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Abstract 
The fast multi-pole indirect boundary element method (FM-IBEM) is proposed to efficiently solve the high-frequency 
and large-scale scattering of seismic waves by complex local sites under fluid-saturated poroelastic heterogeneous 
medium. The Graf addition theorem and the plane wave expansion theory, corresponding to 2-D solution and 3-D 
solution respectively, are utilized to solve the theoretical expansion formulas of fast multi-pole method. The bottleneck 
of dense matrix can be broken by replacing the coefficient matrix with a tree structure. Thus, the memory requirement 
and the CPU time for solving the system can be drastically reduced compared to the conventional indirect boundary 
element method, especially for the solution of high-frequency and multi-body wave scattering. Through the study of 
seismic motion in typical local sites, the effects of important parameters, including the incident wave frequency, 
incident angle, medium porosity and boundary drainage conditions, are discussed. 

Keywords: The fast multi-pole boundary element method (FM-IBEM); Scattering of seismic waves; Fluid-saturated 
poroelastic heterogeneous medium; Seismic motion 

1. Introduction
The wave propagation and diffraction excited by the subsurface scatterers, such as canyons, cavity and 
cracks, in fluid-saturated poroelastic medium play a great role in various filed such as in earthquake 
engineering, oil and gas exploration, geophysics, civil engineering and other fields.  Among the most 
frequently employed models is the dynamic poroelasticity theory developed by Biot ([1, 2, 3]), which 
successfully predicts the slow compressional wave and the frequency dependent attenuation and dispersion 
of waves in fluid-saturated poroelastic medium.  

The calculation for wave motion in poroelastic medium can be based on analytical solutions and 
numerical methods. Analytical methods are usually based on the wave function expansion [4, 5, 6]. 
Numerical methods include the finite element method [7, 8], the finite difference method [9, 10, 11], spectral 
element method [12], boundary element method (BEM) [13, 14, 15, 16], discrete wave number method, and 
other boundary-type or hybrid methods [17]. However, it should be noted that the method mentioned above, 
used to simulate the propagation and scattering of elastic waves in fluid-saturated poroelastic medium, is not 
so effective or efficient for the  large-scale and high-frequency problems. 

Thus, in recent years, many studies have been focused on improving the traditional BEM through fast 
algorithms. In this context, the fast multipole boundary element method (FM-IBEM), which can significantly 
reduce computational complexity and memory requirements, has great advantages and has become 
increasingly popular in recent years [18, 19, 20, 21]. Previous FM-IBEM studies were all based on single-
phase materials, such as solids or fluids. 

This paper is aimed at extending the previous work of the FM-IBEM developed by Liu et al. [20] for 
elastic waves to fluid-saturated porous medium. The developed methodology can efficiently solve 2-D and 3-
D large-scale or high-frequency wave scattering problems in a poroelastic unbounded domain. It can also be 
used to solve vibration problems in two-phase porous medium, such as soil-structure dynamic interaction, 
vibration isolation design in saturated site, etc. 
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The main content of the paper is as follows. In Section 2, the computational process of FM-IBEM is 
briefly introduced, including the process of expansion and the path of delivery. In Section 3, the numerical 
accuracy and efficiency are verified by comparing with the existing results. In Section 4, the scattering of 
elastic waves in classical sites is solved, and the effects of different parameters are discussed. Finally, 
Section 5 draws several important conclusions. 

2. The FM-IBEM 
According to the IBEM, the wave field consists of the scattered wave field and the free field. In a fluid-
saturated poroelastic medium, the former can be obtained by imposing the virtual loads of forces in each 
direction and fluid source on the surface of the discrete element. Considering boundary conditions, the 
densities of the virtual loads are obtained by solving the discretized integral equations. Finally, the solution 
can be constructed by the superposition of the free field and the scattered field solutions. 

In the traditional IBEM, Gauss-Jordan elimination and iterative methods such as GMRES usually be 
adopt to solve the fully-populated integral equations, and the solving time require O(N3) and O(N2), 
respectively. In the computational process, the equations matrixes will generate O(N3) memory storage. 
These defects affect the application of the BEM in actual large-scale and high-frequency wave scattering 
issues. Thus the FM-IBEM should be adopted to overcome these disadvantages. 

The crucial steps of the FM-IBEM are expansions and translations of Green's functions. Through these 
processes, element-to-element connections are transformed to cell-to-cell connections. Experimental result 
shows that the magnitude and time of computation are reduced dramatically and the efficiency increases 
greatly by using this method. 

2.1 Tree structure construction 
Element discretization in FM-IBEM is the same as that in BEM. Take a 2-D problem as an example, a large 
enough square is needed to set up to surround all elements discretized in the previous step (the cell of level 
0). Then this parent square is divided into four equal sub-squares (the cell of level 1). Continue to divide the 
square by this method until the minimum square meets the requirement for the number of elements included. 
The last step is to delete the squares without any unit integral point. A quad-tree structure is constructed after 
these processes. For 3-D field, cube is used instead of square for the same steps as in 2-D, and then the octree 
structure can be obtained. The cell without subset is called leaf cell, and the cell in its upper levels is called 
parent cell. 

 

 
Fig.1 Quad-tree structure and its construction [22] 

With the help of GMRES method, the coefficient matrix is replaced by a tree structure in the process 
of iteration, multiplied by the iteration quantity, and the coefficient matrix does not need to be displayed and 
stored. 
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2.2 The FMM expansion and translation 
Figure 2 illustrates the basic principles of the fast multipole boundary element method. Now assume y is the 
source point and x is the field point, y0 and x0 correspond to the center of the leaf cells, yc and xc correspond 
to the center of the parent cells, respectively, which satisfies |y - y0|≤ |x- y0|/2. The process that transforms the 
influence of virtual loads at point y to y0 is called the multipole expansion. Correspondingly, the processes 
from y0 to yc, yc to xc, xc to x0 and x0 to x are called shift of multipole to multipole moments, shift of multipole 
to local moments, shift of local to local moments and local expansion, respectively. 

 
Fig. 2 The basic diagram of the fast multi-pole boundary element method [23] 

The Graf addition theorem is applied in a 2-D case.  
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in which, Z represents three kinds Bessel functions, including J, Y, H; n is the truncation term used to control 
precision, and it can be determined by empirical formula given in Eq.(2) (Sakuma and Yasuda [24]); in terms 
of numerical, r2<r1 is required (if Z=J, this restriction can be ignored). Other symbols are shown in Fig.3. 

 
Fig.3 Plane parameters in the Graf addition theorem [22] 

log( )π= + +n kL c kL                                                               (2) 
where L is the length of leaf or parent cell, c is a parameter to control precision.  The expansion and 
application of kernel function can be found in the work of  Liu et al.[22].   

Following the plane wave expansion theory , [25], the multipole expansion of 3-D poroelastic wave 
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              02 log (2 )π= + +p kR c kR                                                           (7) 
in which, k is wave number, R and c0 are the circumcircle radius of a tree structure and precision control 
parameter, respectively. Refer to Liu et al. [23] for detailed process of calculation. 

3. Numerical accuracy and computational efficiency 
3.1 Verification of accuracy for the FM-IBEM 

To examine the numerical accuracy of FM-IBEM, verification will be performed as follow: comparing the 2-
D scattering of a plane P1 wave by a semi-circular canyon in poroelastic half-space calculated by FM-IBEM 
and IBEM. 

Fig.4 shows the 2-D scattering of plane P1 wave by a semi-circular canyon with drained surface in a 
fluid-saturated poroelastic half-space calculated by FM-IBEM and IBEM used in the work of Liang et al. 
[26]. The parameters are using dimensionless frequencies η=0.5, 10, with the medium porosities n=0.3; 
Poisson's ratio v=0.25, the angle of incidence θ=π/2, while the residual convergence 3-10=ε , and the 
hysteretic damping ratio is set as ξ=0.001. The results of the two methods are consistent, which indicates that 
FM-IBEM has sufficient accuracy. Thus, FM-IBEM prospered in this paper can be widely used. 
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Fig.4 Comparison between the displacement amplitudes around a semi-circular canyon by FM-IBEM and 

that of IBEM [22] 

3.2 Computational efficiency and memory requirement 
In order to verify the superiority of FM-IBEM in the calculation in a poroelastic half-space, the scattering of 
plane P1 wave by a semi-circle canyon is considered. Set the dimensionless frequency η=1.0, porosity n=0.3 
and the number of elements N=901-6,501 (DOFs=1,802-13,002). 

Fig.5 (a) and Fig.5 (b) display the total CPU time varying with degrees of freedom for FM-IBEM and 
IBEM. When DOFs=13002, the total CPU time reaches 193528s (about 54h), and the memory is more than 
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13GB. However, for the FM-IBEM, the CPU time increases approximately linearly along with the DOFs. 
When DOFs=13002, the requirement of total CPU time and memory capacity are reduced significantly by 
using FM-IBEM, with only 431s and 0.45 GB .Therefore, compared with IBEM, FM-IBEM reduces both 
computation time and memory capacity, which lays a foundation for the fast solution of broadband scattering 
or large-scale issues in a fluid-saturated poroelastic half-space. 
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Fig.5 Comparison of the total CPU time and memory capacity between FM-IBEM and IBEM [22] 

4. Numerical results and discussion 
In this Section, the proposed FM-IBEM method is applied to solve the broadband scattering of plane waves 
by local sites in a fluid-saturated poroelastic medium, which have significance in seismic wave analysis, 
nondestructive testing, geo-prospecting, etc. We shall examine the influences of the incident angle, 
frequency, porosity, and the permeable or impermeable condition of the boundary. 

Referring to Lin et al. [27], the parameters adopted are as follows: Poisson’s ratio v=0.25; critical 
porosity ncr=0.36; critical bulk modulus of the solid skeleton kcr=200MPa; bulk modulus of the solid grain 
kg=36,000MPa; bulk modulus of fluid kf=2,000MPa; mass density of the solid grain ρg =2,650kg/m3; mass 
density of fluid ρf =1,000kg/m3. 

4.1 The broadband scattering of elastic waves by a semi-circle canyon in a fluid-saturated 
poroelastic half-space 
The model is shown in Figure 6. In order to study the broadband scattering phenomenon of elastic wave by a 
semicircle canyon, P1 wave and SV wave are selected as incident waves with the dimensionless frequency 
η=1, 5, 10, 25, and the incident angle is set as θ=π/2. The final displacement amplitudes are normalized by 
the displacement amplitude of the incident waves. For P1 wave incident with the dimensionless 
frequency η=25, it should be noted that the GMRES iteration steps are 165, 102, 101 and 84 corresponding 
to the porosity n=0.1, 0.3, 0.34 and 0.36, respectively, and the total CPU time is about 20-25 minutes by the 
application of the FM-IBEM. 

 
Fig.6 Calculation model for 2-D scattering of elastic waves by a semi-circle canyon in a poroelastic half-

space 
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Fig.7 and Fig.8 illustrate the results of displacement amplitudes around a semi-circle canyon in a fluid-
saturated poroelastic half-space at different frequencies when the P1 and SV waves are vertically incident, 
respectively. Through observation and comparison, it can be seen that the effect of frequency on the 
scattering of waves is significantly. With the increase of frequency, the spatial variation of displacement 
amplitude becomes more drastically. The numerical results reveal that the peak of displacement amplitude 
often appears around the corner of the semicircle canyon (x/a= -1) which is due to the focusing effect of the 
elastic wave at the corner of the canyon caused by diffraction effect. For the high frequency, such as η=25, 
the bottom of the canyon is similar to a horizontal surface. Therefore, the diffraction effect becomes 
inconspicuous, and the displacement amplitude at the bottom of the canyon is closed to that of horizontal 
surface in the free field. In addition to the bottom of the canyon, there is a special phenomenon on the 
horizontal ground surface that the displacement amplitude converges to the free field displacement amplitude 
as the frequency increases. 
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Fig.7 The displacement amplitudes of P1 wave with different frequencies incident around a semi-circle 

canyon in a fluid-saturated poroelastic half-space 
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Fig.8 The displacement amplitudes of SV wave with different frequencies incident around a semi-circle 

canyon in a fluid-saturated poroelastic half-space 

4.2 The 2-D scattering of P1 wave by cracks in a fluid-saturated poroelastic half-space 
The model is shown in Fig.9. Define the major axis of the crack as a, and the minor axis semi-diameter as b. 
In order to study the effect of cracks on the scattering of P1 wave in a fluid-saturated poroelastic half-space, a 
single crack placed horizontally with a circumference ratio a/b=10 and the depth d=2a is taken as an example. 
Set the drainage condition is drained. 
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Fig.9 Calculation model for 2-D scattering of elastic waves by cracks in a poroelastic half-space 

Fig.10 and Fig.11 show the displacement amplitudes at different frequencies (η=1, 3, 5) and porosities 
(n=0.1, 0.3, 0.34, 0.36). Through observation and comparison, it can be seen that the scattering of wave is 
not only affected by frequency, but also by porosity and the angle of incidence. When the porosity gradually 
approaches the critical porosity (n=0.36), the spatial variation of surface displacement is more complicated. 
When the P1 wave is incident obliquely, the horizontal displacement amplitude changes are greater than the 
vertical displacement amplitude. It means that the horizontal displacement amplitude is greatly affected by 
the porosity and increases with frequency. 
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Fig.10 The displacement amplitudes of P1 wave with different frequencies incident around a crack in a fluid-

saturated poroelastic half-space (θ=0) 
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Fig.11 The displacement amplitudes of P1 wave with different frequencies incident around a crack in a fluid-

saturated poroelastic half-space (θ=π/6) 
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4.3 The broadband scattering of plane P1 wave by a semi-spherical canyon in a poroelastic half 
space 
The calculation model is given in Fig.12. The semi-spherical canyon surface is assumed to be drained. Fig.2 
shows the displacement amplitudes of section A (x=0) under incident plane P1 wave. Where, the parameters 
are selected as n=0.3, θ=0 and π/6, η=1, 5 and 10. Section A is selected as output section. 

 
Fig.12 Calculation model for 3-D scattering of elastic waves by a semi-spherical canyon in a poroelastic 

half-space 

The results given in Fig.13 show that the peak displacement amplitude usually occurs at the corner of 
the canyon for low-frequency P1 waves due to the wave focusing effect. However, with the increase of 
incident frequency, the amplification effect also appears at the bottom of the canyon. These are consistent 
with the results in Section 4.1. We also observe that the seismic responses of the 3-D canyon under vertically 
incident P1 waves (θɑ =0o) is different from that of oblique incidence (θɑ =30o)in the spatial distribution. 
Also, the vertical displacement amplitude forθɑ =0o is similar to that of the oblique incidence, but the latter 
can generate significant amplification effect on the horizontal displacement amplitude. Moreover, under the 
obliquely incident wave, due to the shielding effect of the canyon, surface displacement responses on the 
right of the canyon is smaller than that on the left of the canyon. 
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Fig.13 The displacement amplitudes of P1 wave with different frequency and angel around a semi-spherical 

canyon in a poroelastic half space 

5. Conclusions 
The fast multi-pole boundary element method (FM-IBEM) that combines the fast multi-pole method with 
indirect boundary element method (BEM) is developed to solve seismic wave motion in a fluid-saturated 
poroelsatic half space. The broadband and efficient solution of the scattering of elastic waves by local sites in 
a fluid-saturated poroelastic half-space is realized , which supplies a good reference case for other numerical 
methods. Numerical results demonstrated that this proposed method effectively breaks through the 
bottleneck of the dense matrix characteristic in solving large-scale and high-frequency problems and greatly 
improve the computing efficiency of traditional BEM. Through the simulation and  analysis for typical local 
sites such as a semi-circle canyon, crack and a group of cracks in 2-D half-space, and a semi-spherical 
canyon in 3-D half-space, the wave focusing effect and amplification effect under different topographic 
conditions due to the mechanism of elastic wave diffraction and coherence are clearly revealed. The 
scattering of elastic waves in a fluid-saturated poroelastic mediums strongly dependent of the incident wave 
frequency, incident angle, medium porosity, and boundary drainage conditions. Whether in 2-D or 3-D half-
space, canyon will cause an amplification effect of displacement amplitude, and the effect is more obvious at 
the corner of the canyon. In addition, the existence of a group of cracks and spherical cavities shows the 
isolation effect on the half-space surface motion, especially for vertical displacement amplitude, and the 
effect becomes more obvious with the increasing of incident frequency. The results are helpful to deeply 
understand the seismic wave propagation and scattering in fluid-saturated poroelastic medium. It is 
significantly important to seismic fortification in fluid-saturated complex sites in urban areas 
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