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Abstract 

The spectral ratio methods have been widely used in the evaluation of nonlinear seismic site response. Nevertheless, it 

is still inefficient and subjective to identify the stations with nonlinear site response according to empirical threshold 

values of spectral ratio nonlinear degree indicators. The clustering algorithm in machine learning was firstly applied in 

this paper to address this problem using the September 6th, 2018 Japan Hokkaido eastern Iburi earthquake as an 

example. Firstly we calculated the surface/borehole spectral ratios using strong ground motion data recorded at KiK-net 

vertical array. The degree of nonlinear site response (DNL) and percentage of nonlinear site response (PNL) were 

computed based on the difference between strong motion in mainshock and weak aftershocks as their linear site 

response reference. Then the K-means clustering algorithm was introduced and incorporated in the nonlinear site 

response identification using the DNL, PNL, ground motion strength (PGA) and site condition (VS30) as explanatory 

variables. After careful multicollinearity diagnosis and confirmation of the optimum number of clustering, we 

successfully classified stations into two clusters, representing stations with nonlinear and linear site response 

respectively. The clustering results are overall in good agreement with the classification results indicated by empirical 

thresholds of several nonlinear indicators. The deamplification and shift of frequency could also be visually observed 

from the spectral ratio curves regarding ground motions in mainshock and aftershocks, which show the typical 

nonlinear site response characteristics. This work provides an enlightening example of using state-of-art machine 

learning technique to solve the traditional earthquake engineering problems. 

Keywords: Nonlinear site response; spectral ratio; K-means clustering algorithm; Hokkaido eastern Iburi earthquake; 

1. Introduction 

It is widely recognized that the seismic response characteristics of surface soft soil become nonlinear 

when it is struck by strong motion. More and more evidence in subsequent earthquakes showed that the soil 

nonlinear behavior could be indicated and evaluated by comparative spectral ratio curves computed from 

weak and strong motions[1][2]. When the ground motion input exceeds a certain threshold, the shift of the 

resonant frequencies toward lower values and a reduction in the associated amplification would be observed 

in the spectral ratio curves. To quantify the difference between linear and nonlinear site responses, some 

indicators had been proposed to evaluate the degree of nonlinearity. The most widely used parameters are the 

degree of nonlinearity of site response (DNL) and the percentage of nonlinearity (PNL), which were 

proposed in Ref.[3] and [4] respectively.  

Although both parameters have been commonly used in practice, it is not an easy job to definitely 

classify the sites with and without soil nonlinearity only rely on their values. That’s partly because the 

empirical thresholds of the DNL or PNL are relatively subjective and changed with specific earthquake 

events and site conditions[5][6]. In addition, the identification results based on the fixed threshold of DNL 

and PNL are not always the same considering the variability of spectral ratio curves. Besides that, the ground 

motion input level and the site condition both need to be comprehensively considered by users to get 
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plausible classification results. It is well recognized that the larger the ground motion input level is and the 

softer the soil condition is, the more likely site response will behave nonlinearity. However, the 

corresponding classification thresholds for both the ground motion intensity and soil condition are also 

unfixed especially for the latter one. In practice, the judgment of nonlinear site response depends on the 

existing knowledge and past experience of researchers. The manual classification process will cost a lot of 

time especially when the number of records is large. 

In view of these defects, the clustering algorithm of state-of-art machine learning technique is firstly 

incorporated in the seismic nonlinear site response identification in our study. Clustering analysis is one of 

the main tools of exploratory data mining. It is actually not one specific algorithm, but an unsupervised 

machine learning process that classifies unlabeled similar objects into the same group or cluster[7].  It is 

usually served as a useful tool for solving the multi-objective optimization (MP) problems[8], which is 

concerned with more than one objective function to be optimized simultaneously. The stations with nonlinear 

site response have similar recorded large ground motion, similar site condition covered by soft soil and 

similar feature in the spectral ratio curve that could be measured by DNL or PNL. These inherent similarities 

provide solid foundations for the use of clustering analysis to classify stations with and without nonlinear site 

response, which can be regarded as a typical MP problem that needs to consider all these factors as variables 

in objective functions to get a comprehensive result.  

In this study, the recent September 6th, 2018 Hokkaido eastern Iburi earthquake (Mw6.6) was taken as 

an example to analyze the nonlinear seismic site response. The surface/borehole spectral ratio were 

calculated using strong ground motion data recorded at KiK-net vertical array. Then the values of DNL and 

PNL were computed using weak motions recorded in aftershocks as linear site response reference. Then the 

K-means clustering algorithm was introduced and applied in the nonlinear site response identification 

considering the DNL, PNL, PGA and the VS30 as clustering variables. 

2. Strong ground motion data and process 

The September 6th, 2018 Hokkaido eastern Iburi Earthquake (Mw6.6) occurred as the result of 

shallow reverse rupture (according to the preliminary focal mechanism solution provided by the USGS, 

https://earthquake.usgs.gov). The hypocenter depth of the earthquake is 35.0 km and located in the island of 

Hokkaido. A total number of 208 KiK-net stations were triggered in the mainshock. To investigate the 

possible nonlinear seismic site response based on these strong motion data, we studied the stations with 

epicenter distance less than 200 km as shown in Fig.1. 
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Figure 1. Location of the studied KiK-net stations and mainshock epicenter of the Hokkaido eastern Iburi 

earthquake; The surface PGA contour map of the studied region and the preliminary focal mechanism 

solution provided by USGS were also shown. (c) Surface PGA distribution with the epicenter distance and 

the Histograms of VS30 values for the selected stations 

The weak motions were selected from 29 aftershocks for computation of reference linear site response 

according to the following criterions: (1) The geometric mean of surface-PGA of two horizontal components 

should be less than 30 cm/s
2 

to remove stations potentially affected by soil nonlinearity. (2) At least five 

records matching criterion (1) were recorded in each station to ensure a relatively low scattering level of the 

spectral ratio curves. Finally, 39 KiK-net stations were selected to evaluate their nonlinear site response 

during the mainshock. The corresponding location of studied stations and the PGA contour map was shown 

in Fig.1. The station code, PGA (recorded at surface and borehole), and VS30 (a proxy for the site condition) 

of each station were listed in Table 1. The surface-PGAs correlating with epicenter distance of the selected 

records are shown in Fig.1(c), clearly illustrating that the selected records have a uniform distribution within 

a range of 200 km and half of them are higher than 50 gal. The histograms of the values of VS30 for the 

selected stations, two-thirds of them exhibit a value of VS30 smaller than 500 m/s respectively. Potential 

nonlinear site response may be observed in this region regarding the relatively high ground motions recorded 

and the relatively soft surface soil existed. 

Table 1. Information of the selected 39 KiK-net strong-motion stations and the values of indicator (DNL and 

PNL) used for identifying the nonlinear site response 

No. Station Code Epicenter Dis. 

（km） 

PGA(gal) VS30(m/s) DNL PNL Nonlinearity 

Identification 

result 
Borehole Surface 

1  AOMH01 158 10.8 44.2 302 2.3  2.9  L 

2  AOMH03 183 6.5 12.9 654 1.1  2.0  L 

3  AOMH06 200 5.1 34.3 434 1.3  3.1  L 

4  HDKH01 19 108.4 584.1 368 5.9  37.5  NL 

5  HDKH03 31 36.1 312.8 341 3.6  21.8  NL 

6  HDKH04 21 138.5 389.1 235 5.4  25.4  NL 

7  HDKH05 46 22.5 58.6 766 2.0  5.0  L 

8 HDKH07 98 9.7 33.4 459 1.3  2.4  L 

9 HYMH01 168 4.9 10.8 395 1.2  4.0  L 

10 HYMH02 160 10.1 25.8 498 1.1  2.9  L 

11 IBUH01 24 218.7 1105.5 307 5.7  48.4  NL 

12 IBUH02 22 102.2 485.8 542 4.9  32.7  NL 

13 IBUH05 55 95.0 207.4 379 4.2  11.3  NL 

14 IBUH06 88 46.0 238.4 304 5.4  14.5  NL 

15 IBUH07 77 61.8 208.9 259 3.5  7.8  L 

16 IKRH01 86 34.5 137.3 405 1.4  5.4  L 

17 IKRH03 36 125.0 180.6 326 4.7  15.9  NL 

18 KKWH08 66 9.0 56.5 311 2.8  11.2  L 

19 KKWH12 102 6.3 10.7 771 1.9  4.7  L 

20 KKWH13 96 10.5 36.7 356 2.4  4.8  L 

21 KKWH14 87 9.9 21.8 538 3.5  5.9  L 

22 KSRH01 188 7.0 19.4 215 4.4  7.0  L 

23 KSRH02 179 7.5 23.1 219 3.2  5.8  L 

24 KSRH07 196 5.5 21.7 204 1.9  5.3  L 

25 KSRH09 165 8.4 31.9 230 2.0  6.2  L 

26 OSMH01 179 4.4 14.5 239 2.0  4.6  L 

27 OSMH02 148 25.6 75.3 325 2.6  2.8  L 
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28 SBSH08 84 14.8 106.9 325 3.5  10.7  L 

29 SBSH09 124 5.1 8.9 719 1.0  2.1  L 

30 SRCH06 111 16.9 36.6 321 2.0  6.2  L 

31 SRCH07 60 20.2 92.0 316 2.0  4.0  L 

32 SRCH08 91 17.5 68.4 347 4.0  10.3  L 

33 SRCH09 43 109.4 515.2 241 5.4  20.2  NL 

34 SRCH10 33 55.3 117.6 1027 2.4  7.3  L 

35 TKCH01 161 4.9 9.8 445 1.2  3.8  L 

36 TKCH03 133 9.1 26.5 372 3.2  4.7  L 

37 TKCH04 91 15.4 41.4 446 2.0  7.2  L 

38 TKCH05 140 6.7 31.8 337 1.5  4.4  L 

39 TKCH10 104 6.8 10.4 804 1.7  5.1  L 

“NL” means that the stations were identified with nonlinear site response 

“L” means that the stations were identified with linear site response 

3. Quantification of the nonlinear site response 

3.1 Nonlinear site response indicator parameters 

The DNL parameter (the degree of nonlinearity of site response) was proposed by Noguchi and 

Sasatani(2008)[6] as in equation (1).  
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Where Rstrong is the spectral ratio value for strong ground motion in mainshock; Rweak is the average 

spectral ratio values computed using weak aftershock records; fi is the ith frequency. This parameter is 

calculated in the frequency range [0.5–20] Hz in this paper. N1 is the first index of the frequency that is 

above 0.5 Hz, and N2 is the last index of the frequency that is below 20.0 Hz.  

In order to take into account the variability of the linear reference site response curve, the indicator 

PNL(the percentage of nonlinearity) was proposed by Régnier et al. (2013)[4] as follows: 
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Where the ( )
weak

R i  and ( )
weak

R i  represent the values of the average linear spectral ratio curve minus 

and plus one standard deviation at ith frequency fi respectively; N1 is the first index of the frequency that is 

above 0.5 Hz, and N2 is the last index of the frequency that is below 20.0 Hz. It is normalized by the linear 

site-response spectral ratio curve in order to give an absolute estimation of the nonlinear soil behavior 

independent of the linear site-response amplitude. 

3.2 DNL and PNL computation results 
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The DNL and PNL were calculated based on the records processed above. Although there is 

apparently positive correlation relationship between DNL, PNL and surface PGA as illustrated in Fig.2, the 

data are clearly scattered due to the variability of spectral ratio curves. In addition, the site condition also 

might has slight impact on the DNL and PNL value. The site which has high PGA and low DNL shows 

higher value of VS30. 

 

Figure 2. (a) DNL, (b) PNL versus the observed horizontal PGA  at ground surface. The Vs30 value were 

illustrated using different color.  

The contour maps of DNL and PNL were plotted in Fig.3 using hermit interpolation, which indicates 

the generally spatial region of the occurrence of nonlinear site response. It turns out to be very hard to 

ascertain the exact region or stations with nonlinear site response if just by means of the empirical threshold 

of DNL or PNL. Besides the inherent scatter of DNL and PNL values, the ground motion strength and site 

condition will also influence the degree of the nonlinear site response. If we manually compare and check the 

spectral ratio curves of each station, it will cost a lot of time and lead to loss of objectivity in the results. 

Thus, we will use the K-means clustering algorithm to give a comprehensive explanation of the observed 

data in the next section. 

Figure 3. The DNL and PNL contour map calculated using ground motions recorded at KiK-net 
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4. Clustering the stations with/without nonlinear site response 

4.1 Clustering analysis and K-means clustering algorithm 

Clustering analysis refers to the process of organizing items into groups based on their similarity. The 

generated clusters consist of a set of data that are similar to each other in the same group but dissimilar from 

data in other groups. The clustering analysis categorizes unlabeled data based on the observations themselves 

only and is thus regarded as an unsupervised classification procedure, which is the most essential 

characteristic compared with traditional empirical-model based classification procedure.  

K-means clustering is one of the most widely used methods for cluster analysis in data mining [9]. K-

means clustering aims to partition n observations into k clusters in which each observation belongs to the 

cluster with the nearest mean value, serving as a prototype of the cluster. Given a set of observations (x1, 

x2, …, xn), where the nth observation xn is a d-dimensional real vector with d explanatory variables, K-means 

clustering partitions n observations into k sets S = {S1, S2, …, Sk} so as to minimize the sum of variance J as 

defined in Eq.(4). The 

1

1

( )
K

p p

n k

k

x 


  is the Minkowaki distance to describe the “difference” between the 

observation xn and the kth clustering centroid point μk. When p equals 1 and 2 respectively, it represents the 

commonly used Euclidean distance and the Manhattan distance (or City-block distance) [10] 
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The main steps are: 

Step1: k initial "means" are randomly generated within the data domain.  

Step2: The corresponding k clusters are created by associating observation with the nearest mean.  

Step3: The centroid of each of the k clusters μk becomes the new mean.  

Step4: Step 2 and 3 are repeated until convergence criteria is reached, that is, it  reaches the specified 

maximum number of iterations or the centroid of each cluster does not change.  

Considering our problem, each station is treated as one observation with four explanatory variables 

characterizing nonlinear site response, including the ground motion intensities (Surface-PGA or Borehole-

PGA), soil condition (VS30), DNL and PNL. The task of K-means clustering algorithm is to partition the 

stations into at least two clusters representing stations with nonlinear and linear site response respectively. 

As one of the mature clustering analysis tools, the Clustering Toolbox of MATLAB [11] was utilized in this 

paper to achieve this goal. 

4.2 Multicollinearity diagnosis and standardizing the clustering variables 

Before we utilize the K-means clustering, multicollinearity diagnosis is needed to be carried out in the 

first step to guarantee that there are no completely linear correlations between explanatory variables[12]. 

Otherwise, one variable could be linearly expressed by other variables, and the redundant variables may 

cause unnecessary fluctuation in the clustering results due to a few outlier data. The variance inflation factor, 

VIF, is commonly used to estimate the degree of the multiconllinearity between different variables[13][14]. 

First running a least square linear regression that the ith variable vi is represented as a function of all the other 

explanatory variables. The fi is the regression prediction value. 

1 1 2 2 1 1 1 1... ...i i i i i iv f a v a v a v a v b             (5) 

where b is a constant parameter and ε is the error term. 

The VIFi of vi is computed as follows: 
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Where Ri is the coefficient of multiple correlation for Eq.5, defined as Eq.7. The v  is the mean vi 
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Significant multicollinearity exists when the VIF value exceeds the threshold of 10.0 (Ref.[15]). The 

VIF values and Pearson correlation coefficients were calculated for four explanatory variables regarding 

KiK-net observations as illustrated in Table.2. The VIF values for Surface-PGA(H) and PNL variables are all 

larger than 10.0 as shown in Table.4. The Pearson correlation coefficients between surface-PGA and PNL 

reached 0.95, which indicates a strong linear correlation between them. Therefore, the Surface-PGA was 

replaced by Borehole-PGA to represent the ground motion level. New VIF values for Borehole-PGA(H), 

DNL, PNL and VS30 were calculated respectively and listed in Table.3 as case B, indicating no predominant 

multicollinearity correlation with largest VIF value as 5.2. 

Table 2. Same as Table 3 but for KiK-net observations 

 case A 

 Surface-PGA DNL PNL VS30 VIF 

Surface-PGA 1.00  0.74  0.95  -0.19  10.3 

DNL 0.74 1.00  0.80  -0.37  3.3 

PNL 0.95 0.80 1.00  -0.20  13.3 

VS30 -0.19 -0.37 -0.20 1.00  1.2 

 case B 

 Borehole-PGA DNL PNL VS30 VIF 

Borehole-PGA 1.00  0.76  0.87  -0.15  4.5 

DNL 0.76 1.00  0.80  -0.37  3.4 

PNL 0.87 0.80 1.00  -0.20  5.2 

VS30 -0.15 -0.37 -0.20 1.00  1.2 

 

In addition to the diagnosis for multicollinearity, scaling of the variables is also an important 

procedure that should be performed prior to K-means clustering. If variables are measured on different scales, 

the effect of variables with small scale might be submerged in the variables with larger scale, which might 

produce misleading results. Significant difference exists in the scale of measurement of the PGA, VS30, DNL 

and PNL values. Therefore, we used the extreme method to obtain nondimensional explanatory variables, as 

shown in Eq. (8), where the term 'iv  is the nondimensional result of variable vi, and 
max

iv  and 
min

iv  are the 

maximum and minimum values, respectively, among the n observations: 

min

max min
' i i

i

i i

v v
v

v v





 (8) 

 

4.3 Optimum clustering number 
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Before we perform the K-means clustering analysis, it is necessary to determine the optimum number 

of clusters. As the only prior information given in the whole unsupervised clustering analysis process, the 

number of clustering will significantly influence the clustering result. There is no standard procedure for 

computation of the optimum clustering number. The most popular criteria is the Calinski and Harabasz (1974) 

[16]F-stopping-rule index which is based on the within-cluster sum of difference squares. It is a measure of 

(dis-)similarity between clusters, that is, measures the degree of homogeneity between groups. The larger the 

value of Calinski-Harabasz index is, the more significant the differences among groups are, and the more 

acceptable the clustering number is. Different clustering numbers and the corresponding Calinski-Harabasz 

index regarding KiK-net stations are illustrated in Fig.4(a). The comparison results indicated that two 

clusters has the largest value of Calinski-Harabasz index, indicating that the optimum number of clustering is 

two. The results are consistent with the problem which this study deals with, that is, one cluster groups the 

stations with nonlinear site response and another one groups the stations with linear site response. The K-

means clustering analysis was then performed for the observation data from KiK-net stations which would be 

separated into two clusters. 

(a) (b)

 

Figure 4. (a) The clustering number and corresponding Calinski-Harabasz criterion index. (b)The original 

observation data are represented in a 3-dimensional space using PCA method. Different color indicates the 

nonlinearity identification results using K-means algorithm. 

4.4 Clustering results validation 

It is difficult to visualize the classification results due to each observation data having four explanatory 

variables that requires a visualization in a four-dimensions space. Therefore, we used the principal 

component analysis (PCA) to reduce the dimensions of the observation data. PCA is mathematically defined 

as an orthogonal linear transformation that transforms the data to a new coordinate system such that the 

projection of the data comes to lie on new coordinates (called the principal component)[17]. The greatest 

variance by projection of the data comes to lie on the first coordinate (called the first principal component), 

the second greatest variance on the second coordinate, and so on. The PCA results indicated that three 

components account for more than 95% of the variance, which could represent the original observation data 

we studied. The original four-dimensions observation data for KiK-net stations were projected into three-

dimensions space as shown in Fig.4(b). The classification results using K-means algorithm are all visually 

separated into two clusters, indicating a relatively satisfactory classification result. 

The clustering results were then compared with those based on the empirical thresholds of the widely 

recognized nonlinear indicator, such as DNL, PNL, PGA as shown in Fig.5. Noguchi and Sasatani (2008) 

[6]suggested a DNL value of 4.0 for H/V ratio method as the boundary of nonlinear site response 
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identification, which has been used in many studies. (e.g. [5][18]). Although there is a difference between the 

surface/borehole and H/V spectral ratios, the DNLSB and DNLHV thresholds are nearly equivalent[6]. The 

empirical threshold values of PNL and Borehole-PGA suggested by Régnie et al. (2013)[4] were 10 % and 

50 gal respectively based on a large number of KiK-net data in Japan. Ranging from 100 gal to 200 gal, 

however, the surface-PGA threshold value is still debated. Our classification results were in good agreement 

with the threshold value of 200 gal suggested by Ref.[5]. The correlation between site condition (i.e., VS30) 

and the degree of nonlinear site response (i.e., DNL or PNL) is obviously weak, and there is no convincing 

threshold for the VS30. It can be observed that the sites with nonlinear site response classified by clustering 

algorithm (i.e., cluster A) are mostly located within the empirical nonlinearity region only except for two or 

three data near the boundary. It proves that the clustering results are quite convincing and robust from the 

perspective of nonlinearity indicators distribution. 

 

Figure 5. Values of DNL, PNL for 39 KiK-net stations versus the recorded PGA and VS30. The dots with 

different color indicate the classification results computed using K-means clustering algorithm in this paper. 

The dashed lines indicate the empirical classification threshold of DNL, PNL, Borehole-PGA and Surface-

PGA. The shaded area means the regions covering the indicator values of beyond their empirical thresholds 

which defines the nonlinear site response 

  The surface-borehole spectral ratio curves for stations with nonlinear site response according to 

clustering results were shown in Fig.6. It can observe apparently a systematic decrease of the peak 

frequencies associated with a decrease of their amplitude. The computed spectral ratios using the recordings 

of the main event were amplified at frequencies below the predominant frequency and were deamplified 

above it, which illustrates typical nonlinear soil behavior. These indicate that the identification results of 

nonlinear site response using the clustering method are reasonable and accurate. The whole clustering 

identification process is completely automatic and efficient without any manual intervention, while the 

satisfactory and objective results were obtained as shown in the Fig.5 and Fig.6. 
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Figure 6. The surface-borehole spectral ratio curves for 9 KiK-net stations identified as those with nonlinear 

site response using the K-means clustering algorithm. The shaded area indicates the range of the mean plus 

and minus one standard deviation. 

6. Conclusions 

This paper firstly incorporated the clustering algorithm in machine learning to deal with the nonlinear 

seismic site response classification problem using the Hokkaido eastern Iburi earthquake as a study case. 

We calculated the surface/borehole spectral ratios using strong ground motion data recorded at KiK-

net vertical array. The degree of nonlinear site response (DNL) and percentage of nonlinear site response 

(PNL) were then computed respectively based on the difference between strong motion in mainshock and 

weak aftershocks’ ground motion as their linear site response reference. Using the calculated DNL, PNL, 

PGA and the VS30 as clustering variables, K-means clustering algorithm was incorporated in the nonlinear 

site response identification process. Multicollinearity diagnosis was applied to guarantee that these 

explanatory variables were not completely linear correlated. After confirmation of the optimum number of 

clustering, we grouped the stations into two clusters, representing observation with nonlinear and linear site 

response respectively.  

To validate the clustering identification results, we adopted different methods to comprehensively 

evaluate them from different aspects. Firstly, Principal component analysis (PCA) was carried out to 

intuitively illustrate the clustering results by reducing the dimensions of the data. The values of DNL, PNL, 

PGA, and VS30 are visually separated into two clusters. The clustering classification results are overall 

consistent with the results indicated by empirical nonlinearity empirical threshold proposed by other scholars. 

For the identified stations with nonlinear site response, an obvious deamplification and shift of frequency 

could be observed between the main shock and reference linear spectral ratio curve which is the typical site 

nonlinearity characteristics.  
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This study presented an interesting example solving the seismology problems using state-of-art 

matching learning technique. Using classical seismology techniques with machine learning algorithm in a 

hybrid approach, it is possible that we could extract novel insights directly from the data and solving more 

and more problems in the field of earthquake engineering. 
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