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Abstract 
Two methods have been generally recognized to calculate phase velocities, which are the frequency-wave number (F-K) 
spectral method and the spatial auto-correlation (SPAC) method. Although F-K method has no constraints on the shape 
of the array, the accuracy of results depends on the array shape. In addition, the SPAC method requires particular 
arrangement of the sensors, which can be difficult to realize in field observation. Attempts, such as Centerless Circular 
Array (CCA) method has been made to eliminate constraints on the shape of array. It can be applied to arbitrary array 
shape considering sensors spacing around a specific circle, but the determining process for which can be complex. 
Therefore, an algorithm of estimating phase velocity of Rayleigh wave using an arbitrary shape array is proposed. 

On the basis of the analytical solution of Lamb's problem for vertical components of Rayleigh wave, the relationship 
between two observation points, p and q for example, is given in a discrete representation with the Bessel function of the 
first kind and higher-order Bessel functions, which is called Complex Coherence Function (CCF). Zhang and Morikawa 
extended the CCF to apply it to linear array situation. By adding an extra observation point s, the relationship between p 
and s can be expressed. For 𝑘𝑟#$% ∈ [0, 5], where 𝑘 and 𝑟#$% stand for wave number and maximum distance between 
sensors on an array, respectively, Bessel functions of order greater than 6 can be ignored compared with lower-order 
Bessel functions' value. Hence, the CCF equations have only 5 unknowns left, including the phase velocity. We propose 
an algorithm to estimate the phase velocity using Artificial Bee Colony (ABC) algorithm under a constraint of 𝑘𝑟#$% ∈
[0, 5]. 

For evaluating the accuracy of the proposed algorithm, numerical simulations were performed using five shapes of array 
arranged along an ellipse. Simulations were conducted 10 times by propagating 8 randomly generated wave sources with 
random power and directions. The results of proposed algorithm show that the estimation results match the theoretical 
value for frequency range from 0.25 Hz to 1.25 Hz for shapes 1 (regular shape), 2 (right-angled triangle) and 3 (obtuse 
triangle). However, for shapes 4 (near linear-array triangle) and 5 (linear array), the estimation results are relatively 
unsatisfactory. In addition, we applied SPAC method with same signals for shape 1 and applied CCA method (BIDO2.0 
program of Cho) to shapes 1 to 4. The results show that the proposed algorithm can get almost same accuracy of SPAC 
method for shape 1. Comparing with CCA method, although the effective ranges are different, the proposed algorithm 
shows more stable results.  

In conclusion, except for the near linear-array shape situation, the proposed algorithm is applicable to estimate the phase 
velocity of Rayleigh wave using arbitrary array shape. 

Keywords: CCF, SPAC method, CCA method, arbitrary-shape array, phase velocity.  
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1. Introduction 
Microtremor observation has been widely applied for estimating ground structure. Compared with traditional 
borehole drilling and logging method, microtremor array observation method is more cost-effective and mobile. 
Among those methods, two methods have been generally used for calculating phase velocity from the 
microtremor observed, which are the frequency-wave number (F-K) spectral method [1] and the spatial auto-
correlation (SPAC) method [2].  

Although F-K method doesn’t have constraints on the array shape, it requires a rather larger number of 
sensors and the accuracy of results depends on the array shape. For the SPAC method, it requires fewer sensors 
than the F-K method but the sensors have to be arranged evenly on a circle to satisfy the azimuthal average 
condition. However, this can be difficult to realize for field observation. Attempts such as the direct estimation 
method (DEM) has been made to employ more flexible sensor arrangement but the overall arrangement has to 
be symmetric [3]. In addition, Centerless Circular Array (CCA) method [4] has been proposed to eliminate 
constraints on the shape of array. It can be applied to arbitrary array shape considering sensors spacing around 
a specific circle, but the determining process of the center can be complex. Also, it can’t be applied to linear-
array situation. Zhang and Morikawa [5] proposed a method and proved it to be applicable for linear array 
based on the SPAC method and complex coherence function (CCF) [6]. 

Therefore, we propose an algorithm based on the CCF to estimate phase velocity of Rayleigh wave using 
an arbitrary shape array. In this algorithm, Artificial Bee Colony (ABC) algorithm [7] is applied for solving 
the multi-dimensional equations encountered when conducting numerical simulations. Numerical simulations 
were performed for evaluating the accuracy of proposed algorithm. Furthermore, comparisons between this 
algorithm, the SPAC method and CCA method were conducted for certain array shapes. 

2. Method 
This section is devoted to introduce the derivation process of CCF. Analytical representations of a proposed 
algorithm which is based on CCF and suitable for arbitrary shape array will be discussed. 

2.1 Complex Coherence Function 
Away from a vertical point source, the vertical components of velocity on ground surface can be expressed by 
the analytical solution of Lamb’s problem. Under the assumptions: 1) only the fundamental mode is dominant, 
and 2) different sources are not correlated, we introduce the discrete formula of the CCF between two 
observation points p and q, as shown in Fig.1, is expressed as 

 𝛾-. = ∑ 𝜆2exp	(−𝑗𝑘𝑟𝑐𝑜𝑠𝜃2)?
2@A , (1) 

 

 
Fig. 1 – Geometry used in the formulation of complex coherence function (CCF) between observation points 

p and q. 
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where 𝛾-. denotes the CCF between observation points p and q. 𝐿 denotes the total number of wave sources. 
𝜆2 is the contribution of wave source	𝑙 to the power spectra at the observation point (∑ 𝜆2 = 1?

2@A ). 𝑘 is the 
wave number, and 𝑘 = EFG

H
, where 𝑐 is phase velocity. 𝑟 is the distance between receivers 𝑝 and 𝑞. Here, 𝑟-2 ≈

𝑟.2 ≫ 𝑟-., thus, 𝜃-2 ≈ 𝜃.2 ≡ 𝜃2. 

With the relationship between cos	(𝑥𝑐𝑜𝑠𝜃) and the Bessel function of the first kind, the real part of Eq. 
(1) can be expressed as [3] 

 𝑅𝑒(𝛾-.) = 𝐽U(𝑘𝑟) + 2∑ {(−1)Y𝐽EY(𝑘𝑟)∑ 𝜆2𝑐𝑜𝑠2𝑛𝜃2?
2@A }\

Y@A , (2) 

in which 𝑅𝑒 denotes the real part and 𝐽Y the 𝑛-th order Bessel function of the first kind. 

 
Fig. 2 – Value of 𝐽U, 𝐽E ,	𝐽] and 𝐽  with the effective range of 𝑘𝑟 ≤ 5. 

In the range of 𝑘𝑟 ≤ 𝜋, 𝐽 (𝑘𝑟) and higher order Bessel functions are negligibly smaller than 𝐽U(𝑘𝑟) [3]. 
In fact, by comparing the values of Bessel functions of less than sixth-order as shown in Fig.2, this range can 
be extended to 𝑘𝑟 ≤ 5. Thus, the real part of CCF can be reduced to 𝐽U, 𝐽E and 𝐽] parts only as 

 𝑅𝑒(𝛾-.) ≈ 𝐽U(𝑘𝑟) − 2𝐽E(𝑘𝑟)𝑋A + 2𝐽](𝑘𝑟)𝑋E, (3) 

where 𝑋A ≡ 	∑ 𝜆2𝑐𝑜𝑠2𝜃2?
2@A  and 𝑋E ≡ 	∑ 𝜆2𝑐𝑜𝑠4𝜃2?

2@A .  

2.2 Extension of CCF for arbitrary shape array 
By adding an observation point 𝑠 anticlockwise 𝛼 degree with respect to line 𝑝𝑞 from point 𝑝 and with a 
distance of 𝑟-d, we can get an arbitrary shape array consisting of three observation points 𝑝, 𝑞 and 𝑠 as in Fig.3 
(a). From Eq. (3), we can get the real part of CCF between points 𝑝 and 𝑠 by replacing 𝜃2 to 𝜃2 − 𝛼, as shown 
in Eq. (4). Similarly, the real part of CCF between points 𝑞 and 𝑠 can be obtained by replacing 𝜃2 to 𝜃2 − 𝛽, 
as in Eq. (5). Thus, for an array with 3 observation points, we can obtain 3 CCFs of Eq. (3), (4) and (5). 

 𝑅𝑒(𝛾-d) ≈ 𝐽Uf𝑘𝑟-dg − 2𝐽Ef𝑘𝑟-dg(𝑋A𝑐𝑜𝑠2𝛼 + 𝑌A𝑠𝑖𝑛2𝛼) + 2𝐽](𝑘𝑟-d)(𝑋E𝑐𝑜𝑠4𝛼 + 𝑌E𝑠𝑖𝑛4𝛼) (4) 

 𝑅𝑒(𝛾.d) ≈ 𝐽Uf𝑘𝑟.dg − 2𝐽Ef𝑘𝑟.dg(𝑋A𝑐𝑜𝑠2𝛽 + 𝑌A𝑠𝑖𝑛2𝛽) + 2𝐽](𝑘𝑟.d)(𝑋E𝑐𝑜𝑠4𝛽 + 𝑌E𝑠𝑖𝑛4𝛽), (5) 

Here, 𝑌A ≡ 	∑ 𝜆2𝑐𝑜𝑠2𝜃2?
2@A  and 𝑌E ≡ 	∑ 𝜆2𝑐𝑜𝑠4𝜃2?

2@A . In Eq. (3) to Eq. (5), since we can obtain the left 
parts 𝑅𝑒(𝛾) from the observation records, there will be 5 unknowns left, including 𝑐(𝑘 = EFG

H
), 𝑋A, 𝑌A, 𝑋E and 

𝑌E. Eventually, for this array with 3 observation points situation, our target changes to solve this problem with 
3 equations and 5 unknows.  
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                     (a) Array with 3 observation points                            (b) Array with more than 3 observation points 

Fig. 3 – Sensor arrangements for arbitrary shape arrays with 3 observation points and more than 3 
observation points. 

 Furthermore, we can also extend the CCFs to the array with 4 and more observation points. If we denote 
the observation points from observation points 0 to M, as shown in Fig.3 (b), we can get (𝑀 + 1) observation 
points in total. Then the total number of CCFs becomes k(klA)

E
. The general expression of every CCF between 

each pair of observation points can be expressed as 

 𝑅𝑒(𝛾#Y) ≈ 𝐽U(𝑘𝑟#Y) − 2𝐽E(𝑘𝑟#Y)(𝑋A𝑐𝑜𝑠2𝛼#Y + 𝑌A𝑠𝑖𝑛2𝛼#Y) + 

2𝐽](𝑘𝑟#Y)(𝑋E𝑐𝑜𝑠4𝛼#Y + 𝑌E𝑠𝑖𝑛4𝛼#Y), (6) 
where 𝑚  and 𝑛  denote numbers of observation points, which are from 0 to M. 𝑟#Y  denotes the distance 
between observation points 𝑚 and 𝑛. And 𝛼#Y denotes the anticlockwise angle between the defined horizontal 
line, the 01 line here, and the 𝑚𝑛 line. 

Although the total number of CCFs increases with increasing observation points, the unknowns remain 
the same, which are 𝑐(𝑘 = EFG

H
), 𝑋A, 𝑌A, 𝑋E and 𝑌E. That is to say, with increasing observation points, the 

number of CCFs will be greater than the unknowns’ number 5. In that case, it is predictable that better results 
can be obtained because of the increased constraints. 

In order to solve the multivariable problem, the ABC algorithm [7], which is an optimization algorithm 
based on the intelligent behavior of honey bee swarm, is applied. Since we want to optimize the results of 
k(klA)

E
 equations simultaneously, the fitness function is necessary. It is defined as 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = A
p
∑ 𝑔rEp
r@A , (7) 

where 𝑁 = k(klA)
E

, the total number of the CCFs, and 𝑔r is the difference of left side and right side of Eq. (6) 
for the 𝑖-th CCF. 

2.3 Additional constraint condition 
As mentioned in section 2.1, the effective range of phase velocity is 𝑘𝑟 ≤ 5, where 𝑘 = 2𝜋𝑓/𝑐. For the 
numerical simulations, the results are reliable only if this condition is satisfied. Therefore, we add a constraint 
process during the optimization process and the flow chart is shown in Fig.4.  

After every searching cycle, we can get a results vector consisting 50 sets of optimized variables. Then 
we get all of the local minimums and global minimum from the results vector. Next, check if the global 
minimum relative phase velocity satisfies the condition 𝑘𝑟#$% ≤ 5, where 𝑟#$%  is the maximum distance 
among all of the observation points. If the condition is not satisfied, we will delete this global minimum and 
move to the next global minimum of the renewed results vector. After that, repeat this process until the global 
minimum satisfies the condition. 
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Fig. 4 – Flow chart of the constraint process applied during the optimization process. 

3. Numerical Simulations  
In this section, numerical simulations of arrays with 3 observation points were carried out to testify the validity 
of the proposed constraint condition. Also, the applicability of the proposed algorithm to arrays with arbitrary 
shape will be discussed. Furthermore, numerical simulations of the conventional methods, the SPAC method 
and the CCA method, were conducted with same signals. The results of the above simulations will be discussed.  

3.1 Problem settings 
To conduct numerical simulations, five arrays of different shape were designed as shown in Fig.5. All of the 
triangles are on the same ellipse with observation points 0 and 1 being their focuses and the moving observation 
point 2 being their top vertex. Here, observation points 0 and 1 are fixed with a distance of 100 meters. Among 
these shapes, shape 1 is a regular triangle, which was designed for comparing the proposed algorithm with the 
SPAC method and the CCA method (BIDO2.0 program of Cho) [8]. Shape 2 (right-angled triangle), shape 3 
(obtuse triangle) and shape 4 (near linear-array triangle) will be used for the proposed algorithm and the CCA 
method. And the last shape, shape 5 (linear array), will be tested for the proposed algorithm only. 

 
Fig. 5 – Array settings used for numerical simulations. 

For the wave sources, 10 sets of 8 randomly generated wave sources were used for every shape. Every 
source’s wave direction, 𝜃2, is randomly selected from set { F

Au
, EF
Au
, … , wxF

Au
, 2𝜋	}. And the power spectral density 

(PSD) function is 
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 𝑓(𝑥) = y𝐴 ∙ |𝑠𝑖𝑛
EFG
}
| , 0 < 𝑓 ≤ 10	𝐻𝑧
0, 10	𝐻𝑧 < 𝑓 ≤ 50𝐻𝑧

 (8) 

where 𝐴 is the amplitude randomly selected from set {1,2,4,8}. And 𝐷  is the denominator that randomly 
chosen from set {2,4,5,8,10}.	Fig.6 shows an example of PSD generated for a wave source in a case of A = 8 
and D = 5. 

 
Fig. 6 – An example of randomly generated PSD of one source. 

For settings of the constraint condition, considering the constraint 𝑘𝑟#$% ≤ 5, the defined dispersion 
curve 𝑐 = 	 U.^

GlA
𝑘𝑚/𝑠 and the relationship 𝑘 = EFG

H
, the effective range of frequency changes with 𝑟#$%. 𝑟#$% 

is the maximum distance among 𝑟#Y , 0 ≤ 𝑚, 𝑛 ≤ 𝑀. Since 100 ≤ 𝑟#$% ≤ 150 for all of the shapes, the 
maximum effective frequency 𝑓#$% varies from 1.74 Hz to 1.35 Hz. For this reason, we will discuss the results 
which are within 2.0 Hz range. 

 

Fig. 7 – The defined dispersion curve, 𝑐 = 	 U.^
GlA

𝑘𝑚/𝑠, for numerical simulation. 

As for the ABC algorithm, the searching range for the first unknown variable 𝑐, phase velocity, is 0 <
𝑐 < 1	𝑘𝑚/𝑠. This searching range was selected from the defined dispersion curve, the expression equation of 
which is 𝑐 = 	 U.^

GlA
𝑘𝑚/𝑠, as shown in Fig.7. For other unknown parameters, 𝑋A, 𝑌A, 𝑋E and 𝑌E, considering −1 ≤

cos	(𝑛𝜃2) ≤ 1, 0< 𝜆2 ≤ 1 and ∑ 𝜆2 = 1?
2@A , their searching range should be [−1, 1]. In addition, the number 

of food sources are set as 50 and the maximum cycle number for one optimization is 1000 here. 

3.2 Confirmation of the effect of the constraint condition 
Before the numerical simulations of sets of wave sources, simulations of one wave source were conducted. 
However, without the constraint, the results were not satisfactory since the ABC algorithm can get fluctuated 
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rather than smooth dispersion curves. Even for the regular triangle shape, shape 1, the calculated dispersion 
curve got large fluctuations with wave sources of certain directions. As shown in Fig.8, the blue line represents 
the original results of the regular triangle array without constraint process, which is proposed in section 2.3. 
There were sudden changes of the dispersion curve for frequency range from around 0.75 Hz to 1.0 Hz.  

 
Fig. 8 – One example of the effect of constraint condition. 

By checking the global minimums and local minimums of every cycle, we found that the ABC algorithm 
reached another local minimum as the final result. But for most of the situations, the relative ideal global 
minimum is still in the results vector, which means that we can pick it out by adding the constraint process as 
mentioned in section 2.3. After the constraint process, the sudden fluctuations disappeared and the resultsof 
frequency range less than 1.1 Hz is quite accurate, as shown in Fig.8. It can be seen that after applying the 
constraint condition, the effective range changes from [0.25	𝐻𝑧, 0.75	𝐻𝑧]	𝑎𝑛𝑑	[1.00	𝐻𝑧, 1.25	𝐻𝑧]  to 
continuous [0.25	𝐻𝑧, 1.1	𝐻𝑧]. This confirms the effectiveness of the proposed constraint condition and the 
applicability of this proposed algorithm to arrays with irregular shapes. 

3.3 Applicability to array with irregular shapes 
For every shape, 10 sets of wave sources were generated for the simulation. In addition, the proposed algorithm 
will repeat 10 times for every set of wave sources. The respective results of every shape are shown in Fig.9 
and the whole averaged results of 10 sets of wave sources are shown in Fig.10. 

In case of the regular triangle, right-angled triangle and obtuse triangle (Fig.9 (a), (b) and (c)), the 
estimation results of the proposed algorithm match the defined dispersion curve, black solid line (labeled 
‘Target’) for frequency range 0.25 Hz to 1.25 Hz. But the estimation results are poor for near linear-array 
triangle and linear array (Fig.9 (d) and (e)). Moreover, the shape of the constraint line, 𝑘𝑟#$% ≤ 5 (the black 
dotted lines), becomes more obvious for these two shapes. The constraint condition works successfully for 
relative regular shapes without showing obvious constraint lines, but when it comes to near linear-array shapes, 
because of larger fluctuations of the estimation results, the constraint effects become clearer. 

Although large deviations can be seen from the results, the averaged results in Fig.10 show a tendency 
of approaching the defined dispersion curve, especially shape 5. This suggests that when applying the proposed 
algorithm to field observations, for irregular shapes that are closer to linear shape, longer duration might be 
necessary to get accurate phase velocity. 

Also, it is strange that the near linear-array triangle’s averaged results are better than the linear array’s 
results. However, the deviation of shape 4 is obviously smaller than shape 5. The causes of this might include 
the generated wave sources’ difference, just the coincidence of averaging and so on, which can be a theme of 
future works. 

To conclude, the numerical simulation results confirmed the availability of proposed algorithm for array 
shapes that are not near linear-array situations. As for near linear-array situations, relative accurate results 
might be get by increasing the observation time. 
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                          (a) Shape 1, regular triangle                                  (b) Shape 2, right-angled triangle 

 
                           (c) Shape 3, obtuse triangle                               (d) Shape 4, near linear-array triangle 

 
(e) Shape 5, linear array 

Fig. 9 – The phase velocity results of 10 sets of wave sources for five array shapes 

 
Fig. 10 – The average phase velocity result of 10 sets of wave sources. 
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3.4 Comparison with the conventional methods 
Numerical simulations of SPAC method, shape 1 only, and CCA method, shape 1 to shape 4, were conducted 
with same signals as used in the previous section. For comparison, the results of the SPAC method, the CCA 
method and the proposed algorithm (labeled ‘CCF with ABC’) are all shown in one figure for every shape as 
shown in Fig.11.  

In the case of regular triangle, as shown in Fig.11 (a), proposed method got almost same effective range 
and accuracy with the SPAC method. The effective range is around 0.25 Hz to 1.35 Hz. As for the CCA method, 
it is more accurate for the lower frequency range, around 0 Hz to 0.85 Hz, but with larger standard deviations. 
Similar characteristics can be found for the right-angled shape (shape 2) and obtuse triangle (shape 3). However, 
the effective range of both the CCA method and the proposed method narrow with the array shape more 
irregular (or near linear-array shape). Inevitably, when it comes to the near linear-array shape (shape 4), the 
CCA’s effective range narrows to around [0.05	𝐻𝑧, 0.25	𝐻𝑧]  and the proposed method narrows to 
[0.35	𝐻𝑧, 0.6	𝐻𝑧] with an unsatisfactory mean values and larger standard deviations. 

Compared with the SPAC and the CCA methods, the proposed method can be applied to array with 
more irregular shapes. But for the lower frequency range, especially from 0.0 Hz to 0.25 Hz, the proposed 
method can’t get closer results for any shapes of arrays. It suggests that a combination of the CCA method and 
the proposed method will give better results with wider range and less restrictions of the shapes of array shapes. 

 
 (a) Shape 1, SPAC, CCA and proposed algorithm           (b) Shape 2, CCA and proposed algorithm 

 
(c) Shape 3, CCA and proposed algorithm               (d) Shape 4, CCA and proposed algorithm  

Fig. 11 – Estimation results of the SPAC method, the CCA method and the proposed algorithm, CCF with 
ABC algorithm. 
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4. Conclusion 
We proposed a new algorithm to estimate phase velocity of Rayleigh wave using an arbitrary shape array. This 
algorithm is based on the extension of CCF and the multivariable optimization algorithm, ABC algorithm. 
Also, a constraint condition, 𝑘𝑟#$% ≤ 5, is proposed to reduce the fluctuations of the results. 

To confirm the validity of the proposed algorithm, numerical simulations were conducted for five shapes, 
including regular triangle, right-angled triangle, obtuse triangle, near linear-array triangle and a linear array. 
The constraint process was proved effective for both one-source and multi-source wave fields.  

In conclusion, the numerical simulation results confirmed the availability of proposed algorithm for 
array shapes that are not near linear-array situations. Also, relative accurate results might be get by increasing 
the observation time for near linear-array situations. Still, for near linear-array shapes and linear array shape, 
the proposed algorithm’s accuracy is not satisfactory and needs further improvement. And a combination of 
the CCA method and the proposed method is suggested to get better results with wider range of frequency and 
less restrictions of the shapes of array shapes. In summary, we think the proposed algorithm can be applied for 
field observations with a more free arrangements of array. 

For future works, we want to study the causes of strange averaged results as mentioned in section 3.3 
and the limits of arrays with 3 observation points. The accuracy and arrangements of array shapes for arrays 
with 4 and more observation points can also be part of the future works. And the filed test of the proposed 
method will be conducted later. 
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