B by manually selecting wholesome time histories from Data-set A. Model B 
constructed using Data-set B and Model A constructed using Data-set A were compared. The Data-set B time 
histories were selected from Data-set A focusing on the followings: 

1)  No abnormality is included in the time history. (As a result, there was no such record in this study.) 

2) The time history, the Fourier amplitude spectrum (in the period range of 0.05-10 seconds), and the response 
spectrum (in the period range of 0.05-10 seconds) don’t contain obvious noise. 

3) The time history is recorded at the latest from the S-wave onset and is not interrupted in the middle of 
coda waves. 

4) The time history does not include other events (e.g. reflections, refractions, aftershocks, etc.). 

Although it also should be necessary to consider the velocity time histories, the filtered acceleration time 
histories, etc., only the nonfiltered acceleration time histories were considered in this study. As a result, (1) 
For MW 4 class earthquakes, there were many ground motion records in which the noises included in the 
components of the period of 5 seconds or more. (2) The ground motion records with PGA < 2 cm/s2 included 
large noises in their Fourier amplitude spectra. (3) There were many ground motion records in which the S-
wave onset were not recorded or the coda waves were interrupted. (4) There were ground motion records which 
made it difficult to separate and exclude other earthquakes from the target earthquake. (5) There were ground 
motion records in which included multiple aftershocks. (6) There were ground motion records whose coda 
waves included another earthquake or the effects of suspected reflections or refractions. These data may have 
adversely affected the model A. In particular, the effects on the evaluations of TSV (for all periods) and pSV (for 
the period of 5 seconds) may not be negligible. 

 After appropriate processing, it is desirable that ground motion records with these problems will also be 
considered, but we excluded all these data from Data-set B in this preliminary study. As a result, a total of 
11488 records were selected for Data-set B. Fig. 9 shows the heatmaps of the number of the training data for 
the couples of features in Data-set B and the histograms corresponding those features. The training data of 
MW ≅ 7~8 decreased from Data-set A (Fig. 4). The other heatmaps of Data-set B have not changed much from 
Data-set A. 

4.2 GMM (Model B5 and Model B6) 

Model B (B5 and B6) were created by supervised machine learning using Data-set B. As in Model A, in order 
to investigate the effects of Λ, Model B6 considering all features (MW, X, H, D28, AVS30, Λ) and Model B5 
considering five features except for Λ (MW, X, H, D28, AVS30) were created and compared each other. In each 
model, both the index of the cross-validation results for the training data (64% of all data) and those for the 
validation data (36% of all data) were good and were almost same value, which indicated high versatility. 

 Fig. 6 shows the feature impacts on the target variables in Model B5 and Model B6. As shown in the 
figure, the periodic characteristics of the feature impacts on TSV in Model B became clearer than those in 
Model A. For pSV and TSV, as with Model A, the feature impacts of MW increased with period, and those of X 
decreased with period. The feature impact of AVS30 was relatively large on TSV for the period of 1 second. 
Compared with Model A, the feature impacts of D28 increased further on TSV for the period more than 1 
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second. The feature impacts of Λ were relatively large on pSV and TSV for the period of 1 second. 

 As shown in Table 1, for PGA and pSV, the averages of the ratios of the earthquake ground motion 
indexes were almost 1, and the common logarithmic standard deviations of the ones were around 0.18 to 0.19. 
For TSV, the averages of the ratios were almost 1, and the common logarithmic standard deviations were around 
0.10. As with Model A, the evaluation accuracies of most target variables in Model B6, which included Λ as a 
feature, were improved slightly compared to those in Model B5. Compared to the averages and the common 
logarithmic standard deviations of the earthquake ground motion indexes of Model A, those of TSV of Model 
B improved slightly, but those of PGA and pSV of Model B were almost the same.  

From the above, it can be pointed out that in order to improve or stabilize the accuracy of a GMM, it is 
important to confirm the soundness of each time history in advance.  

Fig. 9 – Heatmap of number of training data for the couples of features in Data-set B and histograms 
corresponding those features 

(b) MW and H (c) Λ and X (a) MW and X 
H
 

Λ 

Fig. 10 – Heatmaps of the ratio of the evaluated PGA to the reference PGA 
 (The reference PGA is indicated by a square in each figure.) 

(b) MW and H (c) Λ and X (a) MW and X 

H
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5. Visualization of characteristics and estimated performance of Model B6 

Generally speaking, since a repetition of non-linear calculations based on a machine learning algorithm cannot 
be represented by a clear physical equation, there is a problem that the reason why the model constructed by a 
machine learning derives the prediction result is a black box.  However, it is possible to grasp the characteristics 
of the model from the relationships between a target variable and features based on the machine learning model. 
In this section, we tried to visualize the model characteristics and the estimation performance by illustrating 
the distributions of the evaluation results of the target variables when the two-dimensional features were given 
to Model B6.  

5.1 Magnitude dependency and hypocentral distance dependency 

Fig. 10(a) shows a heatmap of the ratio of the evaluated PGA when MW is changed in increments of 0.2 and X 
is changed in increments of 20 km. Here, the conditions of the other specified features are H ≅ 30 km, AVS30 ≅
 400 m/s, D28 ≅ 400 m, and Λ ≅ 45 degrees (northeast direction). Since the training data of the features used 
for the machine learning were sparse, the average of the evaluated values when H, AVS30, D28, and Λ were 
changed around the above-mentioned values were adopted to the evaluated model. The reference PGA as a 
denominator of the ratio was the evaluated PGA when MW ≅ 4 and X ≅ 500 km. As shown in Fig. 9(a), there 
is almost no training data with MW ≅ 7~8 and X ൑ 300 km. However, regardless of the presence or absence of 
data, the tendency that the evaluated values increase as MW increases (i.e. magnitude dependency) and the 
tendency that the evaluated values increase as X decreases (i.e. hypocentral distance dependency) were 
expressed in Fig. 10. It is inferred that the characteristics learned based on the data of MW < 7 were extrapolated 
to the range of MW ≅ 7~8. It is necessary to verify the certainty of the evaluated values in the extrapolated 
range in the future. 

 Fig. 11(a) shows examples of the attenuation relationships of PGA and MW or X in the model B6. The 
given features were determined on the assumption that plate boundary earthquakes with the epicenter in the 
northeast direction would be observed at a bedrock site in Kanto. The evaluated values based on the GMPE 
(in case of MW6 and MW6.5) by Morikawa and Fujiwara (2013) [2] were also shown in Fig. 11(a) for reference. 
Here, since the original equation is using the root of the sum of squares of the maximum amplitude of horizontal 
two components, it was divided by √2. The evaluated values based on the equation were illustrated according 
to the applicable range of the equation (MW > 5.5 and PGA ൒ 10 cm/s2). The attenuation relationships of the 
evaluated PGAs and MW or X appear to be modeled in the roughly same as the conventional GMPEs. However, 

Fig. 11 – Examples of the attenuation relationships of the earthquake motion indexes (PGA and PSV) and 
X in Model B6 

(a) Relationships of PGA and X or MW 
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in the case of MW 6.5, the tendency of attenuation seems to have changed at X ≅ 60 km, which suggests that 
the possibility of creating a new GMM that reflects detailed regional characteristics by limiting the target 
region or considering Λ. 

5.2 Hypocentral depth dependency 

Fig. 10(b) shows a heatmap of the ratio of the evaluated PGA when MW is changed in increments of 0.2 and H 
is changed in increments of 5 km. Here, the conditions of the other specified features are X ≅ 100 km, AVS30 ≅
 400 m/s, D28 ≅ 400 m, and Λ ≅ 45 degrees (northeast direction). The procedure of creating the figure is the 
same as in the previous section. The reference PGA as a denominator of the ratio was the evaluated PGA when 
MW ≅ 4 and H ≅ 0 km. As shown in Fig. 9(b), there is very little training data with MW ≅ 7~8. However, as 
shown in Fig. 10(b), the relationship between MW and H for MW ൑ 7 seems to be reflected in the evaluated 
PGAs of MW ≅ 7~8. While the training data with H ൑ 100 km were limited to MW ≅ 6~7, it is inferred that 
they were derived with reference to the evaluation results around the range where the features were missing. 
No clear hypocentral depth dependency appeared in this study. It is also necessary to consider the classification 
of earthquake types and additional training data in the future. 

5.3 Epicentral direction dependency 

Fig. 10(c) shows a heatmap of the ratio of the evaluated PGA when Λ is changed in increments of 20 degrees 
and X is changed in increments of 20 km. Here, the conditions of the other specified features are MW ≅ 5, 
H ≅30, AVS30 ≅ 400 m/s, and D28 ≅ 400 m. The procedure of creating the figure is the same as in the previous 
section. The reference PGA as a denominator of the ratio was the evaluated PGA when Λ ≅ 0 degree and 
X ≅500 km. As shown in Fig. 10(c), while the epicentral direction dependency is not clearly seen for X ൑ 100 
km, is seen for X > 100 km. Although the bias of the training data as shown in Fig. 9(c) may be affected the 
evaluation results, it may be interpreted that the locational relationship between the Kanto Plain and the 
epicenter was reflected in the model.  

 Fig. 11(b) shows examples of the attenuation relationships of pSV (for the period of 1 second) and X or 
Λ in Model B6. It is evaluated that the amplitude differs depending not only on MW and X but also on Λ, which 
suggests that the possibility of creating a new GMM which reflects detailed regional characteristics by limiting 
the target region or considering Λ that has not been taken into account in previous attenuation relation formulas. 

6. Conclusions 

In this paper, the preliminary studies on the construction of GMMs utilizing machine learning were performed. 
For PGA and pSV, the averages of the ratios of the evaluated values to the observed ones were almost 1, and 
the common logarithmic standard deviations of the evaluated values to the observed ones were around 0.2. For 
TSV, the averages of the ratios were almost 1, and the common logarithmic standard deviations were around 
0.1. It can be seen that the GMMs which can reproduce the observed values well has been constructed since 
most of the evaluated values are within double to half of the observed ones. In particular, TSV could be evaluate 
more accurately than PGA or pSV. 

 The evaluation accuracies of most target variables in the model considering Λ as a feature were improved 
slightly compared to those in the model not considering Λ as a feature. Therefore, it is significant to include Λ 
as a feature. Compared to the variations of TSV of Model A in which the soundness of each time history was 
not confirmed, those of Model B in which the soundness of each time history was confirmed decreased slightly. 
It was pointed out that in order to improve or stabilize the accuracy of a GMM, it was important to confirm 
the soundness of each time history in advance. 

 We tried to visualize the model characteristics and the estimation performance. As a result, while the 
magnitude dependency, the hypocentral distance dependency, and the epicentral direction dependency could 
be confirmed, the hypocentral depth dependency was not apparent in this study. The attenuation relationships 
between PGAs and MW or X, as evaluated by the machine learning, appeared to be modeled in the roughly like 
the conventional GMPEs. On the other hand, it also appeared the trends that differed from the conventional 
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GMPE, which suggests that the possibility of creating a new GMM which reflects detailed regional 
characteristics by machine learning. 

 In the future, it is necessary to take measures to improve the imbalance of the model accuracy caused 
by the training data density. In other words, it is necessary to study the method for extrapolation to huge 
magnitude earthquakes, large-amplitude ground motions, and long-duration ground motions that are hardly 
observed. One way to solve this problem is to use the simulation results from existing earthquake ground 
motion evaluation methods, and we plan to study them. 
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