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Abstract 

Researches have shown that the spatial variability of earthquake ground motions and multi-component seismic action 

have a significant impact on energy dissipation characteristics and failure mechanism of large-span complex spatial 

engineering structures, such as large-scale spatial reticulated shells, dams and long-span bridges. Therefore, for refined 

seismic response analysis and seismic optimization design of such structures, it is more reasonable to adopt spatially 

correlated multi-support and multi-component ground motion input which can take into account both spatial variability 

and multi-component seismic action. Nowadays, the Monte Carlo simulation method (MC scheme) has been developed 

rapidly in recent years, and among which, the spectral representation method (SRM) and proper orthogonal composition 

(POD), owing to their accuracy and simplicity, appear to be the most widely used ones. However, the sample functions 

generated by the conventional SRM and POD can’t describe the probability information of stochastic field in 

probability density level, which gives rise to an inadequate quantification of probability propagation from the external 

excitations to structural dynamic responses. Therefore, though the simulation efficiency of the SRM and the POD has 

been improved dramatically, the extremely high-dimensional randomness degree (the number of random variables) 

involved in the MC scheme still remains a principal challenge for it being applied in probability density evolution 

analysis and reliability assessment of large-scale complex engineering structures. 

For that, in this study, firstly, based on the stochastic model of multi-support and one-component fully non-

stationary ground motion fields, the unified spectral decomposition representation of the multi-support and multi-

component fully non-stationary ground motion stochastic fields on the basis of the coherence function matrix is derived. 

Furthermore, by introducing random function form serving as constraint for the orthogonal random variables, the 

dimension-reduction simulation of multi-support and multi-component fully non-stationary ground motion fields is 

realized. Then, according to the regression results of the correlation involved in the intensity envelope function 

parameters of the multi-component ground motions, the four-segment intensity envelope function parameter values of 

the three-component ground motions for soil site I0 in "Seismic ground motion parameters zonation map of China" are 

suggested. Finally, based on the Matsushima's model, four-segment intensity modulation function, the Clough-Penzien 

time-varying power spectrum and the composite coherence function model, the representative samples of the multi-

support and multi-component fully non-stationary ground motions acceleration processes are generated. Numerical 

examples adequately verify the effectiveness of the proposed method in engineering practices. Benefitting from the 

proposed scheme, the extremely high randomness degree can be effectively reduced to merely two. Thus, the number-

theoretical method can be conveniently applied to select the representative point sets with regard to the elementary 

random variables. As a result, the complete probability characteristics of the multi-support and multi-component 

stochastic ground motions can thus be reflected with just two elementary random variables, and the total number of 

sample functions is just several hundred, making it possible for the proposed scheme being combined with the 

probability density evolutionary method (PDEM) to implement the accurate stochastic dynamic response analysis and 

dynamic reliability assessment of complex engineering structures subjected to earthquake disasters. 
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1. Introduction 

Studies have shown that earthquake ground motion has significant spatial variability, which is mainly caused 

by lagged coherence effect, wave-passage effect, attenuation effect, and local site effect during the 

propagation of seismic waves. In addition, ground motion is a very complex multi-component motion, with 

two horizontal components and one vertical component usually being obtained in seismic observations. In 

fact, it is shown that the spatial variability and multi-component action of earthquake ground motions can 

significantly affect the energy consumption characteristics and failure mechanisms of large-span complex 

spatial structures (such as large spatial reticulated shell structures) during seismic excitation [1, 2]. Therefore, 

for the seismic response analysis and seismic optimization design of large-span complex spatial structures, it 

is more reasonable to use spatially correlated multi-support and multi-component ground motion inputs that 

can consider both the spatial variability and multi-component action of ground motions simultaneously [3]. 

Due to the strong randomness of earthquake ground motions, the adoption of stochastic methods to 

generate ground motions has always attracted much attention. The multi-component stochastic ground 

motion model can be generated based on the one-component seismic model by means of further considering 

the correlation between different components in different directions. From this point of view, the multi-

component ground motion model can be regarded as an extension of the one-component ground motion 

model. At present, the simulation methods of multi-support and multi-component non-stationary stochastic 

ground motion fields mainly include linear filtering method, wavelet analysis method, SRM [4-6], and POD 

[7-9]. These methods are all developed based on the second-order statistics of the stochastic ground motion 

fields (evolutionary power spectral density matrix or coherence function matrix), and their essence is realized 

by MC scheme for a large number of a series of random variables. Among them, the SRM and POD have 

been widely used in the simulation of stochastic processes and stochastic fields due to their complete theory, 

simple calculation, and easy implementation [10-12]. However, in case that the conventional MC scheme is 

used to simulate the stochastic ground motion field, a large number of sampling for a series of high-

dimensional random variables are usually required to ensure the simulation accuracy. This treatment not only 

greatly increases the calculation amount of the simulation, but also limits the application of this method in 

the analysis of stochastic seismic response and seismic reliability of large and complex spatial structures to a 

large extent. 

In view of the above research status, firstly, based on the SRM and POD of multi-support and one-

component fully non-stationary stochastic ground motion field, the unified spectral decomposition 

expression of spatial correlation multi-support and multi-component fully non-stationary stochastic field is 

derived on the basis of the coherence function matrix. Secondly, by introducing the idea of random function 

[13-15], the dimension-reduction representation of spatial correlation multi-support and multi-component 

fully non-stationary stochastic ground motion field is established, which can accurately describe the 

stochastic ground motion field on the probability density level with merely two elementary random variables. 

Finally, based on the Matsushima's model of multi-component ground motion, a representative sample set of 

multi-support and multi-component fully non-stationary ground motion field is generated. Due to the 

probability information of the representative sample set is complete, it can be naturally combined with the 

PDEM [16-17] to realize the refined dynamic response analysis and seismic reliability evaluation of large-

scale complex engineering structures induced by multi-support and multi-component earthquake actions. 

2. Stochastic model of multi-support and multi-component fully non-stationary 

ground motion stochastic fields 

The two-sided evolutionary power spectral density matrix of a multi-support and multi-component fully non-

stationary stochastic ground motion field is expressed as follows: 
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where n denotes the number of support nodes during the seismic action. Diagonal element 

( , )ii t S ( 1,2, , )i n=  is the evolutionary power spectral density matrix upon three components at the same 

support node, while non diagonal element ( , )ij t S ( )j i  is the cross evolutionary power spectral density 

matrix upon three components at different support nodes. 

Meanwhile, ( , )ii t S  and ( , )ij t S  can be unified as follows: 
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where the subscripts x and y represent the two components in the horizontal direction, and z represents the 

vertical component, respectively. The diagonal elements are the cross-evolutionary power spectrum of the i-

th and j-th support nodes in the three directions, while the non-diagonal elements are the cross-evolutionary 

power spectrum of the i-th and j-th support nodes in different directions. 

For the simulation purpose, this paper adopts the cross-power spectrum model of multi-dimensional 

ground motion proposed by Japanese scholar Matsushima in 1974 [18]: 

, ,( , ) ( , ) ( , ) ( , )ix jx iy jy ij ix jxS t S t S t S t    = =                                            (3a) 

, ( , ) ( , ) ( , )iz jz ij iz jzS t S t S t   =                                                    (3b) 

, ,( , ) ( , ) ( , ) ( , )ix jy jy ix ij ix jyS t S t S t S t    = =                                          (3c) 

, , , ,( , ) ( , ) ( , ) ( , ) 0.6 ( , ) ( , )ix jz jz ix iy jz jz iy ix jzS t S t S t S t S t S t     = = = =                       (3d) 

Furthermore, the evolutionary power spectral density matrix of multi-support and multi-component 

fully non-stationary stochastic ground motion field can be decomposed into the following form [19]: 

T( , ) ( , ) ( ) ( , )t t t   =S D D                                                            (4) 

where the diagonal matrix ( , ) diag ( , ), ( , ), ( , )i ix iy izt S t S t S t    =
 

D ( 1,2, , )i n= . 

In Eq. (4), ( )  denoets the coherenence function matrix, given by: 
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where ( )ij   can be espressed as below: 
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3 Dimension-reduction representation of multi-support and multi-component fully 

non-stationary ground motion stochastic fields 

Generally, the coherence function matrix ( )  is a nonnegative definite Hermitian matrix, which can be 

eigen decomposed as follows: 

T( ) ( ) ( ) ( )   =    , *T ( ) ( )  =  I                                          (7) 

where  1 2( ) ( ), ( ), , ( )M   =     denotes eigenvector matrix, in which 

 
T

1 2( ) ( ), ( ), , ( )r r r Mr      =  is the r-th eigenvector of the coherence function matrix ( ) . 

 1 2( ) diag ( ), ( ), , ( )M      =  denotes eigenvalue diagonal matrix. I  is M M -order unit matrix. In 

general, element ( )mr   is a complex function of  , thus it can be defined that so 

( ) ( ) i ( )mr mr mr     = + . 

Furthermore, if the coherence function matrix ( )
 
is a positive definite Hermitian matrix, it can be 

decomposed by Cholesky methology: 

T( )  = ( ) ( ) Β Β                                                             (8) 

where ( )Β  is a lower triangular matrix, given by: 
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Here, the elements in Eq. (9) can also be defined as ( ) ( ) i ( )mr mr mrB     = +  ( 1,2, , )m M= . 

Based on the above-mentioned eigen decomposition and Cholesky decomposition of the coherence 

function matrix ( ) , a unified spectral decomposition expression of the multi-support and multi-

component fully non-stationary stochastic ground motion field can be obtained: 

( )
1 1
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r k
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( )( ) sin cosmr k rk k rk kD R t I t  − +                (10) 

where ( )ivX t  and ( , )iv kS t   ( 1,2, ,i n= ; , , )v x y z=  denote seismic acceleration component and 

evolutionary power spectral density function, respectively. 

In Eq. (10), rkR  and rkI  ( 1,2, ,r M= ; 1,2, , )k N=  are two orthogonal random variables with zero 

mean, satisfying the basic conditions as follows: 

    0rk rkE R E I= = ,   0rk slE R I = ,    
1

2
rk sl rk sl rs klE R R E I I  = =                   (11) 

Obviously, in case that ( ) ( )r k r kG   = , ( ) ( )mr k mr kC   =  and ( ) ( )mr k mr kD   = , Eq. (10) is 

regarded as the POD simulation function based on the orthogonal random variables. On the other hand, in 

case that ( ) 1r kG  = , ( ) ( )mr k mr kC   =  and ( ) ( )mr k mr kD   = , Eq. (10) is regarded as the SRM 

simulation function based on the orthogonal random variables. Therefore, Eq. (10) is referred as the unified 

spectral decomposition expression based on orthogonal random variables. 
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However, the conventional MC scheme employed to implement the realization of random variables 

involved in Eq. (10) still faces two main challenges cased by the high-dimensional random variables (usually 

as high as millions). To this end, the idea of random function proposed by Liu et al. [13-15] is introduced 

herein to effectively reduce the number of random variables and perform the dimension-reduction 

representation of multi-support and multi-component fully non-stationary stochastic ground motion fields. 

Specifically, the random function form discussed in the present paper is defined as follows: 

( ) ( )
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1 22 sin cos
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where the elementary random variables 
1  and 

2  are mutually independent and subjected to uniform 

distribution over the intervall (0,2 ) . 

It is a handy work to demonstrate that the constructed random function, i.e., Eq. (12), can completely 

satisfy the basic conditions defined in Eq. (11). Thus, the multi-support and multi-component fully non-

stationary stochastic ground motion field can be represented by merely two elementary random variables 

with the aid of the random functions, which effectively bypasses the challenges faced by the MC scheme. 

4. Numerical investigations of multi-support and multi-component fully non-

stationary stochastic ground motion fields 

In the present paper, the following evolutionary power spectral density function [20] is adopted, given by: 

 
2

( , ) ( ) ( , )iv iv ivS t t S t  =                                                        (13) 

where ( )iv t  denotes the intensity modulation function of the v-component at the i-th support node, and the 

four-segment intensity modulation function proposed by Li et al. [21] is adopted herein to sufficiently 

considering the intensity differences among different seismic components. ( , )ivS t   presents the time-varing 

power spectrum of the v-component at the i-th support node, and the Clough-Penzien time-varing power 

spectrum proposed by Deodatis [5] is employed, given by: 
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where 
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f, g,( ) 0.1 ( )iv ivt t = , f , g,( ) ( )iv ivt t =                                                (15c) 

in which T is the duration of earthguake, g,iv , g,iv , id  and ie  are earthquake parameters, respectively. 

0, ( )ivS t  is the spectral intensity parameter, expressed by: 
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where 
maxa  is the mean value of peak ground motion acceleration (PGA), and 

ivr  denotes the equivalent 

peak factor of the v-component at the i-th support node. For the purpose of reflecting the differences among 

different seismic components, the relationship of the parameters for the three components are defined as 

follows [22]: 

g, g, g,1.58 1.58iz iy ix  = =                                                       (17a) 

g, g, g,iz iy ix  = =                                                               (17b) 

1.5 1.5iz iy ixr r r= =                                                               (17c) 

This paper adopts a composite coherence function model that can comprehensively consider the 

lagged coherence effect, wave-passage effect, and local site effect, to describe the spatial variability of the 

ground motion field, such that: 

 w-p s-r( ) ( ) exp i ( ) ( )ij ij ij ij        = +                                             (18) 

where ( )ij   denotes the lagged coherence effect. Phase angles w-p ( )ij   and s-r ( )ij   denote the wave-

passage effect, and local site effect, respectively. 

Fig.1 shows the representative time-histories of a multi-support and multi-component fully non-

stationary stochastic ground motion field generated by the proposed dimension-reduction method. It can be 

seen from the figure that due to the ground motion components in the two horizontal directions adopt the 

same time-varying power spectrum model and corresponding parameters, the shapes of the ground motion 

acceleration time-history curves in the two horizontal directions are basically the same. At the same time, 

since the time-varying power spectrum model parameters of the vertical ground motion component and the 

difference between the intensity modulation function and the horizontal ground motion component are taken 

into account, the generated vertical ground motion acceleration process has significant differences from the 

horizontal ground motion component in amplitude, the time when the peak value of the intensity reaches, 

and the duration of the plateau. What’s more, the duration of the segment in terms of the vertical ground 

motion acceleration process is significantly different from the two horizontal ground motion components. 
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Fig. 1 Representive time-histories for the ground motions at one typical soil site 

Fig.2 presents the comparison of the evolutionary power spectrum density of the simulated ground 

motion acceleration process with the corresponding target value. As shown in the figure, the comparison 

between the evolution power spectrum density of the representative time-history and its corresponding target 

1d-0039 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 1d-0039 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

7 

value has a commendable fitting result, which fully verifies the accuracy and effectiveness of the method 

suggested in this paper. 
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Fig. 2 Comparison of the PSD of the simulated ground motion acceleration process with the corresponding 

target value at three typical time instants 

5. Conclusions 

Based on the theory of spectral decomposition (SRM and POD) of multi-support and one-component fully 

non-stationary stochastic ground motion random fields, this paper derives a unified spectral decomposition 

representation of multi-support and multi-component fully non-stationary stochastic ground motion fields on 

the basis of the coherence function matrix. At the same time, by means of constructing a random function 

form of the orthogonal random variables, the dimension-reduction representation of a spatially correlated 

multi-support and multi-component non-stationary stochastic ground motion field is achieved. Research 

shows that by introducing a constraint form of the random function, the randomness degree (the number of 

elementary random variables) of a multi-support and multi-component fully non-stationary stochastic ground 

motion field can be effectively reduced. As a result, with merely two elementary random variables, the 

probability characteristics of multi-support and multi-component fully non-stationary stochastic fields can be 

accurately represented in the second-order statistical sense.  

Numerical analysis shows that with the help of the proposed dimension-reduction representation 

method, just a few hundred representative samples are required to obtain the satisfactory accuracy. 

Meanwhile, due to the probabilistic information of the representative sample set generated by the method 

proposed in this paper is complete, it can be naturally combined with the PDEM, which provides an effective 

way for the refined seismic response analysis, seismic reliability evaluation and seismic optimization design 

of large-scale complex structures based on the behavior and life cycle. 
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