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Abstract 

Applications of machine learning techniques in the field of earthquake engineering are in progress.  This study presents 
a retrospective analysis of earthquake occurrence applying an autoencoder method, which is one of machine learning 
techniques, to the maximum shear strain time series calculated from GNSS (Global Navigation Satellite System) 
observation data. The main purpose of this study is to investigate if the method is capable of detecting premonitory 
symptoms of an earthquake. This study deals with the 2016 Kumamoto Earthquake, which struck the Kumamoto area of 
Kyushu Island in Japan with a magnitude of Mw 6.2 and a magnitude of Mw 7.0, causing fatal victims of more than 250 
and badly damaging various kinds of structures in the Kumamoto Prefecture district. The temporal processes leading to 
the earthquake were accurately monitored by GEONET which stands for GNSS Earth Observation Network System 
operated by the Geospatial Information Authority of Japan.  It covers entire area of Japan with approximately 1,300 
reference points, and the observed data are provided through the Internet.  Among observed data, this study utilizes F3 
solution (daily coordinate value). The strain time series during the 2016 Kumamoto earthquake are numerically 
obtained in the neighborhood of the seismic source as well as in distant areas from the source.  The Kyushu area is 
divided into triangular meshes with their nodes by the GEONET observation points. The shear strains of the triangular 
meshes are calculated from the deformation data at the nodal points using a method used in FEM.  Then, the 
autoencoder, which belongs to the unsupervised learning, is applied to the time series of the strain data at each 
triangular element.  The autoencoder used in this research is a three-layer neural-network consisting of the so-called 
encoder and decoder with accompanying dimension reduction.  Considering that GNSS data are more or less 
contaminated with noises, the encoder is expected to efficiently work for denoising original input to obtain compressed 
representation.  The weights of the network are determined so that the same data as the input layer are reproduced at the 
output layer.  Hence, if normal data are given to the input, the network reproduce data similar to the input normal data at 
the output.  In this study, the autoencoder learns a representation of the strain data for the period between the 2011 
Tohoku earthquake and several years before the 2016 Kumamoto earthquake occurrence, assuming that this period of 
the data includes no earthquake symptom.  Then, using all the strain data after the 2011 Tohoku earthquake until just 
before the earthquake occurred as an input, the autoencoder reproduces the output. The difference between the output 
and the original data is called as reconstructed error which is assumed to be related with abnormality of the maximum 
shear strain data.  Obtained results showed that reconstructed errors drastically increased before the earthquake occurred 
near the large coseismic deformation area, whereas the method is not effective in the smaller coseismic deformation 
area. This study conclusively indicates that the application of machine learning techniques to the temporal variations of 
crustal strains is useful for detecting premonitory symptoms of an inland earthquake such as the 2016 Kumamoto 
Earthquake. 
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1. Introduction 

The GNSS Earth Observation Network System operated by the Geospatial Information Authority of Japan 
(GSI) is called GEONET.  Here, GNSS stands for Global Navigation Satellite System.  The system covers 
the entire area of Japan with approximately 1,300 reference stations, and the observed data are provided 
through the Internet.  The provided data can be utilized not only for surveying work but also for other 
purposes including i-Construction, disaster prevention for volcano and earthquake [1].  

 The authors have also been utilizing the data for the observation of recovery process from crustal 
movement caused by the 2011 off the Pacific Coast of Tohoku Earthquake, and have discussed effects of 
recovery from the crustal movement on the reconstruction work of fishing port facilities [2],[3].  We are also 
pushing utilization of the GNSS data for the earthquake prediction.  All that matters in the prediction is how 
to make judgement on the phenomenon that is likely to be the symptom of occurrence.  Without depending 
on a subjective judgement, objective judgement based on the objective data analysis is quite important.  
Kamiyama et al. [4] have attempted to detect symptom of earthquake occurrence from the pattern 
recognition of an index that is believed to represent the daily activity degree of the crustal movement.   

 In this study, a machine learning method used in the field of anomaly detection is incorporated for the 
prediction of earthquake occurrence.  Autoencoder [5], which belongs to one of unsupervised machine 
learning algorithms, is applied to the strain time series (maximum shear strain) calculated from the GEONET 
observation data of displacements to detect any kind of anomaly.  This study utilizes strain time series of 
ground obtained by Kamiyama et al. [6] for the 2016 Kumamoto earthquake near the epicenter as well as 
distant from the epicenter.   

 

2. Evaluation of strain time series from GEONET data 

In this study, strain time series are evaluated based on the method by Kamiyama et al. [6] for the Kyushu 
island during the time period including the 2016 Kumamoto earthquake.  An assumption is made that strain 
time series up to several years before the main shock 
does not include any symptom of earthquake 
occurrence.   

2.1 Data used  

This study utilizes the F3 solution of daily coordinate 
value provided by the GSI.  A value averaged over 
the 24 hours is open to the public, as 12:00 (UTC) 
value.  

2.2 Element division 

Kamiyama et al. [6] divided the whole Kyushu island 
by the triangular mesh based on the Delaunay 
triangulation algorithm as shown in Fig.1.  The 
vertexes of each triangle correspond to the GEONET 
observation stations where two horizontal and one 
vertical displacements are available.   

2.3 Maximum shear strain  

Referring Kamiyama et al. [6], maximum shear strain 
of a triangular mesh is evaluated based on equation  

Fig.1  Delaunay triangulation 
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(1) through (4).  Strain and displacement relationship is 
given by equation (1).  

    B U                               (1) 

Here,    , ,EW NS NE     where EW  stands for 

normal strain in east-west direction, NS  is normal 

strain in north-south direction, NE  represents shear 

strain.  Regarding the displacement vector, 

   , , , , ,
T

i i j j k kU u v u v u v , , ,i j ku u u  are 

displacements in the east-west direction at the nodes 
, ,i j k  , , ,i j kv v v  stands for displacements in the north-

south direction at the nodes , ,i j k .  Maximum 

principle strain max , minimum principle strain min  

and maximum engineering shear strain max  can be calculated from the following equations.  

2 2

max 2 2 2
EW NS EW NS NE              

   
                                              (2) 

2 2

min 2 2 2
EW NS EW NS NE              

   
                                               (3) 

max max min

2 2

  
                                                                   (4) 

 

3. Evaluation of reconstruction error by using autoencoder 

3.1 Autoencoder  

As shown in Fig.2, autoencoder [5] used in this research is a three-layer neural network consisting of the so-
called encoder and decoder with accompanying dimension reduction.  The network learns the characteristics 
of the input signal by weights so that output signal is reproduced as same as the input signal.  Hence, if 
normal data is given as input, weights are determined so that normal data is reproduced as output.  
Considering that GNSS data are more or less contaminated with noises, the encoder is expected to efficiently 
work for denoising original input signal to obtain compressed representation.  Note that this study used 
Neural Network Toolbox and Statistics and Machine Learning Toolbox of MATLAB [7] for the application 
of autoencoder.  

3.2 Anomaly detection by reconstruction error 

If the input signal is normal, its reconstruction error becomes small as almost the same signal is reproduced 
as output.  Here, the reconstruction error is defined in this study as the square root of the mean square error 
between the input signal and the output signal.  However, the reconstruction error becomes larger if the input 
signal includes some abnormal data, as the reconstructed signal becomes different from the input signal.  In 
this study, the reconstruction error is assumed to be an index that reflects premonitory symptoms of an 
earthquake.  

 
Fig.2  Autoencoder 
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3.3 Basic characteristics of autoencoder 

Before applying the autoencoder method to the GEONET observation data, it is applied in this section to 
simple sinusoidal wave to deepen understanding of the algorithm.  A sinusoidal wave that consists of 2000 
data points with 0.01 sec time interval is prepared.  The first half is used for learning and the whole data is 
used for the examination.  One sample consists of 50 data points, hence, it follows that 2000 data consists of 
40 samples.  

 Fig.3 shows a sinusoidal wave that changes its amplitude from 1 to 2 at the 10 sec.  The bottom of 
Fig.3 shows calculated reconstruction error.  It is understood from the results that the change of amplitude of 
the signal affects reconstruction error, and abnormality is detected.  

 Next, we consider a sinusoidal wave that changes its frequency from 1Hz to 2Hz at 10 sec.  As shown 
in Fig.4, frequency change of a time series is recognized as a kind of anomalies.  Effect of noise on the 
anomaly detection is also discussed in Fig.5.  As previous case, a sinusoidal wave that changes its frequency 
from 1Hz to 2Hz is considered but the signal is contaminated with a noise generated based on normal 
random numbers.  In this case, the frequency change is also detected as anomalies.  

 Some crustal movements exhibit distinguished ordinary crustal rising/descending, hence, deviation 
from the baseline of a sinusoidal wave of constant amplitude and frequency is considered next as shown in 
Fig.6.  The reconstruction error shows that if the ordinary crustal movement is non-negligible compared with 

         
Fig.3  Change of amplitude                                             Fig.4  Change of frequency 

 

            
Fig.5  Change of frequency with noise                                    Fig.6  Effect of bias 
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the crustal movement by an earthquake, the ordinary movement may affect the results.  Hence the baseline 
correction may be needed.  

 

4. Results 

Taking into account the above discussion, the autoencoder method is applied to the GEONET data.  
Maximum shear strain time series are evaluated for all the triangular elements in Kyushu (Fig.7) by 
Kamiyama, however, this study exemplarily used six time series near the large coseismic deformation area 
and another six time series distant from the large coseismic deformation area.  

Table 1  Available number of data 

 Element Available number of data 
between  2993-4850 

Element Available number of data 
between 2993-4850 

1 252 1838 196 1848 

2 248 1824 297 1815 

3 254 1839 149 1819 

4 266 1803 173 1829 

5 277 1816 84 1849 

6 278 1839 334 1850 

 

           
Fig.7  Triangular meshing in Kyushu island  
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4.1 Used data 

Setting the starting date of observation to be Jan.1, 2003, the F3 solution data (the daily coordinate data) 
from March 12, 2011 (the aggregate number of days from Jan.1, 2003 is 2993) to the day several weeks 
before the 2016 Kumamoto earthquake were utilized.  Here, March 12, 2011 is the next day after the 2011 
off the Pacific Coast of Tohoku Earthquake.  The biggest foreshock of the Kumamoto earthquake occurred 
on April 14, 2016 on which the aggregate number of days from Jan.1, 2003 is 4853.  Hence, we assumed the 
data from 2993 to 4850 (a couple days before the foreshock) can be used at most for the purpose of this study. 

Table 1 shows available number of strain data between 2993 and 4850.  Because of data missing 
differently occurred at each observation station, the numbers of available strain data at each observation 
station are different from each other.  This study used 1800 data, simply treating the daily coordinate values 
as a time series for the machine learning.  Among the total data, the first half 900 data are used for the 
learning assuming that they include no earthquake symptom, and the total 1800 data are used for the final 
examination.  Assuming that a single sample consists of 50 data, it follows that 36 samples were analyzed to 
calculate the reconstruction error for each element.  Note that the dimension of the hidden layer is set as 25.   

4.2 Reconstruction error near the large coseismic deformation area  

We first focus on the elements near the large coseismic deformation area shown in Fig.7.  The autoencoder 
method is applied to the maximum shear strain time series of the elements.   
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Fig.8  Element 252                                              Fig.9  Element 248 
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Fig.10  Element 254                                              Fig.11  Element 266 
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 As an example, explanation is 
given about element 252.  The element 
252 consists of 3 nodes (the Kikuchi, 
Choyo, and Kumamoto observation 
stations of GEONET).  Fig.8 top shows 
maximum shear strain time series where 
some sudden change like a step-function 
can be seen at the time of the 
Kumamoto earthquake.  The calculated 
reconstructed error is shown in the 
bottom of the figure.  An drastic 
increase of reconstruction error can be 
recognized approximately 9 months 
before the earthquake. 

An increasing tendency of the 
maximum shear strain also can be found 
for elements 248 and 254 as shown in 
Fig. 9 and 10, however, only element 
254 showed drastic increase similarly to 
element 248.  For other elements 266, 
277 and 278, which locate in the smaller 
coseismic deformation area, such a 
drastic increase in the reconstruction 
error before the earthquake is 
unnoticeable as shown in Figs.11 
through 13.  

4.3 Reconstruction error distant from 
the large coseismic deformation area  

Elements not only near the large coseismic deformation area but also distant from the large coseismic 
deformation area were also examined.  Fig.14 shows the elements chosen for this purpose.  The distances 
between the epicenter and the centers of each element range from approximately 65 km to 160 km in all 
directions.  Triangular elements here were chosen so as to be regular shaped as possible.  

 
Fig. 14  Distant elements chosen 

    
Fig.12  Element 277                                              Fig.13  Element 278 
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 Fig.15 through 20 show the maximum shear strain time series (top) and reconstruction error (bottom) 
for these elements.  Looking at the bottom of these figures, none of them showed drastic increase of the 

    
Fig.15  Element 196                                              Fig.16  Element 297 

    
Fig.17  Element 149                                              Fig.18  Element 173 

    
Fig.19  Element 84                                              Fig.20  Element 334 
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reconstruction error.  

 

5. Concluding remarks  

This study presented a retrospective analysis of earthquake occurrence applying the autoencoder method, 
which is one of machine learning techniques, to the maximum shear strain time series calculated from 
GEONET observation data.  The autoencoder learned a representation of the strain data by the weights for 
the time period between the 2011 Tohoku earthquake and several years before the 2016 Kumamoto 
earthquake occurrence, assuming that this period of the data includes no earthquake symptom.  Then, using 
all the strain data after the 2011 Tohoku earthquake until just before the earthquake occurrence as an input, 
the autoencoder method reproduced the output. The difference between the output and the original input data 
is called as the reconstructed error which is assumed to be related with abnormality of the maximum shear 
strain data.  Results showed that reconstructed errors showed drastic increase some months before the 
earthquake occurrence near the large coseismic deformation area, whereas the method is not effective in the 
smaller coseismic deformation area. This study conclusively indicates that the application of machine 
learning techniques to the temporal variations of crustal strains is useful for detecting premonitory symptoms 
of an inland earthquake such as the 2016 Kumamoto Earthquake.  
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